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Crumpling and folding of paper are at first sight very different ways of confining thin sheets in a small

volume: the former one is random and stochastic whereas the latest one is regular and deterministic.

Nevertheless, certain similarities exist. Crumpling is surprisingly inefficient: a typical crumpled paper ball in

a waste-bin consists of as much as 80% air. Similarly, if one folds a sheet of paper repeatedly in two, the

necessary force becomes so large that it is impossible to fold it more than six or seven times. Here we show

that the stiffness that builds up in the two processes is of the samenature, and therefore simple foldingmodels

allow us to capture also the main features of crumpling. An original geometrical approach shows that

crumpling is hierarchical, just as the repeated folding. For both processes the number of layers increaseswith

the degree of compaction.We find that for both processes the crumpling force increases as a power lawwith

the number of folded layers, and that the dimensionality of the compaction process (crumpling or folding)

controls the exponent of the scaling law between the force and the compaction ratio.
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It is easy to verify that the maximum number of times
one can fold a sheet of paper is only six or seven, which
surprisingly is independent of the initial size of the sheet.
Quantitatively, elasticity theory allows us to write the rela-
tion between the compaction force and the number of times
one can repeatedly fold a piece of paper in two. This follows
from the scaling of the bending rigidityBwith the thickness
h of the folded sheet [1], B ¼ Eh3=12ð1� �2Þ, where E is
the Young modulus and � the Poisson ratio. For a sheet
of initial size D1 �D2 folded along the direction D2, the
compression energy, Ec, injected in the system should be
compared to the typical energy dissipated in the fold. One
writes Ec ¼ FD2, where F is a characteristic compression
force applied along the direction D1. Since most of the
folded sheet remains flat and the regionwhich is irreversibly
deformed is straight along D2 (i.e., its Gaussian curvature
equals to zero; see Fig. 1), the energy dissipated in the fold is
estimated from the elastic bending energy,Eel, concentrated
in a region of length D2 and width h with a curvature 1=h
[1]; this leads to Eel�BhD2=h

2¼BD2=h [2]. The balance
of these two energies leads to F0 � B=h for the elementary
force needed to create a unique fold. When the sheet is
folded n times repeatedly leading to the hierarchical crea-
tion of folds, its effective thickness and bending rigidity
becomehn ! 2nh andBn!23nB assuming no slip between
layers (this hypothesis becomes increasingly consistent for
large n). Consequently, for a sheet folded n times, the
energy balance gives

FðnÞ � Bn=hn � F02
2n: (1)

Thus the force is independent of the initial size of the
sheet and grows exponentially with the number of folding
events n. The exponential dependence is the reason why
one cannot fold a sheet indefinitely by hand or by applying
a finite force; the elementary force F0 is estimated with
typical values E¼109 Pa, h¼10�4 m leading to F0 � 1 N.
Then, for n ¼ 6, F becomes of the order of kilonewtons,
which is larger than the maximal force any person can
exert and then sets a limit on the achievable number of
successive foldings.
Repeated folding in two is not the only possible way to

fold; here we consider three basic regular processes
(Fig. 1), which are prototypical foldings in various dimen-
sionalities. In cases (a) and (b), the sheet is thought of as a
1D-like sheet, since it is folded along one direction only.
However compaction of case (a) is not isotropic, contrary
to case (b). The latter is seen as isotropic compaction
within a disk, whereas the former is seen as unidirectional
compaction inside an elongated rectangle such as in
Ref. [3]. Finally, for case (c) the sheet is truly two

FIG. 1 (color online). Hierarchical folding of a sheet in differ-
ent dimensionalities. (a) a 1D-like sheet folded in 1D; (b) a
1D-like sheet folded in 2D; (c) a 2D-like sheet folded in 3D. The
three types of folding processes are referred to as 1D, 2D, and 3D
compactions.
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dimensional and compacted in a sphere. The number of
folded layers N ¼ hn=h after n folding events and the
related compaction ratio � (defined as � � D=�, where
D and � are the initial and final size of the sheet) then
depends on the precise geometry and dimensionality of the
compaction process. Folding a d-dimensional sheet in
(dþ 1)-dimensional space, N ¼ 2n, whereas for the 1D-
1D case (a), N ¼ n. Also, for foldings (a) and (b), N ¼ �,
whereas in the 3D-like folding (c), N ¼ �2. Using similar
arguments leading to Eq. (1), one finds a generic power law
relation between the force F, the compaction ratio � and
the number of folded layers N:

1D compaction; case ðaÞ: FðNÞ ¼ F0N � F0�; (2)

2D compaction; case ðbÞ: FðNÞ ¼ F0N
2 � F0�

2; (3)

3D compaction; case ðcÞ: FðNÞ ¼ F0N
2 � F0�

4: (4)

It is important to note that we described folds as the result
of an irreversible process occurring in a small region of
size h and characterized by a zero Gaussian curvature.
Consequently, energy scalings are different from those
obtained for singular ridges [4,5] that are reversible.
Moreover, our estimate for the energy dissipated in the
fold should be taken as a lower bound because the con-
tribution of vertices [6] and other possible length scales
associated with plastic events are neglected. Our approach
is inspired by crack modeling in the framework of linear
elastic fracture mechanics where the process zone near the
crack tip is neglected and the dissipation is estimated from
its balance with the far-field elastic energy.

One may wonder to which extent our models for regular
folding describe our crumpling measurements and whether
crumpling process shall be viewed as arising from succes-
sive folding events. To compare the regular folding with
the crumpling of paper, we first show experimentally that
here the force also increases as a power law with the degree
of compaction, with exponents in accordance with predic-
tions dependant on the dimensionalities of the compaction
process. For this purpose, a sheet of paper of characteristic
size D, is placed into a rigid cylindrical cell, in which a
piston connected to a force transducer compacts the sheet
at constant speed [Fig. 2(a)]. The materials used here (kraft
and regular printing papers) have been chosen for their
low ductility. The experimental force-distance curves show
a very strong increase of the force upon compaction
[Fig. 2(b)], for both ‘‘virgin’’ sheets (crumpled for the first
time) and ‘‘trained’’ sheets (crumpled for the second or
third time). For the latter the force-compaction ratio curves
turn out to be independent of the initial preparation of the
sheet inside the cylinder within the experimental accuracy.
Then, the measured curves for different types of paper of
similar properties (thickness h ¼ 10 �m and Young
modulus E ’ 109 Pa), different sheet sizes, cells, and com-
paction speeds are all described by a power law:

Fð�Þ ¼ �

�
�

D

��� ¼ ���; (5)

where � is a characteristic force scale and � is the gap
between the piston and the bottom of the cell [Fig. 2(a)].
While the data range for � is small, this behavior is robust
over all the 150 realizations. The statistical �2 test for
goodness-of-fit confirms the relevance of the power law
in comparison with other fits. The exponent � of the power
law divergence is � � 1:3 [Fig. 2(c)], a value between
1 and 2, those expected for ordered folding in 1D and 2D.
We argue below that this is due to the anisotropy of the
compaction process in our experiment. Effectively, com-
paction here is quasi-1D, since loading is applied mainly in
one direction. However, the setup also allows for compac-
tion in the perpendicular direction, which would rather be a
2D process. Moreover, the characteristic force scale � is
independent of size D: � � 2 N [Fig. 2(d)] which is of
the same order of magnitude as the characteristic force,
F0 � 1 N, calculated for the folding.
A second step towards understanding the analogy

between crumpling and folding is to establish the relation
between the degree of compaction and the number of folds
for the experimental crumpled configurations. To achieve
this, we characterize the geometry of the crumpled paper,
using an original approach that makes use of the properties
of folds and facets in cross sections of crumpled samples.
Sheets of different paper types and sizes D are crumpled
into handmade balls at different degrees of compaction. A
cross section is obtained by cutting the crumpled ball in two
with a slowly moving hot wire [7]. The overall size of the
crumpled configuration, �, is defined as the largest diame-
ter of the resulting cross-sectional area. In this cross section,
the number of paper layers is measured in two orthogonal
directions passing through the center [Fig. 3(a)], and aver-
aged to obtain the mean number of folded layers N in the
crumpled configuration. By this method, we ensure that
N is defined as in the folding model introduced above
(N ¼ hn=h). The number of folded layers N is described
by a power two dependance on the degree of compaction
N ¼ ðD=�Þ2 ¼ �2, with a prefactor equal to 1 [Fig. 3(c)].
This important result is exactly the same as that observed
for 3D folding [Fig. 1(c)] showing that the geometry of
folding and crumpling is the same.
A possible difference between the two situations is that

while the repeated folding is a hierarchical process, this is
not clear for crumpling. To investigate whether the crum-
pling is also hierarchical, we characterize the lengths of
folds and facets in cross sections of crumpled samples. For
this purpose, the cut crumpled sheet is reopened carefully
and the uncrumpled pieces, with possibly several holes, are
scanned [Fig. 3(b)]. The edges of their boundaries and
holes are detected automatically and broken down into
segments delimited by kinks [8], by using a ‘‘split and
merge’’ algorithm [9] for the segmentation. The planar
two-dimensional cross section of the crumpled sheet bears
information on the full three-dimensional crumpled
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configuration: the ensemble of segments samples the facets
delimited by folds, so that one segment length is related to
the characteristic size of the facet or equivalently to the
characteristic distance between folds. We use this to assess
the nature of the crumpling. To do so, we compare the
distribution of lengths �ð‘Þ with a log-normal distribution
and a Gamma distribution; the former characterizes a
hierarchical process [4,8,10], whereas the latter accounts
for random processes [4,8,10]. More precisely, a log-
normal distribution describes a fragmentation process in
which all pieces are broken successively into two parts,
such that any new fragment is further broken into two
pieces where the breaking point is uniformly distributed
along the fragment [8,11,12]. In contrast, the Gamma
distribution emerges from a fragmentation process where
all the breaking points are uniformly distributed along
the unbroken line, prior to the breaking that happens
simultaneously for all points. Figure 3(d) shows that both
distributions reasonably well describe the rapid decay of
the tail of the distribution, but the Gamma distribution
seriously overestimates the probability density at small

lengths. This originates from the fact that a hierarchical
fragmentation process tends to generate less small frag-
ments than a random one. A more rigorous test is done
through the statistical �2 test for goodness-of-fit, which
confirms that the log-normal describes the data better.
We checked that this description is robust with respect
to the chosen value of the threshold used in the segmenta-
tion procedure. The log-normal distribution accurately
describes all the experimental data sets, so the crumpling
is hierarchical rather than random. Earlier simulations [13]
of crumpled sheets and experiments on unfolded sheets
[14] found a similar agreement with a log-normal
distribution.
The conclusion is that folding and crumpling are very

similar in nature and the crumpling process shall be viewed
as arising from successive folding events. For ordered fold-
ing, simple models allow for predictions of the relations
between force, compaction ratio, and number of folds.
Surprisingly, these are found to capture the main properties
of crumpling also, in particular the hierarchical structure of
the folds and the power law relation between the force and
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FIG. 2 (color online). (a) Setup used to measure the force Fð�Þ during crumpling. (b) Typical force-distance Fð�Þ and force-
compaction ratio Fð�=DÞ curves on a log-log scale and shifted with respect to each other for clarity in inset, with kraft paper of size
D ¼ 15 cm in a cell of diameter 6 cm, for the first (blue circles), second (green squares), and third (red diamonds) crumpling rounds.
The lines are the fits to a power law (Eq. (5)): (�, �) are (3.74N, 1.1), (1.90N, 1.4) and (1.43N, 1.5) for the first, second, and third
crumpling rounds, respectively. (c) Exponent � of the power law fit as a function of the paper size D and its probability distribution
function in inset for the second (green squares) and third (red diamonds) crumpling rounds. (d) Characteristic force scale � of the
power law crumpling force as a function of D and its probability distribution function in the inset. For (c) and (d) many experimental
realizations were averaged for constant values of D.
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the compaction ratio. The analogy with folding then allows
us to define the ‘‘crumpliness exponent’’ � for various
forms of crumpling process. Previous experiments and
simulations in the literature have reported such exponents
� for the power-law dependence of the force on the com-
paction ratio. They can be explained using our arguments,
i.e., solely by considering the dimensionality of the com-
paction process, the topological constraints, and the me-
chanical properties of the material (e.g., ductility). Table I
summarizes various exponents � from the literature,
detailed below.

For the first set of data, Matan et al. [15] used a com-
paction setup similar to the one used here, and found an
exponent of � � 1:89. The aspect ratio of their cylinder
(height over diameter) is much smaller than ours; we thus
anticipate that the compaction is more 2D in nature, and
hence expect a crumpliness exponent closer to 2 than in our
experiment. The value of this exponent can again be under-
stood as a compaction process lying between 1D and 2D.
As our arguments are based on dimensionality, they allow
us to predict only bounds for this type of experiments.
The simulations of Ref. [16] on compacted tethered mem-
branes found a value of � � 1:85. Except that loading is
now biaxial, the compaction process is in fact similar to

that of case (a) since the ‘‘height’’ fluctuations of the
membrane are small. If the two directions were indepen-
dent we recover N / �2 and thus force F ¼ NF0 / �2.
However, folding in one direction is inhibited by folding
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FIG. 3 (color online). (a) Picture of a crumpled cross section and two orthogonal directions used to extract the number of folded
layers N. (b) Picture of a piece of an uncrumpled cross section and its segmented edge. Scale bars are 10 mm. (c) Number of folded
layers N as a function of compaction ratioD=� for crumpled balls of kraft paper (circles) and regular printing paper (squares). The line
is the curve N ¼ ðD=�Þ2. (d) Probability density function �ð‘Þ of the length of segments on a log-log scale for a kraft paper sheet
crumpled in a ball of diameter � � 80 mm and compaction ratio � � 6. The continuous and dashed lines are the log-normal and
Gamma distributions, respectively, with the same mean and variance as the data. The error bars �‘ and �� are the bin width �‘ and the
standard deviation �� ¼ �=

ffiffiffi
n

p
of the histograms nð‘Þ.

TABLE I. Results from the literature for the power-law
variation of the force F / ðD=�Þ� for compactions of an
x-dimensional object in (xþ 1)-dimensional space. The crump-
liness exponent � is measured and �? is our theoretical pre-
diction from the dimension x? of the geometry of compaction.
Topological constraints and the material properties may influ-
ence the value of the exponent. The first set corresponds to a
mixture of cases (a) and (b) of Fig. 1; the second and third sets
correspond to cases (b) and (c), respectively.

Crumpled object and Ref. x x? � �?

Paper (this Letter) 2 1< x? < 2 1.3 1<�? < 2
Mylar [15] 2 1< x? < 2 1.89 1<�? < 2
Tethered membrane [16] 2 x? & 2 1.85 �? & 2

Rods [17] 1 1 2 2

Rods [18] 1 1 2.05 2

Linearly elastic sheet [13] 2 2 4 4

Aluminum foil [19] 2 2 5.13 6

Phantom sheet [13] 2 2 2.66 2.5
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in the other direction. This effect will decrease the total
number of folds leading to a crumpliness exponent
�? & 2.

For the second set, the analogy with case (b) is complete
and both experimental [18], theoretical [17], and numerical
[18,20] results in the elastic regime are in agreement with
the prediction of a crumpliness exponent �? ¼ 2.

The third set deals with experiments and simulations of
2D sheets crumpled inside 3D spheres. The linearly elastic
sheet [13] is a perfect example of case (c) for which the
crumpliness exponent�? ¼ 4, in agreement with the simu-
lations. The aluminum foil is ductile with plastic deforma-
tions [19] and the phantom sheet can cross itself [13]. These
are more complicated cases; however, we can estimate the
exponent �. For the aluminum foil, one modifies the esti-
mate of the elastic energy Eel of a folded sheet because
of ductility. Most of the folded sheet remains flat but the
elastic energy is now concentrated in a region of length D
and width 1=	c with a curvature 	c, which is a material
constant: the curvature scale at which the material yields.
The balance of the compaction energy and the elastoplastic
energy then leads to F� Bn	c � Eh3n	c. As N ¼ �, one
finds FðNÞ � N3F0 � F0�

6 leading to the value �? ¼ 6,
which is in fair agreement with experimental results [19].
For the phantom sheets, the absence of steric interactions
implies that FðNÞ � NF0 which is similar to the 1D case.
The number of folded layers N is then related to the com-
paction degree throughN � V=Vf, where Vf is the average

volume occupied by the sheet. For high compactions, it is

known that Vf � R
df
g whereRg is the radius of gyration and

df is the fractal dimension [21]. Thus we find F / N �
��?

, with �? ¼ df ’ 2:5 [21,22].

Finally, these arguments allow us to explain why a waste
basket fills up so quickly when waste paper is crumpled
into a ball. Using the equivalence between crumpling and
folding, the wasted volume �V=V can be estimated from
the folded case. In the 3D case, this is given by

�V

V
’ �3 � Nh�2

�3
¼ 1� h

D
N3=2: (6)

For N ¼ 26, h ¼ 10�4 m and D ¼ 0:2 m, one has
�V=V � 75%, which is an excellent estimate for the
experimental observation that crumpling is a very ineffi-
cient compaction process. In conclusion, the observations
presented here demonstrate a nontrivial relation between
the force of compaction and the geometry of the crumpled
configuration. A potential application of this result would
be to invert this problem, and deduce the force through
analyzing cross sections of crumpled sheets. Since our
arguments are generic, they should hold at the nanoscale

and could provide a simple framework to understand
crumpled graphene structures, such as graphene-based
supercapacitors [23,24].
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