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PACS 64.70.qd — Thermodynamics and statistical mechanics

Abstract — The packing of elastic sheets is investigated in a quasi two-dimensional experimental
setup: a sheet is pulled through a rigid hole acting as a container, so that its configuration is
mostly prescribed by the cross-section of the sheet in the plane of the hole. The characterisation
of the packed configuration is made possible by using refined image analysis. The geometrical
properties and energies of the branches forming the cross-section are broadly distributed. We find
distributions of energy with exponential tails. This setup naturally divides the system into two
sub-systems: in contact with the container and within the bulk. While the geometrical properties of
the sub-systems differ, their energy distributions are identical, indicating “thermal” homogeneity
and allowing the definition of effective temperatures from the characteristic scales of the energy

distributions.

Copyright © EPLA, 2009

Introduction. — The challenges raised by out-of-
equilibrium systems are exemplified by granular mate-
rials [1] and glasses [2,3], featuring complex energy
landscapes and aging. Energy flow, thermal equili-
bration, and the statistical properties of energy in
such systems can be characterised by various effective
temperatures [4-6]; however, previous experimental
studies [7-12] only measured a temperature based on the
ratio between fluctuations and response of the system.
Here we present experiments on a macroscopic out-of-
equilibrium system, namely the packing of elastic sheets
into quasi two-dimensional containers [13] and focus on the
statistical properties of the configurations. We measure
the distributions of geometrical and energetic properties
and show “thermal” homogeneity within the system
although its geometrical properties are not uniform,
enabling the definition of effective temperatures from the
distributions of energy. Thus we obtain a macroscopic
experimental system that could be used to test out-of-
equilibrium statistical physics. Our results bear on the
packing of flexible structures such as elastic rods [14-17],
crumpled paper [18-21], folded leaves in buds [22], chro-
matin in cell nuclei [23] or DNA in viral capsids [15,24].

At equilibrium, systems with a large number of degrees
of freedom are characterised by a single temperature 7. On

the one hand, the energy of one degree of freedom follows
Boltzmann’s distribution, the mean energy being propor-
tional to T. On the other hand, 7" might be measured
using the fluctuation-dissipation theorem (FDT), relating
fluctuations of an observable to its response to an external
field. By analogy, two main effective temperatures were
introduced for systems out of equilibrium. The approach
of Edwards [4] amounts to the replacement of T by an
effective temperature in the distribution of energies; it
can be extended to intensive thermodynamic parameters
associated with global conserved quantities [6,25-27].
The generalisation of the FDT [5] gives another effec-
tive temperature, which can be measured [7-12,28]. In
many models, Edwards’ and FDT temperatures are
equal [29-32] or proportional [33]. An experimental
measurement of Edwards’ temperature seems to be lack-
ing as it is difficult to obtain energy distributions. Here
we measure energy distributions in the packing of elastic
sheets.

Experimental setup. — Figure 1(a) represents
the experimental setup, as introduced in [13], which was
inspired by the study of single d-cones [34]. We use circular
polyester (polyethylene terephtalate) sheets of Young’s
modulus measured as E=05GPa, density 1.4g/cm?,
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Fig. 1: The experiment. (a) Sketch of the setup showing the
radius of the sheet r, its thickness h, the radius of the hole
R and the control parameter Z; the force F is measured
with a dynamometer. (b) Thresholded picture of a horizontal
cross-section of a configuration from set ¢ of experiments.
(c) Analysed cross-section, showing the existence of multi-
branches stacks delimited by two junction points. The number
of branches is indicated near each stack. (d) 3D reconstruction
of the same configuration, assuming exact self-similarity of
shape.

various radii 7~ 30cm and thicknesses h ~ 100 um (see
table 1). At each realisation, a sheet is pulled from its
centre through a circular rigid hole of radius R ~ 20 mm.
The values of the parameters (r,h,R) for each set of
experiments are given in table 1. The hole is machined

through a Plexiglas plate and its edges are rounded to
form a toroidal convex shape, to avoid damaging the
sheet. The center of the sheet is pierced and fixed to a
dynamometer by means of a threaded mount of radius 0.8
cm. The sheet is pulled at a velocity of 0.5 mm/s, so that
the distance Z, between the pulling point and the plane of
the hole is our main control parameter. The measurement
of the pulling force F during the compaction directly
yields the work injected in the system W = fOZ Fdz.
This injected energy serves to pack the sheet and is
dissipated through friction. The coefficients of friction
for polyester/Plexiglas and polyester/polyester were
measured as 0.37 and 0.30, respectively.

The sheet might undergo two modes of deformation:
bending and stretching. As bending is favoured energet-
ically, a self-similar conical shape is expected [35], so
that one cross-section approximately prescribes the whole
shape of the sheet. A virtual cut across the sheet in the
plane of the hole yields a one-dimensional rod of length
27, that grows within a disk of radius R as Z is increased.
The experiment allows isotropic confinement to packing
ratios P as high as 0.11, where P =2Zh/R? is the ratio of
cross-sectional area of the sheet 2rZh to the area of the
hole TR2.

In principle, configurations can be visualised from
below. However this turns out to be inconvenient as parts
of the sheet assemble into thick bundles and the edge
of the sheet does not lie in a single plane. Therefore we
resort to a hot wire cutting tool to obtain cross-sections
for one value of the control parameter Z, (given in
table 1). With great care, one obtains neat cuts without
perturbing the configuration. The cross-section is digitised
with a scanner at a resolution of 50 pixels per mm. A
thresholding results in a binary image, in which empty
spaces of surface area larger than (10h)? are kept, which
removes light noise from the raw image, as shown in
fig. 1(b). The binary image is skeletonized (reduced to a
one pixel thick skeleton); junction points are then defined
as pixels with at least three neighbours. Two neighbour-
ing junction points delimit a stack of branches in close
contact. The next step is to determine the number of
branches in each of the M stacks. The conservation of the
number of branches at each junction point yields 2M/3
equations, because 3 stacks intersect at each junction
point; the remaining M/3 equations are found from the
thickness of the stacks in the binary image as follows. The
heating by the cutting tool thickens (about twice) a stack
nonlinearly, which was calibrated by separately cutting
stacks of sheets. As a result, the smallest sheet thickness
used (h=>50pum) corresponds to 5 pixels. We keep the
M /3 stacks with the best estimation of the thickness as
given by the calibration. The solution of the linear M x M
system yields the number of branches in each stack. We
reopened a few configurations (5 per set of experiments)
and checked by counting the number of branches in each
stack: we found no error for sets i¢ and iz, and an error of
#+1 branch in 20% of the stacks for the more compact set .

24002-p2



Energy distributions and effective temperatures in the packing of elastic sheets

Table 1: Material parameters for the sheets used in experiments:

thickness h, radius r, bending stiffness B and plastic threshold

curvature k.. Control parameters: hole radius R, maximal pulling distance Z,,, and packing ratio P = 2hZ,,/ R?. Total numbers
of realisations #R and of branches Y Ny, on which statistical analyses are based.

h (pm) 7 (ecm) B (J) Ke (mm ~1)

R (mm) Z, (cm) P #R > Ny

7-107°
7-107°
1-1073

1 50
1w 90
11 125

33
33
22

0.54
0.54
0.24

16.5
22.5
27

30
30
19

0.11
0.06
0.07

33 16170
16 5760
16 1760

These errors are small thanks to the fact that the number
of branches in a stack is an integer. Thus, we obtain both
the geometry and the topology of the sheet (fig. 1(c), (d)).

When repeating the experiment with the same experi-
mental parameters, a whole variety of shapes is generated,
which calls for a statistical approach and an ensemble
analysis. We systematically performed and analysed three
sets of experiments with a number of realisations #R ~ 20
(table 1). We detail in the following our experimental
results.

Total energy. — We first consider the global energetic
quantities, injected work W and elastic energy FE, and
their correlations. Assuming the shape of the folded
sheet to be exactly self-similar, a cross-section prescribes
the energy of the whole sheet as follows [35]. Using
the polar coordinates (p,#) on the initially plane sheet,
the branches, located in the plane p~ Z,,, have a local
curvature (), and correspond to an angular sector on the
sheet, where the curvature is ¢(p, 0) = Zi,k(0)/p, assuming
the hole to be small (R < Z,). The bending energy E of

the whole sheet is
27 Zm
r
In(— / K2 (¢ dt,
@) o

B [ 2
—/ / Apdfdp=
2 .J0

where we introduced t = Z,,,0, the curvilinear coordinate
in the hole cross-section. The logarithmic prefactor known
for d-cones [35] contains as cutoffs the radii of the core of
the cone R. and of the sheet r. In actual experiments,
the self-similarity is not exact as some generators end
below the mount. This affects the logarithmic prefactor
through the effective value of R., which might lead to
an error in the overall multiplicative factor of order 1
in the estimation of the total elastic energy. Here, we
chose to estimate R, as the radius of the mount (0.8 cm).
In order to account for plastic softening of the sheets
(as observed locally along a few scars), the quadratic x2-
dependence of the energy (eq. (1)) was replaced by a linear
dependance k.(2k — k.) for curvatures greater than the
plastic threshold k. (table 1), measured as in [19)].
Figure 2 shows that the bending energy F and the
injected work W are correlated. Indeed, for each set of
experiments, E is roughly proportional to W, showing
that the stored elastic energy E can be controlled with
an external force. The unphysical values (mostly in set
iit) such that E > W can be mainly ascribed to the choice

BZ

m

(1)

20

Fig. 2: Total elastic energy E (measured from the geometry
according to eq. (1)) and injected work W (measured from the
pulling force F') for the three sets of experiments: ¢ (o), 4 ()
and ¢4 (O). The straight lines are linear fits to each set.

of R. as the radius of the mount; choosing, instead, R. of
the order of the hole radius would shift all data below the
line £ =W. Another possible source of bias comes from
the estimation of the energy of the very few branches with
local high curvatures (k> k) that contribute significantly
to the total energy. We stress however that these two
sources of error do not affect the statistics of energy as
discussed below.

Figure 2 also shows that the global quantities £ and
W fluctuate over the realisations of a given set as the
system explores its configurational space. Energy dissi-
pation occurs by friction between layers and with the
container, and through discontinuous bifurcations [16]
corresponding to reorganisations of the configurations
when the confinement is increased. The evolution of the
overall slope of E(W) suggests that the dissipated frac-
tion of energy increases with confinement; indeed the more
compact set i has the smallest slope. Furthermore, the
injected work W is history-dependent as it fluctuates for
a given value of the elastic energy E. This illustrates the
multistability of the system, suggesting a complex energy
landscape.

Statistics of the geometry. — In the following we
detail the main statistical properties measured over all
realisations of a given set to insure convergence of the
statistics. Note that the statistics over one configuration
are compatible with ensemble statistics. Within the
elastic theory of rods, the equilibrium state of a confined

24002-p3
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Fig. 3: Statistics of the geometrical properties for the three sets
of experiments: ¢ (o/e), ¢ (/M) and iii (O/4), respectively
in periphery/bulk. (a) Experimental pdfs p(¢) of the length
¢ of branches and exponential distributions fg(¢), eq. (2), of
the same mean as the experimental data. For the periphery
p(£) is multiplied by 10% for clarity. Means (£) =3.3,4.5 mm
for set i; 4.6, 6.8 mm for set ii; and 9.6, 16 mm for set iii,
respectively, for the bulk and the periphery. The inset shows
the two sub-systems: branches in the bulk (green) and at
the periphery (dark). (b) Experimental pdfs p(k.,) of the
mean curvature of branches k,,, with same symbols as in (a).
For the bulk (main panel), the Gamma distribution fq(km),
eq. (3), with the same mean and variance as the experimental
data is plotted; its exponent is @ =0.43,0.51 and 0.62 and its
mean is (K, )=0.16,0.12 and 0.08mm™!, for sets i, 7 and
141, respectively. For the periphery (inset), the distributions
are peaked at the curvature of the containers 1/R, shown by
vertical lines.

rod results from the torque balance of each branch,
whereas the interaction between neighbouring branches
is mediated by their extremities where contact forces
and friction come into play [16,36]. This fact allows
unambiguously to consider branches as the elementary
particles of the system comparatively to other topologic
or geometric decomposition such as contact points or
loops which have been used previously [14,17].

As the container constrains the curvature of branches in
the periphery, it is natural to split the system into two sub-
systems (inset in fig. 3(a)): branches with/without contact
with the container, which we will refer to as periphery and
bulk, respectively. The two sub-systems roughly contain
the same number of branches (60% in periphery). In the

0 0.1 0.2 0.3

eW)

p(e)

e ()

Fig. 4: Statistics of the energy. Experimental pdfs p(e) of the
energy e of the branches for the three sets of experiments: ¢
(a), 7 (b) and 43 (c) in log-lin (main panels) and log-log scales
(insets). The distributions are given separately for the two sub-
systems: bulk (e, B and ¢) and periphery (o, O and ¢). The
lines are Gamma distributions, eq. (3), with the same mean
and variance as the experimental data. The parameters of the
distributions are reported in table 2.

following, we measure probability distribution functions
p(x) in each sub-system; we compare these distributions
to analytical pdfs f(z) with the same average and variance
as experimental data, instead of direct curve fitting. The
error bars dz and dp of the experimental pdfs p(z),
shown in figs. 3 and 4, are given by the bin width
0z and the estimated standard deviation dp=p/y/n of
the corresponding histograms n(z). The total number
of branches (in periphery and bulk) for a given set of
experiments varies between ~2-10% and ~2-10% (see
table 1), which allows for accurate statistics.

24002-p4
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Figure 3(a) shows that the lengths ¢ of branches are
well-described by exponential distributions,

fe(€)=1/p exp(—£/p), (2)

both in periphery and in bulk. It appears that the value
of the averaged length (¢) =y is significantly larger for
branches at the periphery than in the bulk.

Next, we consider the absolute value of the average
curvature kp, of each branch (fig. 3(b)). For the bulk (main
panel of fig. 3(b)), the distribution p(k.,) is characterised
by an exponential tail and a weak power law for small
curvatures, which is well described by a Gamma law with

(Fm/X)*

density
Km
exp | ——
['(a) km p x )’

where I' stands for Euler’s Gamma-function. In contrast,
for the periphery (inset of fig. 3(b)), the distribution p(£m,)
is peaked around the value 1/R given by the container.
Thus, the geometrical properties of the periphery and the
bulk are significantly different.

fg’x("ém) =

(3)

Statistics of the energy. — Each configuration is
at mechanical equilibrium, so that any branch can be
characterised by its elastic energy. The energy e of the
branch corresponds to that of an angular sector on
the sheet and is calculated using eq. (1), with limits
of integration t€ (0,¢), where ¢ is the branch length.
Surprisingly, the probability distribution functions p(e) in
periphery and in bulk coincide, as shown in fig. 4(a), (b)
and (c) for the three sets of experiments 4, 4 and i,
respectively. Despite the heterogeneous geometry of the
branches, which contributes to their energy through length
and curvature, the energy is homogeneous inside the whole
system. These distributions are characterised by a power-
law divergence at small values and by exponential tails,
as shown by the log-log and log-lin scales in inset and
main panels of fig. 4. Thus, it is natural to compare them
to Gamma distributions. Indeed, they are well-described
by Gamma laws f3°*(e) as given by eq. (3), with the
same average and variance as the experimental data (see
fig. 4). However, we found exponents a. <1 which are
not trivially interpretable as a number of effective sub-
systems, in contrast with the cases where o, >1 [20,26].
This point will be discussed below.

Here we emphasise that the shape of the distributions
of energy is insensitive either to the overall multiplicative
factor In (r/R.) of eq. (1) or to the plastic threshold k..
The former amounts to a normalisation of the average
energy of a given set, while the value of the latter does not
change the statistics since it affects only a few branches.

Discussion. — We investigated the close packing of
elastic sheets in a quasi two-dimensional experimental
setup allowing the statistical study of the geometry and
the energy of the resulting configurations. These quanti-
ties are broadly distributed, suggesting a complex energy

Table 2: Effective temperatures: (e) is the mean energy per
elementary particle, i.e. per branch; x. and «. are given by
the tail and the exponent of the Gamma distribution of energy
in fig. 4.

(e)(md) xe(mJ) ac
1 65 39 0.16
2 6.6 35 0.23
337 90 0.41

landscape. We identified branches as natural elementary
particles: the shape of a branch is completely prescribed
by its length and boundary conditions. The interaction
between branches is mediated by the contact forces
at their extremities, which is reminiscent of granular
packing. The presence of the rigid container led us to split
the system into two sub-systems: periphery and bulk. It
turns out that the energy of branches is the only quantity
which is identically distributed in the two sub-systems,
even though the geometrical properties differ. This
homogeneity of the distributions of energy is our central
result. This property might be an indication of thermal
equilibration. Future work should address this important
question.

Moreover, the energy distributions of the different sets
of experiments are characterised by an exponential tail
that is reminiscent of Boltzmann distributions. Conse-
quently, the distributions of energy allow to define effec-
tive temperatures for each set of experiments: the mean
energy per branch (e) and the characteristic energy given
by the exponential tails y.. The effective temperatures are
ordered as (e) < x. for each set of experiments (table 2);
the sets of temperatures are close for the two sets of exper-
iments with the same thickness A and bending stiffness
B (i and i7), whereas these correspond to very different
packing ratios (P =0.11 and 0.06). This suggests that the
bending stiffness B might be relevant for the value of the
effective temperatures. However, more work is needed in
this respect, because of the inaccurate estimation of the
overall logarithmic multiplicative factor in eq. (1).

As stated above and shown in table 2, the exponents
a. <1 are not trivialy interpretable as a number of
effective sub-systems, which makes the physical interpre-
tation of the Gamma distributions difficult. Nevertheless,
another distribution function exhibiting a power law
at small values and an exponential tail is provided by
Bose-Einstein statistics

g(e)
fBE(e) = Wa
when the chemical potential vanishes. Here g(e) is the
density of states. In the case of noninteracting bosons
g(e) ~ el4=2/2 where d is the space dimension, which can
lead to a divergent behaviour of the distribution at small
energies. Thus the distributions measured here could be
interpreted as obeying a Bose-Einstein statistics with a

(4)
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power law g(e). A rationale would be as follows: many
branches may be in the same state (when belonging to
the same stack) as bosons; the number of branches is
unprescribed so that the “chemical potential” is zero.
Thermal homogeneity suggests a description of the
system in terms of statistical physics. However, our system
is obviously not ergodic, as it must be driven by injecting
work in order to explore the phase space. This driving
has some similarities with the slow shearing of colloidal
glasses [28] or granular materials [10,30]; however, it is not
stationary and restricts the accessible phase space at each
reconfiguration of the sheet. As in other glassy systems,
two different time scales characterise the dynamics: a very
slow one associated with the driving and a quick one
corresponding to the reconfiguration to local mechanical
equilibrium. Finally, further experimental and theoretical
work is needed to explain our observations and to confirm
our interpretations. Can one predict the distributions from
first principles? How universal are these distributions?
What controls the effective temperatures measured here?

X K K
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