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1 Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC
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Abstract. The behaviour of elastic structures undergoing large deformations
is the result of the competition between confining conditions, self-avoidance
and elasticity. This combination of multiple phenomena creates a geometrical
frustration that leads to complex fold patterns. By studying, both experimentally
and numerically, the case of a rod confined isotropically into a disc, we show that
the emergence of the complexity is associated with a well-defined underlying
statistical measure that determines the energy distribution of sub-elements,
‘branches’, of the rod. This result suggests that branches act as the ‘microscopic’
degrees of freedom laying the foundations for a statistical mechanical theory of
this athermal and amorphous system.
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1. Introduction

Classical equilibrium statistical mechanics stands as a major cornerstone of modern
physics. Tools issued from this theory have been instrumental in rationalizing a huge
number of seemingly unrelated physical situations ranging from phase transitions in
atomistic systems to the behaviour of polymers. This is possible because the size
of the fundamental components of these systems is sufficiently small so that thermal
fluctuations allow the degrees of freedom to span all the possible configurations through
an ergodic exploration of the energy landscape. For macroscopic systems thermal agitation
becomes negligible and, while these systems may be mechanically stable, they fall out of
equilibrium with respect to thermodynamics. A usual example where gravitational energy
completely dominates thermal effects concerns the physics and mechanics of granular
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assemblies [32]. Because of this mismatch of energy scales and of the presence of dissipative
interactions between the grains, it had long been believed that these systems could
never be reconciliated with the basic principles underlying classical statistical physics.
However, it has been recognized in the last decade that granular materials do in fact
share many properties with thermal, although very slowly evolving, systems such as
molecular glasses [11, 24]. Indeed, analogies between the slow relaxation of granular
materials and the glassy phenomenology of supercooled liquids has led to the now famous
‘Jamming diagram’ proposed by Liu and Nagel [41]. While this analogy is not free from
criticism, it does open up the possibility that macroscopic systems could still be described
using a combination of the tools of statistical physics and some new out-of-equilibrium
concepts. In fact it has recently been proposed that the rheology of athermal amorphous
systems is characterized by well-defined statistical distributions that are amenable to a
probabilistic treatment similar to that of classical statistical mechanics [2, 7, 9, 23, 29, 45].
An important new concept often encountered in these descriptions is the presence of an
‘effective’ temperature that is different from the bath temperature and that depends on
the driving mechanism or on the details of the coupling between the thermostat and the
system [14, 22, 48, 52].

Here we are interested in another kind of athermal macroscopic systems: elastic
structures. Due to the geometrical frustration created by the interaction between
confinement, self-avoidance and elasticity, it is expected that confined elastic structures
should display a complex behaviour. Indeed crumpling a sheet of paper is a typical
everyday illustration of the phenomena that we want to study. A rapid visual inspection
of the numerous valleys and mountains present after unfolding a piece of crumpled
paper often leaves one with the impression of fascinating albeit extremely complex fold
patterns [57]. Accordingly, the folding phenomena are associated with a rich class of
crumpling phenomena which belong to a wider class of interfacial deformation phenomena.
Both deterministic and random folding of thin materials are of noteworthy importance to
many branches of science and industry. Examples range from DNA packaging inside virus
capsids [50] and polymerized membranes at the microscale [16, 51] to folded engineering
materials and geological formations at the macroscale, including insect wings [17] or leaves
in buds [21, 34]. They usually consist of thin sheets or rods constrained to undergo large
deformations. Because of their biological and technological importance, the properties
of randomly folded thin materials are now the subject of increasingly growing attention.
Because self-avoidance and nonlinear deformations make the description of fully crumpled
or folded materials very difficult, earlier studies focused on the identification of the
elementary generic features displayed by an elastic surface that has to accommodate a
geometrical mismatch reducing its accessible volume. It was found that those individual
structures consist of sharp vertices (or developable cones) [8], [18]–[20], [36] and linear
ridges [26], [42]–[44], [58] and their properties are now rather well established. These
singularities are conceptually similar to the dislocations, cracks, necks or shear zones that
are created when a continuum medium is forced at the large scales and localizes the stress
in those tiny regions that dissipate the energy at the smaller length scales. In general,
these singularities can either be moving or be quenched depending on their type and on
the mechanical properties of the material [12, 47]. Their interactions are usually carried
through a long ranged elastic field either instantaneously or with retardation via wave
propagation. In the case of the packing of flexible structures, almost nothing is known
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about how these interactions lead to the complex fold patterns that are observed at the
surface of a piece of crumpled paper. This situation is similar to the one encountered in
statistical physics where, given the knowledge of the microscopic interactions, one tries to
bridge the gap and rationalize the macroscopic behaviours [15, 33].

The question that motivated the study presented here is: ‘Are there any general
statistical properties associated with the crumpling and folding phenomenology that are
observed when an elastic structure is confined in an environment smaller than its
rest size? ’ So far there has been some degree of incompatibility between crumpling
experiments and numerical simulations. For one thing, most simulated sheets have been
fully elastic [35, 37, 54, 56] whereas the ones used in experiments have been made of elasto-
plastic materials such as Mylar, paper, aluminium foil and even layers of cream [1], [3]–
[6], [10, 31], [30], [38]–[40] [46, 49]. It is not clear to what extent these analyses could make
the difficult distinction between elastic and elasto-plastic behaviours [55]. On the other
hand, the packing of elastic objects clearly depends on the dimensionality of the object
(d) and of the container (D > d). The configurational properties are totally different if
the dimension of the container satisfies D ≥ d + 2 from the case D = d + 1 due to the
rigid constraint of the inter-penetrability.

Here we provide a case study in order to answer our original question. We are
studying the statistical properties of an elastic rod (d = 1) that is confined in a disc
(D = 2) [13, 25, 27, 28, 37, 53]. In this geometry, there are no singularities and the most
important constraint is of geometrical origin. Using a comparison between two widely
different implementations of rod compaction we suggest that there exists an underlying
statistical measure that describes the folding process. After describing the systems that
we studied (sheet pulling experiment in section 3 and minimal numerical simulations
in section 4) and pointing out their different confining and geometrical conditions, we
show a compared statistical analysis of several quantities. Similarities between stochastic
observables can be detected by comparing their probability density functions (pdfs) and
this is the method that we employed here. The particular pdfs that we observed during
this study are presented and put in a more general context in section 2. Our main result is
that while the topological (section 5) and the geometrical (section 6) properties are indeed
different, the energy of some sub-parts of the rod (referred to as ‘branches’ afterwards)
display identical statistical properties (section 7). The energy of the branches turns out
to be distributed according to a Gamma law that reduces to a Boltzmann distribution for
high energies. In section 8, we argue that branches correspond to the relevant ‘microscopic’
degrees of freedom that define the statistical mechanics of folding. Finally we propose that
the spiral configurations that define the ground state of the system may be viewed as a
condensed phase with all the branches lying on top of each other.

2. Statistical distributions

Since we will be extensively using probability density functions (pdfs) in the remaining
part of the article, it is worth reminding the reader of the expressions of the pdfs that
will come up later. In order to be general, we denote by x the random variable in this
section but that will of course be replaced by some physical observables such as curvature
or energy when we come to the description of our results. In addition to defining our
notation for the parameters of the pdfs, this short list also allows us to summarize results
from other related studies.
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• Exponential distribution:

ρμ
E(x) =

1

μ
exp

(
−x

μ

)
; (1)

where μ is the mean of x. Such pdfs have been found before in measurements of local
3d curvatures [10] and number of intersecting ridges [1] in unfolded sheets of paper.
They also appeared to describe the lengths of folds in a 3d crumpled sheet [56].
Exponential distributions are usually associated with the presence of uncorrelated
events that are distributed randomly.

• Log-normal distribution:

ρμ,σ
LN (x) =

1√
2π σx

exp

(
−(ln(x) − μ)2

2σ2

)
; (2)

where μ and σ2 are respectively the mean and the variance of ln x. Such pdfs have
been found to describe the length of plastic linelike ridges in experiments [1, 10] as
well as in numerical simulations of crumpled sheets [54, 56]. Log-normal distributions
are usually associated with random events that are occurring hierarchically.

• Gamma distribution:

ρα,χ
G (x) =

xα−1

Γ(α)χα
exp

(
−x

χ

)
; (3)

where χ is the mean of x and α is the exponent of the Gamma distribution. Such
pdfs are known to describe the lengths of bent segments of highly confined sheets [54].
Gamma distributions are usually associated with the presence of correlations in
otherwise randomly distributed events. When α < 1, there is a power law divergence
for small values of x. Notice that for large values of x, a Gamma distribution reduces
to a simple exponential distribution.

We will keep the same notation for all the parameters throughout the rest of the paper.
Also, we will not re-write the expressions for the pdfs and refer the reader to this section
whenever one of these pdfs is encountered in the following sections. The goal of our study
is to identify what is the relevant observable x leading to a universal pdf in the context
of confined elastic rods. The robustness of the pdfs is tested by comparing between
experimental work (setup described in section 3) and ‘model’ numerical simulations
(algorithm described in section 4).

3. Sheet pulling experiments

3.1. Experimental setup

The experiment has been already described in [13, 25]. A circular polyester sheet of
radius r ∼ 30 cm and thickness h ∼ 0.1 mm is pulled by its centre through a smaller
circular rigid hole of radius R ∼ 2 cm, as illustrated in figure 1. The Young’s modulus of
the sheets has been measured as E = 5 GPa, its density is 1.4 g cm−3. The bending rigidity
has been measured as B = 7×10−5 J for sets of experiments 1, 2, 4 and B = 1×10−3 J for
set 3. In this specific setup, the sheet undergoes preferentially bending deformation rather
than stretching, in order to minimize its elastic energy. Thus a self-affine conical shape is
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Figure 1. (a) Schematic representation of the sheet pulling experiment, showing
the radius of the sheet r, its thickness h, the radius of the hole R and the control
parameter Z. (b) Typical configurations observed after a cross-sectional cut right
below the hole. Note that these very different shapes were obtained by following
the same protocol (compaction rate ε = 19). (c) Corresponding configurations
after the image analysis procedure (see section 3.2). Black circles represent
the Y-shaped junction points where multi-branched stacks converge (merge or
separate). Branches in self-contact within a stack make the thickness of these
stacks proportional to the number of individual branches they carry.

expected and observed, so that the whole 3d shape of the sheet is prescribed by the shape
of one cross-section. Any cross-section at a distance z from the cone tip draws a virtual
rod of thickness h and length L � 2πz, compacted in a circle of surface S = π(Rz/Z)2,
Z being the pulling distance between the cone tip and the plane hole (figure 1). In this
paper, we are specifically interested in the compaction of such a virtual rod, rather than
the compaction of the whole sheet. Lengths, surfaces and volumes measured in a cross-
section obviously depend on its position z, but become independent of z when their units
are non-dimensionalized by using the total length of the rod L. In practice, the cross-
section is observed in the hole plane z = Z, and only once during the pulling experiment
for Z = Zm ∼ 30 cm (see table 1). For each experiment, a rod of non-dimensionalized
length 1 is compacted in a circle of non-dimensionalized surface S/L2:

S/L2 = R2/4/Z2
m = ε2/4, (4)

doi:10.1088/1742-5468/2010/11/P11027 6
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Table 1. Experimental parameters: dimensions, compaction rates and material
properties of the polyester sheets.

L(m) h/L r/L R/L Zm/L ε C (%) B(J)

1 1.9 2.6 × 10−5 8.9 × 10−3 0.18 0.16 19 15 7 × 10−5

2 1.9 2.6 × 10−5 1.2 × 10−2 0.17 0.16 14 8 7 × 10−5

3 1.2 2.1 × 10−4 2.2 × 10−2 0.18 0.16 8 9 1 × 10−3

4 1.0 5.0 × 10−5 1.6 × 10−2 0.33 0.16 10 4 7 × 10−5

defining the compaction rate ε, the ratio of rod length over hole perimeter:

ε = L/(2πR). (5)

A second parameter characterizing the compaction rate, but in terms of higher
dimensionality, is defined as the ratio of the sheet volume over its conical envelope:

C = 3hε2/r. (6)

Note that the sheet dimensions (h, r) appear in the expression of the 3d-compaction
rate C, but not of the 2d-compaction rate ε. In this paper, the experiments are typically
characterized by compaction rates ε of the order of 10 and C of 10%. The values of
experimental parameters L, h, r, R, Zm, ε, C, E and B are reported in table 1.

The compaction mechanism in the present experiment is geometrically controlled
by imposing the total available surface S for a rod of length L. The use of a rigid
hole constraint can be viewed as a hard-wall repulsion potential V (r) acting on the rod
such that V (r) = 0 for r < R and V (r) = ∞ elsewhere. For fixed control parameters
(E, h, ε and C), several pulling experiments have been performed in order to obtain
various configurations corresponding to different energy minima and to analyse them in
a statistical way. We realized four sets of experiments at constant control parameters
(table 1). Some typical examples of the folded rod obtained are shown in figure 1.

3.2. Image analysis procedure

Because of technical difficulties [25], we resorted to a hot wire cutting tool to obtain cross-
sections in the hole plane. With great care, one obtains neat cuts without perturbing
the configuration, and inks them in blue to reinforce contrast of the cut edge with
back receding surfaces. The cross-section is digitized with a scanner at a resolution of
50 pixels mm−1, which yields 5 pixels for the thickness of the thinner sheets (figure 2). A
thresholding based on RGB values results in a binary image: only pixels of blue values
larger than a given threshold but of red and green values smaller than another given
threshold are kept, allowing us to distinguish the cut edge from back receding surfaces
and to remove noise from the raw image (figure 2). Then, empty spaces of surface area
larger than smin = (10h)2 are kept, allowing us to remove light noise from the binary image
(figure 2). Finally, the binary image is skeletonized—reduced to a one pixel thick skeleton,
without redundant kinks—(figure 2). Junction points are then defined as pixels with at
least 3 neighbours (figures 1 and 2). Two neighbouring junction points delimit a stack of
branches in close contact, separated by distances smaller than the image resolution.
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Figure 2. Zoom on a typical configuration detailing the successive steps of image
processing, from left to right. Raw image. Pixels of blue values larger than a
given threshold but of red and green values smaller than another given threshold
are kept. Thresholded image. Empty spaces of area larger than smin are kept.
Skeleton of the binary image and junction points.

The next step is to determine the number of branches nbr in each of the M stacks.
The conservation of the number of branches at each junction point yields 2M/3 equations,
because three stacks intersect at each junction point. This requires us to distinguish
converging stacks into two opposite packs: merging and separating stacks. To this aim,
the vectors tangent to the stacks local to the junction point are determined. Then,
the straight line perpendicular to one of these vectors is taken as a reference axis, that
delimits two semi-planes: stacks located in the same (respectively opposite) semi-plane
are in the same (respectively opposite) pack. The result is systematically checked to
be independent of the choice of the reference axis. The remaining M/3 equations are
found from the thickness of the stacks in the binary image as follows. The heating by the
cutting tool thickens a stack nonlinearly, which was calibrated by separately cutting stacks
of sheets. We keep the M/3 stacks with the best estimation of the thickness as given by
the calibration (in general, thin stacks). The solution of the linear M × M system yields
the number of branches in each stack. We reopened a few configurations (five per set of
experiments) and checked by counting the number of branches in each stack: we found
no error for sets 2, 3 and 4 (corresponding to ε ≤ 14, C ≤ 9%), and an error of ±1 for a
part of the thicker stacks (20% of the stacks) in the more compact set 1 (corresponding to
ε = 19, C = 15%). These errors are small thanks to the fact that the number of branches
is an integer, and to the successive steps of image processing. The central position of
the stacks is thus deduced from the skeleton and smoothed out by slide-averages along
the stack trajectory. The local curvature is measured through a parabolic fit on size
5 nbr h, after coordinate translation and rotation in the tangent frame. Image processing
as described above allows us to detect branches of length � ≥ �min = 1 mm and voids of
surface s ≥ smin = (10h)2.

4. Numerical simulations

4.1. Energy functional

We consider an elastic rod of bending rigidity B and total length L. Its configurations
are represented by a 2d vector R(s) parametrized by the arclength s ∈ [0, L]. Contrary to
the experiment described in section 3, the global constraint of compaction is introduced
by plunging the rod into an external quadratic potential. In that case, instead of a hard-
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wall geometry, the external field acts as a body force attracting the rod towards the
minimum of the potential located at the origin R = 0. Note that imposing a stronger
constraint such as Ra with exponent a 	 2 (which would be closer to the experimental
compaction potential) makes the minimization algorithm significantly slower. We will see
later that this is not a limitation as we do not intend to precisely mimic the experiment
in the numerical simulations but rather to extract some robust observations common
to both systems. The strength of this confining potential can be varied through a
control parameter λ. Once embedded in this confining force-field, the shape of the rod
is prescribed by the competition between two effects: while its bending rigidity tends
to keep it straight, the rod responds to the external confining force by buckling and
developing folds. Since we will consider infinitely thin rods in the simulations, the resulting
deformations can only be of pure bending type and the rod is unstretchable: its total
length L remains a conserved quantity. Elasticity theory shows that the energetical cost
for bending deformations is proportional to the square of the rod curvature. In addition
to the bending energy, there is another source of energy associated with the confinement.
The total energy of the confined rod can be written as

E =
B

2

∫ L

0

(
d2R

ds2

)2

ds +
λ

2

∫ L

0

R2 ds + ‘hard-core repulsion’. (7)

The physical constraint of self-avoidance is implemented through a discontinuous hard-
core interaction. In the following, the spatial variables R and s are rescaled (now

denoted R̃ and s̃) by the rod length L and the total energy E by B/2L. This yields
the total dimensionless energy Ẽ:

Ẽ =

∫ 1

0

(
d2R̃

ds̃2

)2

ds̃ + Λ

∫ 1

0

R̃2 ds̃ + ‘hard-core repulsion’, (8)

with the dimensionless control parameter Λ = λL4/B. In order to compute this energy
numerically, the rod is discretized into N segments of constant length L/N . Derivatives for
the bending energy are determined via finite-differences and integrals are computed with
the usual trapezoidal rules. Our goal is to explore the energetical landscape by minimizing
equation (8). An obvious constraint that has to be satisfied during the minimization is
self-avoidance (physical objects cannot cross themselves). This constraint is encoded in
the ‘hard-core repulsion’ term of equation (8). Whenever a configuration contains at
least one self-intersection, its energy is set to infinity (a very large number in practice).
Otherwise only the first two terms (bending and confinement) contribute to the total
energy for configurations free of any self-intersections.

Avoiding self-intersections in the energy minimization is a delicate operation because
it is a non-local interaction. Regions of the rod that are far away in the rest state (straight
rod) become very close when the available area decreases and folds start to appear.
Since the location and the nature (localized or extended) of these contact regions cannot
be known beforehand, the detection and treatment of self-contact areas is numerically
expensive. Because the rod is discretized into a connected polyline of N segments, looking
for self-intersections is a procedure that usually involves testing each pair of segments and
therefore grows as N2. However here, we can take advantage of the particular (connected)
geometry of the problem and lighten this procedure. Instead of testing each pair of
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segments, the idea is to restrict our search to a limited set of segments that are more
likely to contain self-intersections. This is possible by designing a variation of the brute
force N2 method that keeps track of the distance between segments. Once a pair of
segment has been tested we also determine their distance in units of segment length L/N .
This information is then used to determine how many of the following segments can
be ignored. These segments are skipped because they are too far away to generate an
intersection with the tested segment (even in the worst case scenario where they would
come straight back towards it). Therefore the actual number of tested segments depends
on the input curve. We found this input sensitive algorithm to run much faster than the
simple N2 method and as fast as more elaborate techniques (sweep-line for example) in
computational geometry, at least for the moderate values of N ≈ 300 used here.

4.2. Minimization procedure

As mentioned above, the self-avoidance property introduces discontinuities in parameter
space by building up infinite barriers between different attraction basins. In general,
the question of finding extrema of discontinuous functions is very difficult, because one
cannot use familiar procedures such as gradient methods. We found Powell’s algorithm
to be convenient in our minimization problem. It is a derivative-free procedure whose
search directions in parameter space are updated after each iteration, finally generating
non-interfering (or conjugate) search directions. The numerical protocol is now described
step by step.

(1) Initial configurations. A catalogue of random initial conditions is constructed by the
introduction of a white noise of amplitude D on the curvature of the rod such that

〈R′′(s)〉 = 0, (9)

〈R′′(s1)R
′′(s2)〉 = 2D δ(s1 − s2), (10)

where the average is taken over each realization of the rod and δ is the Dirac
distribution function. Once a value for D has been set, we can iteratively generate
multiple initial shapes. The configurations’ centre of gravity is translated back to
the origin. Some typical configurations used as random initial shapes are shown
in figure 3. The largest accessible value of D is the one which does not generate
self-intersections.

(2) Introduction of the confinement. The parameter Λ controls the strength of the
confining potential. Going instantaneously from Λ = 0 for the construction of initial
configurations, to a non-zero value to take into account the confinement, can be seen as
a quenching mechanism. This is because the confinement constraint is instantaneously
turned on to its desired value without taking intermediate steps. All of the results
presented here were obtained by following this procedure. We also tested an annealing
process by increasing Λ very slowly, about which we will say a few words in the
conclusion.

(3) Search for local minima. In practice we ran Powell’s algorithm ten times for each
initial configuration. We verify at each iteration that configurations do not contain
any self-intersections. If they do, we set the energy of such configurations to a
very large number, so that these configurations are immediately rejected by Powell’s
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Figure 3. Simulations. Typical random initial configurations used as input in
the numerical simulations. These are generated by imposing a white noise on
their curvature according to equation (10), with noise intensity D = 750.

algorithm. The set of search directions is regularly re-initialized to a set of random
directions in order to optimize our span of local minima. Running the minimization
procedure many times also improves numerical convergence to these local minima.
One should note that while the hard-core repulsion procedure ensures self-avoidance,
it raises problems when parts of the rod are aligned. Indeed our numerical procedure
does not allow sliding of self-contact areas. Therefore we (temporarily) modelled
self-contacts as a nematic interaction of the form Eself−contact = u sin2 α where u is
a dimensionless parameter and α is the angle between touching segments [15, 33].
Typically, we used u in the range 50–150 but its precise value did not affect the
resulting configurations. This geometric self-interaction has a physical interpretation
as a self-excluded volume resembling what was introduced by Onsager in the context
of polymers. In our case, it destabilizes tightly clamped configurations by allowing
branches in self-contact to self-align and slide along one another. This nematic term
is included only in two early algorithm runs (out of 10) and ignored otherwise (and
in particular in the last run).

After going through this procedure a number of times with different initial conditions
but under the same compaction conditions (noise intensity D and control parameter Λ), a
wide variety of different possible configurations is found, some typical examples of which
are shown in figure 4. The results presented here are with Λ = 7 × 105 and D = 750 for
a total of over 250 different realizations.

4.3. Simulations versus experiments

As previously noticed, the global compaction constraint is of different nature in simulations
and experiments: compaction is mechanically controlled in simulations through λ, the
intensity of the quadratic potential exerted on the rod, whereas it is geometrically
controlled in experiments, through the available size R for the rod. The pressure exerted
on the quasi-1d rod in experiments is related to the force necessary to pull the 2d sheet
through the hole. This raises the question of the parameter common to experiments
and simulations, relevant for the description of the compaction strength. On one hand,
pressure is not trivially accessible in experiments; on the other hand, the size of the

doi:10.1088/1742-5468/2010/11/P11027 11

http://dx.doi.org/10.1088/1742-5468/2010/11/P11027


J.S
tat.M

ech.
(2010)

P
11027

Statistical distributions in the folding of elastic structures

Figure 4. Simulations. Typical local minima obtained with Λ = 7 × 105

and D = 750. The corresponding mean compaction ratio is 〈ε〉 = 2.3.

Figure 5. Simulations. Distribution of the radius of gyration Rg non-
dimensionalized by the rod length L, of the 252 configurations with Λ = 7 × 105

and D = 750.

occupied surface can be easily characterized for each configuration in simulations by its
radius of gyration Rg:

Rg =

√
1

L

∫ L

0

R2 ds, (11)

allowing us to compute the compaction rate ε, written in equation (5), by replacing R by
Rg. The radius of gyration Rg has been computed for all the numerical configurations. Its
probability density, presented in figure 5, features a sharp peak at 〈Rg〉 � 0.05L, showing
that imposing a confining potential and noise amplitude in the simulations results in
indirectly imposing the size of the surface occupied by the rod. In these early stages
of folding that are accessible numerically, we define the geometric compaction rate as
ε = L/(2πRg), and thus have on average for all configurations 〈ε〉 = 2.3.
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To summarize, the values of ε studied in this paper are collected for experiments
and simulations. Four sets of experiments are realized at fixed compaction rate ε = 8,
10, 14 and 19 (see table 1). Even if the compaction rate is not a priori controlled
in the simulations, it is indirectly imposed to the mean value 〈ε〉 = 2.3. Despite the
different nature of compaction, geometrically and mechanically controlled in experiments
and simulations respectively, implying a different expression of the rod energy (as has
been suggested previously and will be shown later), and despite the different values of
compaction rates, ε ∼ 10 in experiments and ε ∼ 2 in simulations (visible when comparing
figures 1 and 4), both systems share the property that these are governed by elasticity
and self-avoidance. The main issue of this study, allowed by the investigation of these two
systems, is to point out the general characteristics of folding and to identify the ones that
are system dependent. Two types of averages will be used in this study: x̄ refers to the
mean of the variable x over one configuration, whereas 〈x〉 refers to the ensemble average
of x over the whole set of configurations realized at constant control parameters. Due to
better statistical averaging, most of the results presented here were obtained by ensemble
statistics.

A crude observation of examples of folded rods shows that, under constant control
parameters, a wide variety of configurations are obtained in both the experiments (figure 1)
as well as the numerical simulations (figure 4). This is an interesting first remark
confirming that we do indeed span a large volume of phase space. Although the shape
of a folded rod looks very complicated, elementary parts of the rod, delimited by two
neighbouring junction points (where the rod is locally in self-contact), can be identified.
These elementary supports are referred to as ‘branches’, and could be relevant candidates
for a ‘microscopic’ definition and parametrization of the macroscopic folded configuration.
From a mechanical point of view, branches are the natural elements, on which elastic
equations are defined given the boundary conditions at their extremities. Figure 6 shows
two folded configurations coming from experimental and numerical sets, where junction
points are shown by circles, that delimit branches. Branches that are in close contact
and delimited by the same junction points define a multi-branched stack. We start our
data analysis in sections 5 and 6 by looking at the topological and geometrical properties.
While their behaviours are interesting, it is in fact the energetical properties studied in
section 7 that turn out to be the desired general variables.

5. General properties of the network

5.1. Stacking

Here, we are interested in the number of different elementary units in a folded
configuration: junction points, voids, branches, multi-branched stacks, and in their
relative dependences. Junction points, multi-branched stacks and number of branches
in close contact define respectively the nodes, the links and the values attributed to each
link of a network [1]. Therefore, we start by investigating the topological properties
associated with the network formed in the confined rods.

Experiments. A folded configuration is characterized by a number Nl of multi-branched
stacks. Each stack is formed by a number nbr of multiple branches, the sum of which is
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Figure 6. Definition of elementary branches. Parts of the rod delimited by
two junction points (•) define the elementary ‘branches’. Some of them are in
close contact and are delimited by the same junction points, defining a multi-
branched stack. Experiments: configuration from set 3 at compaction rate ε = 8,
with a snapshot showing a multi-branched stack. Simulations: the dashed circle
represents the mean radius of gyration 〈Rg〉 at ε = 2.3.

Table 2. Averages over all realizations of the number of multi-branched stacks
Nl, number of branches Nbr, number of branches per stack nbr = Nbr/Nl, surface
area s, shape ratio

√
s/p of elementary tiling voids and length of branches �.

〈Nl〉 〈Nbr〉 〈nbr〉 〈s〉/L2 〈√s/p〉 〈l〉/L

1 90 380 5 6.6 × 10−6 0.19 2.5 × 10−3

2 80 310 4 1.4 × 10−5 0.18 3.4 × 10−3

3 40 100 3 1.1 × 10−4 0.18 10 × 10−3

4 80 330 5 2.6 × 10−5 0.18 4.4 × 10−3

5 ∼10 ∼20 ∼2 3.4 × 10−4 0.19 0.05

Nbr over the configuration. A natural question is how these network properties Nl and
Nbr vary together. The values of 〈Nl〉 and 〈Nbr〉, reported in table 2, increase roughly
with the compaction rate. Figure 7(a) shows the mean number of branches per stack
n̄br = Nbr/Nl, as a function of the total number of stacks Nl, for all experiments of all
sets. Inside a single set, plotted points seem to follow a systematic trend (figure 7(a)),
showing that Nbr and Nl are correlated.

Exactly 3 multi-branched (or links) intersect at 99% of the junction points, the value
3 being the minimal possible by construction. This allows us to relate the total numbers
of multi-branched stacks Nl and of voids Nv in a configuration: Nl ≈ 3Nn/2 ≈ 3Nv. For
a closed rod, the number of junction points (or nodes of the folded network) Nn is equal
to the number of voids 2Nv (or cells of the network). By definition, Nv � S/s̄ ≈ Nl/3 and
Nbr � L/�̄, where s̄ and l̄ are respectively the mean surface area of voids and the mean
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Figure 7. Experiments. (a) Mean number of branches per stack n̄br as function of
the total number of stacks Nl. Continuous (respectively dashed) lines correspond
to equation (13) (respectively equation (15)). (b) Square root of the mean area
of voids

√
s̄ as a function of the mean length of branches l̄ (both quantities

are non-dimensionalized by L). The continuous line corresponds to a linear fit
of slope 1.1. (c) Illustration of the exponential distributions of the number of
branches per stack nbr for the different sets of experiments.

length of branches in a configuration. Indeed the total length of the rod L is divided in
the Nbr branches and the total available surface S is tiled by the Nv voids. Moreover, L
and S are related through the control parameter ε = L/(2

√
πS). This allows us to write

the following relation between Nbr and Nl:

Nbr =
2
√

π√
3

ε

√
s̄

l̄

√
Nl, (12)

through the parameter ε and an a priori configuration dependent factor
√

s̄/l̄. It is
equivalent for the mean number of branches inside one stack n̄br averaged over the
configuration to

n̄br =
Nbr

Nl
=

2
√

π√
3

ε

√
s̄

l̄

1√
Nl

. (13)

Formulae (12) and (13) are valid for a single experiment, are these still verified for a whole
set of experiments? Can one write a relation between Nbr and Nl through quantities
averaged over sets of experiments (instead of configurations), or through scalar factors?
This raises the issue of the variations of

√
s̄/l̄ inside a set of experiments: is this ratio

varying with Nl and control parameters ε? To this aim, we plot the square root of the
mean voids area

√
s̄ as a function of the mean branches length l̄ for all experiments in

figure 7(b). Even if these values change by factors 2 inside a set and by a factor 5 between
different sets, these appear to be proportional through the constant value 1.1, independent
of the precise configuration and of the compaction parameters, as shown by the linear fit in
figure 7(b). So one can write from equations (12) and (13): Nbr ∝ ε

√
Nl and n̄br ∝ ε/

√
Nl,

that are plotted as continuous lines in figure 7(a), super-imposed on experimental data.
We will see in the following subsection that another relation between Nbr and Nl can be
predicted. There is still an issue with the understanding of the universal value of

√
s̄/l̄,

whatever the configuration, the compaction rate and the size of the sheet.
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We found that the number of branches inside one stack nbr follows an exponential
distribution as shown in figure 7(c). For the different sets of experiments, the mean 〈nbr〉
of the exponential distribution varies from 3 to 5 for increasing ε (table 2). Inside the
sets of data, the relative fluctuations 〈n̄br/〈nbr〉 − 1〉 are only of the order of a few per
cents meaning that 〈n̄br〉 � 〈nbr〉. A precise analysis of the pdf ρ(n̄br) would require much
more statistics. Nevertheless, it is tempting to make the assumption that n̄br � 〈nbr〉.
This implies that n̄br is not correlated with other configuration dependent variables such
as Nl. Therefore, this reasoning leads to a prediction of the total number of branches Nbr

and the average number of branches per stack n̄br per configuration, as functions of the
number of stacks Nl given by

Nbr = 〈nbr〉Nl, (14)

n̄br = 〈nbr〉. (15)

These linear predictions are plotted as dashed lines in figure 7(a) for a comparison
with equations (12) and (13) and with the experimental data. It turns out that both
predictions (12), (13) and (14), (15) describe well the data. This suggests that Nl and
Nbr are in fact selected by the validity of both assumptions. The intersection of the two
relations corresponds to

〈nbr〉
√〈Nl〉
ε

� 2.2
√

π/3. (16)

At the level of accuracy accessible in our experiments, the agreement is not so bad even
though there seems to be a small dependence with ε.

Simulations. As the rod is open, the surface it encloses is not well defined and not exactly
constant from realization to realization. The analysis presented for the experimental
results cannot hold for the simulations. However, figure 8(a) shows the number of
branches Nbr as a function of the number of multi-branched stacks Nl for all the numerical
simulations: these verify the relation Nbr � 2Nl; the distribution of Nbr/Nl is indeed
strongly peaked around 2 as shown in figure 8(b). Several configurations are characterized
by the same pair (Nbr, Nl).

Because the compaction rate achieved in the numerical simulations, 〈ε〉 = 2.3, is
much smaller than those of the experiments, the number of branches in self-contact is
only rarely more than 3. Generically links contain just two branches. This explains the
previous macroscopic relation Nbr � 2Nl, shown in figure 8.

5.2. Tiling

We focus here on the properties of the elements of tiling of the total available surface,
such as their perimeter, surface and shape. Note that these elements correspond not only
to loops (defined as an elementary ‘closed’ part of the rod in [28]), but also to the voids
that are delimited by such touching loops. Does the spatial tiling of the available surface
contain any information on how the folding might have happened?
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Figure 8. Simulations. (a) Number of branches Nbr as a function of the number
of multi-branched stacks Nl in the simulations. The continuous line corresponds
to a line of slope 2. (b) Distribution of the ratio Nbr/Nl.

Figure 9. Experiments. (a) Distribution of the area s of the voids. Continuous
lines correspond to fits by log-normal distributions. (b) Distribution of the aspect
ratio ρ(

√
s/p) where p is the perimeter of the voids. It is well described by

a Gaussian distribution. The values 0.28 for a circular shape and 0.22 for a
pinched closed elastic shape are drawn as vertical lines. (c) Distribution of the
number of links nl surrounding a void.

Experiments. We found that the shapes as well as the sizes of the voids show a wide
variability over 2 or 3 orders of magnitude. The distribution of the area s of the voids
shown in figure 9(a) is well described by log-normal distributions. The mean value 〈s〉,
reported in table 2, decreases with the compaction rate. The shape of a void can be
characterized by the ratio of the square root of its surface over its perimeter

√
s/p, as done

in [28]. This aspect ratio is shown in figure 9(b). The distributions are well described by
a unique Gaussian distribution independent of the control parameters:

ρμ,σ
N (x) =

1√
2π σ

exp

(
−(x − μ)2

2σ2

)
(17)
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Figure 10. Simulations. (a) Distribution of the surface area S occupied by the
rod. (b) Distribution of the area s of the elementary voids. (c) Distribution of the
aspect ratio ρ(

√
s/p) where p is the perimeter of the voids. It is well described

by a Gaussian distribution. The values 0.28 for a circular shape and 0.22 for a
pinched closed elastic shape are drawn as vertical lines. These statistics are based
on 1435 elementary voids.

with μ = 0.19 and σ2 = 14 × 10−4. One can also look at the number of junction points
belonging to each void contour, that is also the number of edges in terms of multi-branched
stacks surrounding the void. One should note that a junction point that belongs to a void
contour does not correspond necessarily to a vertex where geometric properties (local
tangent or local curvature) of the two adjacent stacks change discontinuously but rather
to a change of the number of branches nbr in the stacks. The voids do not have a constant
number of edges nl as shown by the distribution in figure 9(c). The paucity of our data
does not allow us to discriminate between Gamma, log-normal or exponential distributions
as they all describe well the data nl ≥ 4.

Simulations. As already discussed, the simulations are not realized at constant available
surface. We defined the surface S occupied by the open rod as the sum of surfaces of
elementary voids; this distribution is shown in figure 10(a). The pdf ρ(S) is peaked around
an average value of 〈S〉 = 4× 10−3L2 that has the same magnitude as that expected for a
perfectly circular shape π〈Rg〉2 = 8× 10−3L2. On the other hand, the distribution ρ(s) of
the surface of the elementary voids changes over three orders of magnitude and is closer
to a power law distribution as shown on figure 10(b). The shape of this distribution is
unchanged regardless of whether the surfaces of the voids are normalized by the occupied
surface S or by the mean void surface s̄ of the configuration. Figure 10(c) shows the pdf
of the aspect ratio

√
s/p of voids: it is widely distributed of mean equal to 0.17, and well

described by the same Gaussian distribution as for the experiments.

5.3. Summary

To summarize, we observed the difference of values of Nl and Nbr between experiments
(∼50 and ∼200) respectively and simulations (∼10 and ∼20) due to the different
compaction rates ε (∼10 and ∼2). The number of elementary units growing with
the compaction rate underlies the increasing complexity of the configurations. Several
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predictions (equations (12)–(15)) are obtained on the relative variations of Nl and Nbr

either from geometrical relations or from observations at the scale of multi-branched
stacks. They both appear to be validated by the experimental data. Equations (12)
are (13) result from the independence of the ratio

√
s̄/l̄ on the configuration, the

compaction rate and the size of the sheet (figure 7(b)): there is still an issue with the
understanding of this constant value. Note the large range and values accessible by nbr

(figure 7(c)), the number of branches in close contact forming a multi-branched stack: it
would be interesting to study what controls the value of nbr inside one multi-branched
stack. However, whatever the degree of complexity of the folded configurations, some
statistical characteristics stay unchanged, namely the shape ratio and the number of edges
of the elementary voids. The aspect ratio of the voids also appears to be independent of the
compaction parameters ε (varying from 2 to 20 between simulations and experiments) and
of the compaction potential (hard-wall or quadratic). The average value of the aspect ratio
of the voids is 0.18. A perfectly circular shape provides an upper bound of

√
s/p = 0.28.

For comparison, this ratio is
√

s/p = 0.22 for a clamped elastic rod as can easily be
shown by solving Euler’s elastica equations. The values we report here can be explained
by considering that the loops are confined: their perimeter will not change but the area
will be reduced due to the compression. The experiments reported in [28] show values√

s/p � 0.17–0.20, very close to 0.22, consistent with their injection method that tends
to create a layered loops geometry. Finally, the distributions of void surfaces have been
found to be log-normal in the experiments. This hints that voids are generated through
a hierarchical process. A succession of bifurcations such as the one predicted in [13] leads
to folding events that successively ‘break’ voids. A new fragmentation event concerns all
the previously existing fragments. However, this pdf is closer to a power law distribution
in the case of the numerical simulations. Due to the small range of accessible compaction
ratios, it is difficult to assess the relevance of this observation.

6. Geometrical properties of branches

In the following, we will characterize the geometry of the folded rod at two scales. On
the one hand, we will investigate the geometry of branches, namely their lengths and
mean curvatures. On the other hand, we will look at the local curvature along the rod.
However, let us first define two sub-systems in the experimental setup.

6.1. Two sub-systems in the experiments

The branches composing the folded rod are differentiated into two sub-systems: branches
with (respectively without) an extremity in contact with the container, which we will
refer to as periphery (respectively bulk). Figure 11 shows branches in the bulk and in
the periphery on one example of a configuration and for all super-imposed configurations
from set 1. Statistical properties of branches can be studied either in the whole system,
or separately between the periphery and bulk sub-systems. We found that there are
systematically more branches located at the periphery than in the bulk. On average,
the periphery (respectively the bulk) is composed of 60% (respectively 40%) of branches.
Defining the branches in the periphery as the ones for which both extremities are in
contact with the wall would have resulted in a slightly different outcome. However, our
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Figure 11. Experiments. Definition of two sub-systems. (a) Branches that have
one of their extremities in direct contact with the container wall are coloured in
red to separate them from the other branches that form the bulk of the system
in green. (b) Super-imposition of the two sub-systems for the experiments of
set 1. Note that because there are no well-defined boundaries in the numerical
simulations, this subdivision is unique to the experimental system.

choice of definition allows us to prevent any boundary effect on the bulk properties. For
example, we found that the average number of branches per stack is the same in the bulk
and periphery; thus it is uniform in the whole system.

6.2. Length of branches

Experiments. The distribution of the length of branches is found to be exponentially
distributed in both sub-systems as shown in figures 12(a) and (b). It appears that the
mean length is slightly larger for branches at the periphery than in the bulk. The ratio of
mean lengths between the two sub-systems 〈�periph〉/〈�bulk〉 is between 1 and 1.6 depending
on the set of experiments. Using the fact that approximately 40% (respectively 60%) of
the branches are located in the bulk (respectively at the periphery), the mean length in the
whole system verifies 〈�〉 � 0.4〈�bulk〉+ 0.6〈�periph〉. The resulting pdf in the whole system
is therefore exponential as shown in figure 12(c). Quantitatively, the average length of
branches 〈�〉, reported in table 3, decreases with the compaction rate. The values for
branches in the sub-systems are written in the legend of figure 12.

Note that the existence of a minimal value �min, related to experimental detection
limits, may introduce a small shift of the average 〈�〉 towards larger values, in comparison
with the characteristic decreasing exponential length μ: 〈�〉 ≥ μ. Strictly, experimental
biased data are distributed according to 〈�〉 exp(−�/μ)/μ2. However, as the value �min

is very small in comparison with 〈�〉, this latter well approximates μ. This method has
the advantage of being insensitive to the choice of bins for the construction of the pdf,
contrary to a simple minded fit.
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Figure 12. Experiments. Geometrical properties. Distribution of the length �
of branches. (a) In the bulk sub-system, and exponential distributions of means
μ = 2.1 × 10−3, 2.7 × 10−3, 7.3 × 10−3 and 4.3 × 10−3 for sets 1–4. (b) In the
periphery sub-system, with means μ = 2.9 × 10−3, 4.0 × 10−3, 12 × 10−3 and
4.5× 10−3. (c) For all branches in the whole system, with means μ = 2.5× 10−3,
3.4 × 10−3, 10 × 10−3 and 4.4 × 10−3. Vertical lines show the minimal length
�min = 1 mm experimentally detected.

Table 3. ‘Microscopic’ properties averaged over experiments from the same set.
Geometry: mean curvature κm and length of branches �. Energy: total energy
Ẽ, energy of branches e, and parameters of the Gamma distributions αe and
χe (respectively αE and χE) for branches’ energy (respectively total energy),
according to equation (3).

〈κm〉L 〈�〉/L 〈Ẽ〉 〈e〉L αe χeL αE χEL

1 330 2.5 × 10−3 13 × 104 330 0.16 2000 10.8 1.2 × 104

2 260 3.4 × 10−3 11 × 104 340 0.19 1800 12.7 8.3 × 103

3 100 10 × 10−3 1.3 × 104 130 0.41 330 15.9 8.4 × 102

4 200 4.4 × 10−3 7.3 × 104 220 0.31 720 5.72 1.3 × 104

5 37 0.05 0.43 × 104 230 0.31 730 61 70

Simulations. The distribution of the length of the branches follows a Gamma law
(equation (3)) with shape parameter α smaller than 1: α = 0.4 and χ = 0.12 as shown in
figure 13. This observation is important because it indicates an accumulation of branches
of small lengths, in comparison with the case of a pure exponential pdf which was observed
in the experiments.

6.3. Curvature of branches

Several definitions are possible for the characterization of the branch curvature:

κ± =

∫ �

0

κ(s) ds/�, κ+ =

∫ �

0

|κ(s)| ds/�, and κm = |κ±|, (18)

with κ(s) = d2R/ds2, the local curvature along the branch at curvilinear abscissa s. When
a branch does not exhibit an inflexion point the three definitions above are equivalent, with
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Figure 13. Simulations. Geometrical properties. Probability distribution ρ(�)
of the length of branches � in log–lin and log–log scales. The continuous line
represents a Gamma law with parameters α = 0.4 and χ = 0.12. The control
parameters are Λ = 7 × 105, D = 750 and there are 4676 branches.

Figure 14. Experiments. Geometrical properties. Probability distributions ρ(κm)
of mean curvature of branches κm for sets 1–4. (a) In the bulk sub-system and
exponential distributions of mean 〈κm〉 = 304, 230, 93, 160. (b) In the periphery
sub-system: 〈κm〉 = 350, 290, 110, 230. (c) For all branches in the whole system:
〈κm〉 = 330, 260, 100, 200. The exponential pdf in (b)–(c) d̂oes not have the
same mean as the data, but comes from (a).

κ± having possibly a different sign. The statistical study of mean curvature of branches
κm allows for a representative sampling of all of the values of local curvature κ(s).

Experiments. We found that the whole rod has an increasing number of inflexion points
as ε increases. However, because inflexion points usually coincide with junction points
connecting adjacent branches, the local curvature does not change sign at the branch
level. Indeed, only less than 1% of the branches have an inflexion point where κ+ �= κm.
Thus, the statistical distributions of κ± appear to be exactly symmetric around 0, so that
the pdf of |κ±| is equivalent to that of κm. The pdf of the mean curvatures in the bulk
is approximately distributed according to exponential laws as shown in figure 14(a). By
contrast, the same pdf in the periphery is characterized by a symmetric and sharp peak
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Figure 15. Simulations. Geometrical properties. (a) Probability distribution of
the absolute curvature per branch κ+ and Gamma distribution. The parameters
for the Gamma law are α = 2.5 and χ = 14.8. (b) Probability distribution of the
curvature of branches κ± with a normal distribution (dashed line) with μ = 0
and σ = 39, and an exponential distribution (continuous line) with μ = 30.
Statistical test: χ2 = 93 for the exponential distribution and 160 for the normal
law. Data are averaged over 4676 branches.

around the curvature of the hole κh which is clearly visible in the inset of figure 14(b).
The presence of this peak means that, even though both pdfs are well described by
exponential laws, their means are significantly different. As a result, the pdf ρ(κm) of mean
curvatures κm for all branches in the whole system, verifying ρ � 0.4ρbulk+0.6ρperiph, is also
qualitatively a global exponential law plus a symmetric peak around the hole curvature
κh (figure 14(c)).

In addition, we found that lengths � and mean curvature radius κ−1
m are slightly

correlated (linear correlation coefficient r � 0.45). Note that describing the branches
as arcs of circles, of perimeter smaller than for the corresponding whole circle, gives the
inequality � ≤ 2π/κm, that is experimentally verified.

Simulations. The distribution of κ+ is well described by a Gamma distribution with
parameters α = 2.5 and χ = 14.8, as shown in figure 15(a). The average over all
configurations is 〈κ+〉 = αχ = 37/L. As the linear scale plot shows (also corroborated
by the shape parameter α greater than 1), there is a power law drop-off for small values.
Otherwise, away from the peak the probability falls off with an exponential behaviour.
This peak is interpreted as the result of ‘effective’ walls located at distance Rg from the
centre which leads to an accumulation of curvature at 〈k+〉 = 37 � 1/Rg = 20.

As the compaction ratio is much smaller than in the experiments, many branches have
inflexion points in the numerical simulations. Therefore κ+ and κ± have very different
statistical distributions. Note that whereas κ+ gives direct information on the curved
state of the considered branch, κ± alone is not obvious to interpret. A branch can have a
small value of κ±, because it is either straight or because it contains an inflexion point.
Therefore, a branch of curvature k+ is bounded by |κ±| ≤ κ+. Figure 15(b) shows the
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pdf of κ±. While it is symmetric around 0, it can equally be fitted by an exponential
distribution of mean μ = 30, or by a Gaussian distribution of variance σ = 39 (and
mean 0).

6.4. Summary

We interpret the emergence of exponential distributions for the branch lengths � (pure
exponential in the experiments and just an exponential tail in the numerics) as the random
division of the whole rod. The length averages can be related to the number of branches.
For each configuration we have �̄ = L/Nbr. One expects that this is still approximately
valid for averages over all experiments of the same set, leading to 〈�〉/L = 〈Nbr〉−1 (non-
dimensionalized length). Thus the larger number of branches Nbr observed systematically
for larger compaction rates ε explains the different quantitative exponential distributions.
Another indication of the stochastic formation of the branches comes from the good
representation of curvature statistics by the sampling made on branches. One common
feature to experiments and simulations on branch curvature statistics is their exponential
distributions—pure exponential in bulk for experiments and for κ± in simulations, or
exponential tail for κ+ in simulations. These exponential distributions of 2d curvatures
can be compared with the exponential distributions found in [10], for 3d curvatures in
unfolded crumpled sheets of paper.

After having looked at the geometrical properties, we will now turn our attention to
the energetical characteristics of both experimental and numerical systems.

7. Energetical properties

7.1. Expression of energy

In experiments, because of the self-similar conical shape of the folded sheet, related to
pure bending deformations, its elastic energy is given by

Es =
BZ

2
ln

(
r

Rc

) ∫ L

0

(
d2R

ds2

)2

ds, (19)

with on the one hand, the bending energy B, a logarithmic prefactor based on the ratio
of the sheet radius r and a cut-off length Rc � 10 mm, and on the other hand, R and L,
the position of the rod and its length, observed in the cross-section at distance Z from
the cone tip. By rescaling Es by the characteristic length scale due to the conical shape,
Z ln(r/Rc), we obtain the energy of the rod per unit of transversal length:

Er =
B

2

∫ L

0

(
d2R

ds2

)2

ds. (20)

This expression for elastic energy per unit of length is the same as for elastic energy of
the numerical rod (equation (7)), except that B in experiments has different units from
B in simulations (energy and energy times length respectively). We should mention that
equation (19) is exact only in the regime of pure elastic deformations. It turns out that for
the highest compaction rates studied here, some configurations sustained a few localized
plastic deformations. This happens when the absolute value of the local curvature |κ|
goes beyond the plastic threshold. Through independent experiments, we measured it
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as κc = 0.54 mm−1 for sets 1, 2 and 4 and κc = 0.24 mm−1 for set 3. In order to
account for the subsequent plastic softening of the sheets in these areas, we substituted
the quadratic dependence of Es on the curvature by a more appropriate linear dependence
of the form κc(2κ − κc). This substitution does not affect the distributions, but only the
total energy through extreme events.

In simulations and contrary to the experiments, an important distinction has to be
made right away about the expression of the energy of the rod in the numerical simulations.
There are two independent terms contributing to the total energy: the bending energy and
the confinement energy due to the quadratic potential. Because the numerical simulations
are based on an energy minimizing principle, the total energy of the rod has already been
discussed in section 4, and is rewritten here (omitting the hard-core repulsion term which
is 0 for ‘equilibrium’ configurations):

E =
B

2

∫ L

0

(
d2R

ds2

)2

ds +
λ

2

∫ L

0

R2 ds. (21)

In non-dimensionalized form, the total energy of the rod can thus be rewritten as

Ẽ =

∫
Ω

(
d2R̃

ds̃

)2

︸ ︷︷ ︸
experiments/numerics

+ Λ

∫
Ω

R̃2 ds̃

︸ ︷︷ ︸
numerics only

, (22)

where the first term (bending) is common to both the experiments and the numerical
simulations, while the second one (confinement) is only present in the numerical
simulations. In the following, we will be interested in two different levels of description
(branch and whole rod scales) and Ω represents the domain of interest: ‘microscopic’
(Ω = branch) or macroscopic (Ω = whole rod). Notice that in order to distinguish
between the energy of the branches and that of the whole rod, the notation e will refer to
energy of the branches and E to the energy of the whole rod.

7.2. Microscopic level (Ω = branch)

Experiments. For all the four sets of experiments, the distribution of the energy of
branches ρ(e) is well described by Gamma laws whose parameters are given in the legend
of figure 16. As the local curvature of a branch is smoothly distributed around km/k+

(section 6), we verified that the energy of a branch is roughly equal to the estimation �k2
m

(the linear correlation coefficient is ≈0.6). Taking into account the rough linear correlation
between � and k−1

m , it implies a roughly linear correlation between km and e.

Simulations. Because the total energy of branches is made up of two independent
contributions, it is interesting to first analyse them separately. It turns out however
that both contributions, bending and confinement energies, are distributed according
to a Gamma distribution with similar parameters (figures 17(a) and (b)). This is a
confirmation that the numerical procedure indeed converges to true minima of the energy
functional. Summing up the bending and confinement energy yields the distribution of
the energy of branches e (figure 17(c)) which is also well described by a Gamma law
distribution.
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Figure 16. Experiments. Probability distributions of the energy of the branches,
Gamma and Bose–Einstein distributions for sets 1–4. (a) In the sub-system bulk:
〈e〉 = 290, 260, 95, 170, αe = 0.17, 0.23, 0.41, 0.24 and χe = 1700, 1100, 230, 720.
(b) In the sub-system periphery: 〈e〉 = 370, 407, 160, 260, αe = 0.17, 0.20, 0.44,
0.37 and χe = 2200, 2100, 350, 710. (c) In the whole system: 〈e〉 = 330, 340, 130,
220, αe = 0.16, 0.19, 0.41, 0.31 and χe = 2000, 1800, 330, 720. Lower figures:
the same but represented in log–lin scale to better see the large exponential fall
off of the distribution.

Figure 17. Simulations. (a) Probability distribution of the bending energy of
branches. The continuous line represents a Gamma law with parameters α = 0.35
and χ = 340. (b) Probability distribution of the confinement energy of branches.
The continuous line represents a Gamma law with parameters α = 0.23 and χ =
492. (c) Probability distribution of the total energy of branches. The continuous
line represents a Gamma law with parameters α = 0.31 and χ = 728. The other
parameters are Λ = 7 × 105, D = 750 and there are 4676 branches.
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Figure 18. Distributions of total energy of the rod and comparison with
Gamma distributions whose parameters (α,χ) are as follows. (a), (b)
Experiments.(10.8, 1.2 × 104), (12.7, 300), (15.9, 40), (5.72, 1.3 × 104). (c)
Simulations. (α = 61, χ = 70).

Figure 19. Total energy versus topological quantities. (a) Experiments. Total
energy E of the rod as a function of the total number of branches Nbr and the
total number of stacks Nl for all experiments. (b) Simulations. Total energy of
the rod (normalized by 〈E〉) versus the number of links (normalized by 〈Nlinks〉).

7.3. Macroscopic description (Ω = whole rod)

Instead of looking at the level of branches (microscopic), let us now focus on the total
energy distributions of the whole rod (macroscopic).

Experiments. The pdf of the non-dimensionalized total energy Ẽ of the rod seems
asymmetric. In view of the comparison with the distribution of the branch energy, we
also compare it to Gamma distributions as shown in figure 18. Besides, figure 19(a) shows
that, individually, there is a significant correlation between the total energy of a folded
configuration and its number of links/branches (linear correlation coefficient ≈0.75), which
confirms the central role of branches/links.
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Table 4. Test of the branches as the independent variables. While the
experimental results suggest a convergence to a possible thermodynamic limit,
the paucity of the numerical data cannot be interpreted in a simple way, see
discussion in the text.

〈Nl〉 αE/αe

1 90 68
2 80 55
3 40 56
4 80 23
5 ∼10 200

Simulations. Just like we discussed for the microscopic description, the total energy is
the sum of the bending energy and the confinement energy. Again, the distributions
are slightly asymmetric. They can be described by Gamma distributions with similar
parameters: bending {α = 27, χ = 81} and confinement {α = 21, χ = 100}. The sum of
these two distributions yields again a Gamma distribution {α = 61, χ = 70} for the total
energy of the rod as shown in figure 18(c). On the other hand, figure 19(b) shows that
for the small compaction rates obtained numerically there is no clear correlation between
the energy of the rod and the number of branches that it contains. We do however verify
that the mean of the total energy is given on average by the average number of branches
times their average energy: 〈E〉 = 〈Nbr〉〈e〉.

8. Conclusion

Despite some important differences between the two systems (nature of confinement,
compaction rates achieved, geometrical properties,...), the major outcome of this
comparison is the rather universal shape of the probability distribution of the energy
of individual branches. In both cases, this probability density is well described by a
divergent Gamma distribution: it has an exponential decay at large energies, and turns
into a power law divergence for small energies (α < 1). This exponential fall off of the
distribution is reminiscent of Boltzmann’s law making it possible to extract a characteristic
energy scale. The parameter χ in the Gamma distributions can then be considered as an
‘effective’ temperature characterizing the system. While we will come back below to the
implications of this result, we can already say that it supports the notion of branches as
the basic components of the folded rods (just like particles are in a real gas), interacting
together through contact forces at boundaries. At the other end of the spectrum, we do
notice an accumulation of branches with very small energy (soft power law divergence)
hinting at some underlying energy condensation process.

The sum of N ‘uncorrelated ’ random variables distributed with a Gamma distribution
of parameters {αμ, χ} is another Gamma distribution with parameters {α = Nαμ, χ}.
Therefore the ratio α/αμ is a measure of the number of degrees of freedom present in
the system. Assuming branches are the basic elements composing the whole rod, we
would expect this ratio to be related to the number of multi-branched stacks. Table 4
shows that the expected relation between αE/αe and the number of links is only crudely
observed for the compaction rates achieved here. The experimental results show, however,
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that the higher the confinement the better the agreement. This trend indicates that due
to the small number of branches (particles) present in the configurations there are still
non-negligible finite size effects introducing non-trivial correlations. As the number of
branches increases, the system gets closer to the thermodynamic limit and the discrepancy
indeed shrinks down a little. As the shape parameter α of the Gamma distributions, the
probability density becomes more and more Gaussian as a consequence of the central limit
theorem. On the other hand, the numerical results completely fail this analysis. One
possible interpretation is that, contrary to the experiments, one would expect branches
rather than links to be the individual degrees of freedom in the numerical simulations.
This is because branches are determined to be in self-contact whenever their distance
is smaller than some small cut-off distance. This gives a thick stack of branches more
freedom to wiggle around and therefore behave somewhat more independently than in
the experiments where there are true self-contact areas. In that case, one should perhaps
think in terms of a sum of Nbr variables with Nl that are independent and Nbr − Nl

that are exactly correlated. Our data can only hint in that direction but do not allow us
any definite conclusion regarding this issue. In any case, the simple minded analysis we
presented here is still quite interesting and deserves more work to understand if one really
finally converges to the thermodynamic limit as the number of branches tends to infinity.

Bose–Einstein condensation and annealing. Another well-known statistical distribution
that has the same asymptotic behaviours as Gamma laws is the celebrated Bose–Einstein
distribution. Using the analogy between branches and gas-particles, we compared our
data with this distribution at null chemical potential because the number of branches
(particles) is not pre-determined in either numerical simulations or experiments:

ρ(e) =
α

exp(βe) − 1
. (23)

The agreement is qualitatively as good as the one obtained by using Gamma distributions.
For high confinements (in experiments), it is easy to see from the experimental pictures
that many branches tend to accumulate close to each other, giving rise to thick stacks of
heavily populated branches. This phenomenon can be attributed to a transition from
disordered configurations (isotropic phase) to ordered configurations (nematic phase)
which was predicted theoretically. In addition, figure 20 reveals that these highly
degenerate stacks (multiple branches close to each other) do indeed carry very little
elastic energy. It is interesting to note that this behaviour holds for low confinements as
well. Because of their lower compaction rates, the configurations obtained numerically
only rarely present stacks made up of more than two branches. However the Bose–
Einstein distribution describes equally well the data. Since branches are not subjected
to any exclusion principle (except for their vanishingly small thickness that prevents self-
intersection), it is possible for them to be in the exact same state and effectively behave as
integer spin particles explaining the observed good agreement of our data with the Bose–
Einstein distribution. While this comparison may seem surprising, we will give below a
few more arguments justifying our position.

We saw that in addition to their exponential tail, the probability distributions of the
branches display a power law divergence for small energies. By closely looking at the
experimental images one can see that most of the branches tend to accumulate close to
each other creating thick stacks made up of several branches. While this may not seem
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Figure 20. Experiments. Averaged values of the energy of one branch e as a
function of the number of branches in the multi-branched stack nbr.

Figure 21. Simulations. Spiral configurations as the condensed phase of the
system where all the branches are on top of each other.

so obvious in the numerical simulations, one has to remember that they were obtained by
quenching the rod to relatively much smaller values of compaction. Indeed if instead of
the quenching mechanism proposed here, we increase very slowly the control parameter Λ
(annealing), a different behaviour is observed. We are no longer able to explore a wide
phase space but instead converge to the true ground state. A typical shape that is obtained
by this process is the spiral pattern presented in figure 21. We expect this phenomenon
of branch condensation to the exact same state to hold and even increase for higher
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confinements. This is quite reminiscent of what happens during the condensation of
integer spin particles (Bose–Einstein condensation) where particles are free to accumulate
on the same energy levels. The analogue of the chemical potential in our situation would
be the number of branches present in the rod.

In summary, we have described two different systems (experiment and numerical
simulation) to study the statistical properties of confined rods. The geometrical properties
of the two systems are different due to the difference in the way confinement was applied.
We do find however that the statistical properties of the bending energy of the branches
follow the same distribution. Furthermore the parameters of this Gamma distribution
share the same properties indicating a common behaviour.

Coming back to the question posed in the introduction, we can now answer to the
existence of a statistical measure in this system. The energy of the branches is in fact the
relevant internal variable. Moreover its distribution can be approximated over a wide range
of energies by a Boltzmann distribution weighted by a characteristic energy reminiscent
of the concept of ‘effective’ temperature in the context of granular rheology. This system
could be used to test some recent theorems related to non-equilibrium statistical physics
in a context different from granular (and colloid) matter. An advantage of this system is
that it is possible to measure the bending energy of branches which could be analogous
to particles in a real gas.
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