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HOMOGENIZATION IN MECHANICS
A SURVEY OF SOLVED AND OPEN PROBLEMS

Abstract, We give an account of recent results and open problems in mechanics of com-
posite media from the view point of asymptrotic methods.

1. Introduction

Generally speaking, homogenization is the study of the relationship
between the local structure of a non-homogeneous medium and its macrosco-
pic behavior. More specifically, homogenization denotes the mathematical
techniques for the asymptotic study of physical media with a periodic (or
nearly periodic) micro-structure. It is to be noticed that homogenization was
one of the first non trivial examples of the so-called G-convergence of solu-
tions of Partial Differential Equations. (De Giorgi and Spagnolo [24]). G-con-
vergence developped into new congcepts (I™-convergence) concerning solutions
of variational inequalities. As for this theory, mainly developped by De Giorgi
and his co-workers, the reader is refered to the recent book by Attouch [2]
and. perhaps to the papers contained in the E. De Giorgi colloquium (Kree
{44]). But in any case, very many ‘“‘homogenization problems” in mechanics
are not associated with the minimization of a functional and consequently
- they are out of the scope of I'-convergence. Such are, for instance problems
giving “memory effects” (non local operators in time) by homogenization,
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Another mathematical theory linked with homogenization is the so-called
“compactness by compensation” for which the reader is refered to Tartar
[93], Boccardo et Murat [7], Murat {72]. See also in this connection Zhikov,
Kozlov and Oleinik [98, 99, 100]. .

In this paper we adopt mainly the point of view of asymptotic expansions
(see Van Dyke [96], Cole [20], Cole and Kevorkian [21] for the corresponding
theory). We start with a rapid account of symptotic methods (Sect. 2). The
following sections are devoted to problems (or groups of problems) in me-
chaincs. For most of them we give an account of some results, references and
open problems.

General references on homogenization are Bakhvalov and Panasenko [3],
Bensoussan, Lions and Papanicolaou [6] and Sanchez [84]. This survey paper
is widely inspired by the works [86, 87] by the author.

2. Two-scale asymptotic expansions and local periedicity.

This method is classical in mechanics of vibrations, when a small pertur-
batlon modify a motion which should be otherwise periodic in time, for in-
stance, the motion of a pendulum

~ submitted to a small damping is

/3
~ such that each “period” is almost
ot ' analogous to the preceeding one,
ﬂ /\ [\"_7'\"' but the cumulative effect of the.
/ damping provokes important dif-
U U U___V " ferences (of the amplitude, for

instance) of the motion of two

- “far located in time’’ periods. To

¥ study this one introduces, aside

Figure 2.1 the ordinary time ¢, two variables

~ (the so-called fast and slow times)

t*=1¢t and 7= et (with € small parameter) and we search for an asymptotic
expansion of the solution #€(t) under the form ~

(2.1) u€ () =u®(t*@), 7(t)) + e (¢*@), T + ...

and we try describing, the local periodic phenomena by the dependence on
t through t*, and the slow modulation by the dependence on t through 7.
We of course have



(2.2)

Moreover, as a convention for the sake of simplicity, we drope the star in ¢*
and write

(2.3) u€(®)=u, ) +eul(t,v)+.. ; t=c¢t
- d 0 0
(2.4) Y + ¢ R

According to analogous considerations, let £
be a body made of a composite material in the

vl | R?® space of the standard coordinates (x,,
X,,%3). Moreover, we assume that its mechan-

0 ¥, ical properties are periodic with a small period,
Figure 2.2 described with the aid of a small parameter €

as follows. In the auxiliar space of the variables
(¥1,¥2,¥3) we consider a parallelepipedic period denoted by Y (with edges
Y,, Y3, Y,) as well as the parallelepipeds

obtained by translations of an integer —

number of periods in the directions of //

the axes. _
Let €Y be the homothetic of Y /
with ratio e, We consider the body £

with the eY-periodic structure. Thus, k p2 | pt /7
some property #€(x) (here u may de-

note displacement, stress or some other r//<
property of the mechanical process " G

under consideration) is searched under
the form of an asymptotic expansion

us(x) = u®(z (x), y(x )} + u' (2 (%), y(x)) + ...
zix)=x ; wvix)=x/€

Figure 2.3

(2.5)

or merely (with the preceeding convention)

ub(x)=u(x,y) + eul(x,y) + ...
(2.6) X - d 0 1 9

Y= T e

dx;  ox; € dy;

and moreover, we intend to describe the influence of the periodic structure
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(resp. of the other non periodic causes of the phenomenon, as the boundary
082 and so on) by the microscopic variable (resp..the macroscopic variable 2z
or merely x) in (2.5), (2.6). To this end, we search for an expansion (2.5) or
(2.6) with functions ' Y-periodic with respect to the variable y and
smooth with respect to x. Indeed, each w'(x,y) is defined on 2 x Y (or on
Q x R3, which amounts to the same, as it is Y-periodic).

"It is worhtwhile to see that each term u'(x,y) is a locally periodic
function in the following sense. Let us compare the values of #‘(x,y) at two
points P! P? (Fig. 2.3) homologous by periodicity corresponding to two
contiguous periods, By periodicity, the dependence on ¥y is the same and the
dependence on x is “almost the same’’ because the distance P'P? is small
and #' is a smooth function of x. On the other-hand, let P® be a point
homologous to P! by periodicity, but located far from P!. The dependence
of u' on y is the same, but the dependence on x is very different because
P! P? are not near to each other. Finally we compare the values of %' at
two different points P!, P* of the same period. The dependence on x is
almost the same, but dependence on y is very different because P! and P*
are not homologous by periodicity (in fact, the distance P!, P* is ‘Jarge”
when measured with the variable y!).

It is evident that this locally periodic expansion is fit to describe the
solution in regions of £ far from its boundary, or from regions where the
local effects are not eY-periodic, such as discontinuities of the microscopic
structure. In such regions, the appropriate asymptotic expansions are almost

periodic in the microscopic variable y only
_ with respect to displacements which are
\\I S tangential to the boundary, because the
medium in fact is not periodic as for dis-
30 placements normal to the boundary, and
there is no reason for the solution to be
“almost invariant” with respect to such
Figure 2.4 displacements. As a consequence, near the
boundary of the body (Fig. 2.3) we must
consider boundary layers where the solution is searched under the form (2.5)
or (2.6), but now x runsin 9 and y in thestrip S (Fig. 2.4), and %’ is
searched to be S-periodic. (Note, in Fig. 2.4 for instance, that S 1s a semi-
-infinite strip formed by Y-periods (plus perhaps “parts™ of periods at the
intersection with 982). This situation is easily described for boundaries pa-
rallel to a coordinate plane, for instance x; = cost (Fig. 2.5).




In this case, the solution in the boundary layer region takes the form

X3
s
27,
Y3
X1 X2
N 982 ¥
Figure 2.5
(the superscript BL is for “Boundary Layer”):
2.7) #E(x) = u%8L (e, 1) + eutBl(x,y) + ...
with
(2.8) wBl (e,y) =uBL (x, %3, 51,52, ¥3) ,

¥1 and y, periodic with periods Y,,Y,, but not necessarily x,,x,, %,
periodic.

REMARK 2.1. As for the expansion (2.6) far from the boundaries, the “bound-
ary conditions” for the y variable amounts to the Y-periodicity. But in the
boundary layer (2.7), the “boundary conditions” for y amounts to period-
icity in y,,y,, genuine boundary conditions for y; =0 and “matching”
between (2.7) and (2.6) as y3 >+ and x; —> 0. This amounts to saying
that there is a “tramsition region” of the layer towards the bulk solution
(2.6) far from the boundary. .

3. Matched asymptotic expansions.

We saw in the preceeding section that a function #(x) may have asymp-
totic expansions of different nature in different regions, for instance, in the
boundary layer near 88 and the bulk region at the interior of §. It is clear
that two such expansions “must agree”, i.e, the boundary layer contains a
transition region between the genuine boundary layer and the “owuter” region
(outer to the boundary layer). As for this relation between the boundary
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layer and the bulk region, the tangential variables (x,,x;,¥,,¥, inthe case
of (2.6), (2.7)) play the role of parameters, and x,, y; are the relevant vat-
1ables. We write

(3.1) u€(x) = u®(x;) + eul(xy)+ ... (outer or bulk expansion)

(3.2) u€(x) = u®BL (y,)+ eu'BL(y3) + ... (inner or boundary
layer expansion)

and we emphasize that the outer (resp. inner) expansion only depends on the
outer or bulk variable x; (resp. on the inner or boundary layer variable
Y3 = x3/€). _ ' '
We now give some definitions. The outer (resp. inner) limit of a function
“u(x) is the limit as €= O for fived outer variable x5 (resp. inner variable
y3). In the same way, the m-term outer (resp. inner) expansion is the asymp-
totic expansion of m terms of u® for e >0 with fixed outer variable x,
(resp. inmer variable wy,). For instance, #°(x,) is the outer limit, and
u®BL(yy)+eu'®l(y;) is the 2-term inner expansion. As sometimes we deal
with expansions the first term of which are not of order 0(1), we also define
the outer (resp. inner) representation as the first non-zero term of the outer
(resp. inner expansion).

- We now give the “matching rules” expressing that the outer and inner
expansions (3.1), (3.2) agree in some intermediate transition region. Justifi-
cation of these rules may be seen in the general references given in sect. 1.

The matching at order 0(1) is: '

(3.3) Inner limit of (the outer limit) = ‘
= Quter limit of (the inner limit) .

Of course, the outer limit of %€ in (3.1), (3.2) is #°(x,); in order to compute
its inner limit, we write it in the inner variable y; = x,/¢, and we compute
the limit as €= 0 for fixed y,; this gives lim #%(ey;) = #°(0) which is
the left side of (3.3). Analogously, the right hand side is #°3% (4 e0). Thus,
(3.3) amounts to

(3.4) #°(0) = u®BL (o0)

or which amounts to the same, #° at the boundary 952 equals the boundary
layer first term far from the wall (far in the small variable y;). It is easily
seen that (3.3) or (3.4) amounts to the existence of an “‘intermediate variable”
z small (resp. large) with respect to x5 (resp. y3) such that (3.1) and (3.2)
give at the first order, the same information for z = 0(1). We may take, for
instance, z = x/e'?, '
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The general matching rule for m terms inner and outer expansions
amounts to express that they agree, at the considered order, in the region
where the intermediate variable z is 0(1).

Of course, in specific problems it may be useful writting the boundary
layer terms as sum of their corresponding limits plus a complementary term,
for instance in (3.4) #°8%(y) = 4%(0) + #%¢(y); matching #%°(y)—~>0 .

4. Model equation - Elliptic equation of steady diffusion in divergence form.

We consider the boundary value problem

a | ou | ,
—*gglafj(x)sgf—'=f in Q

u |aQ =0 on 8Q = boundary of Q

where # is the unknown (the temperature, for instance) f is the given
source term and a;; are the (in general x-dependent) coefficients and € is
a parameter which is wrrelevant for the time being. It 1s useful to write the
equation:

i _ ou

(4.1) 2%, f pg=a,»f-5;c; .

Using the notation

(4.2) ag(x) = a;;(x/€)

the e-problem is:
Find #® satisfying

0 [e, 0us]
(4.3) | " ows [a,-}.-(x) ™ ]—f
(4.4) u€|39_=0.

We look fof the solution in the form (2.6), but in this problem we have
in fact

4.5) u€(x)=u® (x') +eul(x,y)+ ..

The expansion process induces:



d 0 1 9

= —_——— =

dx; O0x; € 0y
“46) du® [ 0u® . 8u1>+ (au du? )
' dx;  \ ; By ¢ ayi

ee =£°(x,y)+€£l(x,y)+-.. H Pfo:a’f(

ou’ + Tk
Oxj

At the present state, it should be noticed that when considering an ex-
pansion of the form (2.6), (under
appropriate hypotheses) we have -

W +eut (4.7) ;46(3")""“0(”)

in L? strongly and H! weakly

but not in H! strongly, and of

course grad u® does not converge

uniformly to grad u° (it does only

Figure 4.1 in L? weakly). This is the reason

why the local gradient is very dif-

ferent of grad 4®; as in mechanical problems the gradient is usually associated
with stress and strain, we see that

(4.8) grad, »° + grad, o'

is the expression of the local gradient up to terms in 0(e). Of course, the
expression (4.8) is easily writen when u®(x) is known (see (4.19) here after).
Coming back to our expansion:

d 1 9 ¢

(4.9) ( o e ay,-)”*‘ =f=
at various orders of €:

_ ap? 6 ou®  oul
(4.10) ¢!/ - x; =0 e — y; [aq(.’)’)< +_; J=0

op;  dp;

of A _ £

4.1 € 3, By, and so on.

We consider the “mean value on Y" operator:
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4.12) - T=—"{ ‘4
(4.12) mf,, y

and we observe that by Y-periodicity:

=

o,
(4.13) _— dy = P; nde =0 7 e—] Y .
y Wi 3

¥ Y

and moreover, ~ commutes with 9/dx;. Then, Pigure 4.2
when applied to (4.11):

of;
(4.14) e =

which is a “‘macroscopic equation” (it does not contain y) of the same form
as (4.1).
The question now is if there exists a “constitutive relation”

0u° (x) s R0
ox; -

" (4.15)

giving the vector p° as a function of V,#°. If there exists such a linear
relation, we shall write:
0
p Ou
if
0x;

(4.16) p‘ =a;
where the superscript stands for “bomogenized coefﬁczents 7. In order to ob-
tain (4.16) we use (4.10)

. 3 T
(417) '53;:‘ [a,](y)

au‘(x,y)w__ ou® 0a;(y)
oy 1 ox; Oy

which is an equation to obtain #'(y) if #° is supposed to be known; the
variable x is here a parameter; (4.17) is then an elliptic equation with Y-pe-
riodicity “boundary conditions”. Then, #' exists and is unique up to an
additive constant (depending on x). In fact, this amounts to find

- u' €V, = {v; vEH,, (R?) Y-periodic} with

(4.18) ou' B % day;
%) %y T )
| 4

d Veel, .
f ay: Y Y



And we may take ?/"Y = subspace of V,, formed by the functions with
7= 0 instead of V, in order to have uniqueness. Moreover, by linearity,

oul(x) .
1 — i
(4.19) U ox, ¥ ()
N : ou®
where ' 1s the solution of (4.11) for ok b; .
i

Coﬁsequently, the mean value of p® is easily obtained

. dw; 1™ ou’
(4.20) Pi(x) = [a,-;(y)ﬂm ) ay;] a:
)

— P
_aif

which gives the law (4.16). The resulting af} are ihdependent of Y,#° and
of the additive constant for #'.

Properties of bomogenization. The homogenized coefficients a?, are elliptic

if
as the a;(y). Moreover
— . h _ b
aij(y) =a;;(y) = ay; =a;; .

On the other hand if the given problem conductivity is isotropic (a;(y) =
=a(y)d;), the homogenized coefficients are not necessarily isotropic; this
is natural; if the medium is layered, the thermic flow flows the different parts
either ““in series” or “in parallel” in different directions:

parallel

series —

NI

Figure 4.3

5. Examples in mechanics of solids.

In linear elasticity (Sanchez [84]) we have an analogous study with the
standard modifications:
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Model problem Elasticity
( U D ?_‘:(“1,“2»“3)
ou ) . au, au,-
x; AR P )
(a) <
| Pi > 0y = i er1(U)
ag(y) <«  a;(y)
\ “ﬁf‘ - a:;’kl

where a;z; and 0;; are the elastic coefficients and the stress tensor, respecti-
vely.
The equations are:

(5.1) —=m=f 5 oy = ayr(y) erly) .

The local equation {(¢™' term)is:

0aiini(y)

0
(5.2) ~ o (@i (y) ery ') = exy (u°) o,

9y
with Y-periodicity conditions for #', x and ¢ being parameters. Here ey,
¢r1y denote expressions analogous to (a), with partial derlvatlves in x or y.
The equation for the €® term is:

E)a,—lj _ 9o}, P 0 (2.10
3y, ox; =f; asin (2.10)
. oG o b .
(5.3) -*—*de i and from (5.2) = G} =@y err @°) .

7

The case where the strain-stress law is viscoelastic is more interesting (see
Sanchez [84], sect. 6.4). If we have a heterogeneous medium with a visco-
elastic tnstantaneous relation:

ou
(5.4) 0;i(k) = aijri(y) eri(u) + bs}kiekl( » )

the local equation is analogous to (5.2) but also contains terms in 2y; with
9/9t; the local problem amounts to find #!(z) with valuesin V), satisfying

(5.5 + b 0 (a"" aug)av,-d —0  VpEV
.5) Y(“;‘;kz(y) iiki(y) a‘) ay, + om oy, y = vE€EVy
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and t is no more a parameter, We also give the initial value #'(0) =0 for
instance (if not, for large time, the influence of the initial value vanishes).
Then, the local equation is an evolution equation which we solve by semigroup
theory:

a?..‘l 0 aug

e PR S Tk ke T T
(5.6)

e
u' (1) =f e BEs)  (right hand) (s)ds
0

and we arrive at a homogenized integrodifferential strain-stress law of the
form:
i

ou’
(5.7)  G(1) = ayjas ens(®) + Bijrs € (ﬁ_)"‘f gei(t —s) exi(u) ds .
0

We see that the new integro-differential term takes the local integration
of a differential equation into account. This is in fact a realization of a rheolo-
gical device, differential at the local level but integro-differential after inte-
gration. |

Other interesting problems appear for fissured media (see Sanchez [84])
sect. 6.6 for the case without friction and Leguillon and Sanchez [48] with.
friction.

In the case without friction, we consider the period Y filled with
homogeneous (or inhomogeneous, this only introduces an unessential com-
plication) but containing a fissure F as shown in
fig. 4.4. The fissure may. be either open or closed
. t~ - (or partially open), but the two lips cannot overlap.

F By choosing the unitary normal N in the same di-
rection on both lips, the kinetic condition to be
satisfied by the displacement vector » (within the
small displacement approximation) is

Figure 4.4

(5.8) [z N0

where the brackets are for the difference of values between the upper and the
lower lips in fig. 4.4.

Moreover, the constraint g*N is zero in points where the fissure is open
(i.e., where we have (5.8) > 0) and a normal, compression vector taken equal
values on the corresponding points of the upper and lower lips in points
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where the fissure is closed (i.e., where we have (5.8) = 0).
The equivalent of the expansion (4.5) is now:

(5.9) u(e)=u(x) +eu'(x,y) + ...
and because %°®(x) does not depend on ¥, the asjrmptotic form of (5.8) is:
(5.10) fz!*N1>0.

In order to study the local problem, we define the set K, formed by
the vector valued V-periodic function #' of class H! satisfying the kine-
matic condition (5.10). This is a convex, closed subset of the Hilbert space
Vyr defined in the same way but without condition (5.10) (i.e., #*N may
take any value on each lip of the fissure). Then, the local problem (analogous
to (4.18)) is the variational inequality:

u' €Ky suchthat, VwE€K,, ,

(5.11) .
[ ijkilCrix U°) + epry @]ej(w—u')dy 20
YF

where ey, (#°) are given. This amounts to minimizing the elastic energy
under the kinematic constraints given by (5.10) and the Y-periodicity. The
first term of the expansion of the stress tensor o is:

(5.12) Ug = a,-,-k;[ek;x (EO) + ekiy(yl )]

and, as a consequence of the nonlinear inequality (5.11), the homogenized

strain-stress law
(5.13) eijx (4°) = G,
is nonlinear. Moreover, it is a byperelastic law associated with a convex
function W(e) such that
aw
5.14 &) =——
( ) if aei},

in fact, W is the value of the energy stored in the period (per unit volume),
i.e. for given e;, (&%), W is

1 .
(5.15) W= Z_I?If ik fCrte U®) + ersy (W) ey 4°) + i, (') dy
. Y
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where %! is the corresponding solution of (5.11). This function W is convex,
of class C!' (but not C? in general: the elastic moduli are in general dif-
ferent in traction or compression).

The case with friction is much more difficult and is only solved in the
two-dimensional case under the hypothesis that the fissure is a straight seg-
ment (as in fig. 4.4). Under this hypothesis it is possible to study processes
where the fissure is either open at all its points or closed at all its points. The

~principal difficulty in this problem is that friction problems have not unique
solutions in the case independent of time, and consequently the analogous
~ of the local problem (5.11) do not determine u' when #° is given. Instead
of this, it is possible to find ' at any time ¢, if the “history” of 4 is
known, that is to say if #,(x,?) is known for ¢t <¢;. The valuesof ' and
thus of @° are then obtained by formal integration of small increments
starting from an initial state in a somewhat complicated form (the details of
which may be seen in Leguillon and Sanchez [48]) involving a “‘hidden var-
1able” s measuring the eventual sliding of the upper lip with respect to the
lower. .
There 1s very much work to do in this direction. The non-elastic be-
havior is in connection with rheological properties of matter, plasticity and
so on (see Suquet [91, 92]). In fact, homogenization is a powerful tool to
investigate properties of matter and the relationship between local and ma-
croscopic phenomena. It furnishes an explanation to some unexpected phe-
nomena. For instance, the failure of some samples of composites may be ex-
plained by tbermal effects in the bistory of the material. Indeed, in thermo-
elasticity the displacement # and temperature 6 satisfy the equations (for
steady processes)
29
axj _ﬁ
0 00

™ (Kij ; )=\0 i 05(0)= 8,76

ol =o(u) + 0(8)

and o() is the standard elastic stress tensor, o7 being for the “total stress
tensor”. It is easily seen that when heating a composite body with free surface,
in general there is no solution with constant temperature and vanishing stress
(but of course it exists for a homogeneous body). For a sufficiently strong
heating the plasticity or fracture threshold may be reached at some points,
and this causes irreversible damage. If the temperature is then brought back
to zero, the material is in a deteriorated state. The homogenization of the
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thermoclasticity equations is in Francfort [34], but much work is to be done
about local properties and non linearities,

The preceeding problem is in connection with the interesting problem
of initial stress. Even for materials with elastic behavior, if a composite is
made after stretching some parts (think about pre-comstraint concrete), the
initial stress is to be added to the deformation one, and this may have an
important influence on the reaching of the fracture threshold. In all these
problems, the local behavior of stress and strain is to be used, of course
(see (4.8)).

6. Fluid flow in porous media.

Let us give an account of the simplest problem in this field. In the R?
space x we consider a periodic structure where each period is hollowed by
three tubes forming the region Y (the complementary region Y being the
rigid solid). If €Y, denotes the e-homothetic of ¥; prolongated by € Y-pe-
riodicity, we considered as “fluid region” Q. = Q N €Y;.

X2
L7 .
= I TS R e
1) - ?\‘}3
[ \\ .',T ‘..” D
\ }/ ‘\"— —— N\ ,’/f"'"
A \\‘ \ll,
L
< ey \‘(':,
0 X1
Figure 6.1

In fact, in this problem the domain depends on ¢, and it is filled with a
(homogeneous) viscous fluid. The equation and boundary conditions are:

6.1) O=—grad p¢ + Av€ +f ; diveE=0
(6.2) ol =0.
N IaQe
It is evident that as €V0, any point in the fluid is “near the boundary”

where the velocity vector is zero (6.2) as a consequence of the no-slip con-
dition for a viscous fluid. Consequently, we have some sort of “boundary
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layer effect” and the velocity vector is asymptotically zero (there are other
cases if the viscosity coefficient is small). The appropriate asymptotic ex-
pansion is

(6.3) 26(x) = e?p%(x,y) + 3pl(x,y) + ...

PEX) = pO(x) + epl(x,y) + ...

d a 1 o 1
(6.4) Ex—£_3;:+?5_’)/_i; A=—A,+

1
— ..

and we obtain froh (6.1), (6.2) at orders €® and e

Pvayp+(f- D)
0= ¥ & t\fim—g =) s -‘3|ayf“°

(6.5)
div, v° = 0

wig'h Y-periodicity, which constitute the local system. From (6.1), at order
€% and applying the average operator ~ of (4.12), we have:

(6.6)  divy 2! +div,2® =0 = div, 3° =0

which is the global equation. The local equation (6.5) is easily studied by
using standard modifications of the classical theory of the Stokes problem.
We consider the space:

Vie={u;u EHIIOC(R:‘), Y-periodic, z_zly =0, divy = 0}
5

with the scalar product associated with the viscous dissipation in a period:

( ) 3‘0,‘ ou;
2,8y, =| 53— 5
tr v i
Then, (6.5) amounts to find ¥°® € V,, such that
6.7y - ap°(x)
- @°,z_¢)gy=(ﬁ- oo, Yu,-dy' Vuey,
: f

where x is a parameter. By linearity, we have the local behaviour of the
velocity

. op°
6.8 2°(x,y)=(fk(x)— 1;;:))@_’*(3’)
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where wf is the solution of (6.7) for the parenthesis in the right hand side

equal to 8;,. It is to be noticed that the p! term in (6.8) desappears in the
variational formulation (6.7); this is classical because the pressure gives a zero
virtual power for the virtual velocities w € V,; in fact:

| fy a; YT Ty, J; o Y
f f
=[ mplw;ds =0
0

Yy
(as w; =0 on the solid boundary T and [

by Y-periodicity on therest of 9Yy). /

aw |

Finally, by taking the mean value of 7 ~—
(6.8) we have:

ap° Gr)

69) 57 = (k )K,-k D K =
Figure 6.2

where K;, is the (symmetric and positive
definite) permeability which only depends on the geometric structure of Yr.
(6.7) is “Darcy’s law”, which, with (6.6) gives the homogenized behaviour.

The theory described in this section only constitutes a first introduction
to the very wide domain of fluid flow in porous media, where there are very
many unsolved questions; Let us mention acoustic phenomena in porous
media (Levy [64], Fleury [32], problems of flow between two neighbouring
plates (the so-called Hele Shaw analogy) Bayada [5] and Dridi [27] where
integro-differential homogenized equations appear, as in viscoelasticity.

Numerical computations of the local flow (i.e. of the vector w) should
be useful to understand the influence of the form and tortuosity of the pores
on the coefficients of the Darcy’s law. Of course, non linear terms appear in
the local flow for sufficiently fast flows (see Sanchez {84], sect. 7.4. Com-
putations on such flows may contribute to the understanding of the non-
linear Darcy’s law, arising of turbulence at the local level and eventual faslure
of Darcy’s law as a deterministic law. Problems of two fluid phases in a porous
medium are important in the oil recovering industry, but the physics and
thermodynamics of the problem, including surface tension and interfaces is
not sufficiently comprised for the time being,

Interesting nonlinear phenomena appear when dealing with the flow of
a visco-plastic Bingham fluid in a porous solid (see Lions et Sanchez {68] and
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‘Lions [67]). As the deformation of the fluid arises only for sufficiently large
stress tensor (the fluid behaves as a rigid solid for small stresses), the corre-
sponding Darcy’s law exhibites a thresbold: the average fluid flow is zero for
sufficiently small grad p, and regions where the fluid is at rest appear.

7. Small vibrations of a solid fluid mixture. Influence of the parameters.

We know that homogenization is an asymptotic method describing the
limit behavior as the parameter € associated with the local structure tends
to zero. It is clear that in problems containing other small parameters the
limit process may be somewhat complicated. We note that the above men-
tioned problems of boundary layer appear for points near the boundary of
the domain. There are very many examples of problems exhibiting very dif-
ferent behaviors according to the relative values of the parameters.

We consider here an elastic body containing pores filled with a compres-
sible viscous fluid. As in Fig. 6.1 we assume that both the fluid and solid
regions are connected. Many different situations appear according to the
values of the viscosity coefficient #. The equations for the small (lincarized)
vibrations with the interface conditions of continuity of the displacement and
stress are equivalent to the following variational formulation:

Find #®(¢) with valuesin Hy($2) such that

a2yt :
fﬂ“'(x) —v;dx +atul,v) + b @, v) =
Q

ot? |
=ff}zr,-dx VQEH;(Q)
Q .

where the left hand side is the virtual power of the inertia forces, and a€, b¢
denote the forms associated with the elastic power (including the compres-
sibility of the fluid) and the dissipation by viscosity; respectively:

ou; ov; _
a®(u,v) =f Biitm WI— Ec-’_-dx + 'y[ div ¥ div v dx
Qf mo Qf

b¥(u, v) = iﬂf e;j(u)e;(v)dx
2f

and £, Qf denote the domains occuped by the solid and the fluid.
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If n is 0(1), ie. asymptotically independent of ¢, the appropriate
asymptotic expansion is analogous to that of the elasticity or viscoelasticity:

u(t, %) =u®(t,x) + eu'(t, x,u) + ...

where the first term of the right handside is independent of y, ie. the two
phases of the mixture have the same global motion at the first order. The
homogenized behavior is viscoelastic, analogous to (5.6) with one phase.

On the other hand, if the viscosity is small, n = 0(e?), i.e. n =ve?,
v = cost., the appropriate expansion is

u¥(t, x) ~u'(t,%,y) +eu' (t,x,y) + ...
where #° does depend on y. More exactly, #° may be writen
(7.1) : u® =yt (t, x) + w2, x, )

where #° is independent of y and corresponds to the first term of the ex-
pansion in the solid, and the term %™, which vanishes in the solid part and
in particular ‘on the interface in order to satisfy the no-slip condition, re-
presents the relative displacement of the fluid with respect to the solid. We
then have a two-pbases medium. The relative motion satisfies some Darcy’s
like integro-differential law with respect to the pressure p in the fluid. The
limit behavior is described by #°, p and ¥ which satisfy equations of the
form

5 0%u; a2are 63;-‘;7 _

o2 P o ow U

ST — P -
0 =g lrix @)~y p

Bp + divx ;}‘rel + Qij Eijxc (?;‘S) =0
direl t ap 52 uf
ot =f gri(t — ) (fz“ o -pof 562 ds
0

which are analogous to the system proposed by Biot, but the Darcy’s law is
of integro-differential type.

The explanation of these phenomena is as follows. For fixed 7, the
viscosity drives the fluid with the solid and asymptotically there is only one
phase. If the viscosity is small, the stress tensor in the fluid reduces to a pres-
sure; the local equation of the type (4.14) becomes

5y, Gyp)= p=plx

B i A b E Tt e e FED A e+ L e, L
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ie., for small n the stress in the fluid reduces to a pressure which is asymp-
totically constant in each period. Then, grad, p drives a Darcy’s like flow
with respect to the solid which is of order €¥/n (see (6.3) on account of the
fact that the velocity is proportional to n~!'), It is then clear that, if n =
= 0(€?), the relative velocity will be of order 0(1), in agreement with (7.1).
At last, if #n is small with respect to 1 but large with respect to €?, we shall
have a stress tensor of the type pressure in the fluid and a negligibly small
relative motion; the limit behavior will be elastic. We then have

n = 0(1) = one phase, viscoelastic
1>>n>>€? = one phase, elastic
n < 0(e?) = two phases .

We then have a two-parameter problem, and the preceeding scheme may be
considered in the framework of matched asymptotic expansions. If we take
n as a space-like variable and e as a small parameter, the expansions €~ 0,
n=cost. and €—=>0, n=wve2, v=cost. are analogous to an outer and an
inner expansions. The matching is given by the motion of elastic type. We
" may perform the change of variables (e,n), (o, 8): |

_ 2

1
a=n,; = =7

and the outer and inner limits become o« = cost. and § = cost.

=3
Il
s
m

p—) o0
1 = cost.
A el
n—>0
i
n
o
Figure 7.1

In practice, for small values of ¢ and 7, we shall compute & and ;
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if the corresponding point is near the axis o (resp. 8) we shall use the one
phase (resp. two-phases) scheme; near the origin, the two schemes agree.

B

e
=]
u a
' —til—s— =
v =1/p) g

outer limit
o
0 u (n=a)
Figure 7,2

The references for these problems are Sanchez [84, chap. 8], Lévy [57),
Fleury [33], Sanchez-Hubert [80 81, 82}, Nguetseng {73, 74] and Nguetseng
et Sanchez [75].

As open problems in this direction we may point out the general motion
(large deformations) of a mixture, boundary layers in the preceeding prob-
lems for several boundary conditions: clamped body, free surface body, and
so on... In this last case the free boundary problem of the seepage of the fluid
out of the porous body is completely open.

8. Fluid flow pas an array of small fixed obstacles, Darcy s and Brinkman
flows.

The situation of sect. 5 depends strongly on the asymptotic dimensions
of the obstacles.

We shall give the asymptotic structure of the solution for the fluid
Stokes (linear) flow of a viscous fluid past an array of fixed obstacles (note
that the obstacles are supposed to be fixed; this is unrealistic in R?; the cor-
responding problem in R?, flow past an array of bars will be given later) see
Lévy [59], {61] Sanchez-Palencia {85] and Geymonat et Sanchez-Palencia [36]
for these problems

We consider in the geometric framework _of sect. 6, obstacles n¢ in the
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y variables (i.e, end obstacles in the standard x variables), the dimension
of the period being of order e as usual. An important parameter for the
description of the asymptotic behaviour is:

o2
8.1) =lim — .
(8.1) m = lim —

(In fact, we have a problem with two small parameters e,n, but the asymp-
totic behaviour depends on m; one may consider one of the parameters as
a function of the other. _

If eN0 and 7 isfixed (n = 0(1)), we have the classical homogenization
problem of sect. 4 the asymptotic of velocity is:

(8.2) | v = ezw’-m(y)(f o
) * ¢ k axk
and p° is defined by div, 2" = 0 i.e.:
9 ap° )
—_— n i == -
®3) 3x; [K’* (ﬁ‘ By ] 0;
23

where K\ is the permeability tensor.
Now for the case 7 <1, the flow

} without interaction between different ob-
stacles gives a good approximation. This

22 flow is defined in the following way. In R3
we define the velocity and pressure fields
T n /s associated with a unit flow at infinity in
Figure 8.1 the & direction:
| | - A VX +grad, P* =0
- (8.4) div, ¥* =0
Plap=0 s ¥ e

|2] e

and we consider the associated force on the obstacle, 7' defined by:

T(V*) = .'?.zf 0ij 1; ds
oY

where
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= -Ps +<av’ + av,->
% = 7E% T\ 3z, T dg,
and the “translation tensor” H of components
(8.5) Hy; = T;(V/)

which is symmetric and positive definite. The asymptotic structure of the
flow is given by:

(8.6) v(x) = f(e) Up (%) V* (z)
' t
(centered at the obstacles) )
where
en~l if m=0
(8.7) fle)= , o -
1 if m infinite or finite # 0

and U(x) is given by the solution of:

rad, p* +H- U=f
(8.8) if m=0 § . -
div, U=0 5 U*n|, =0

(8.9) if m finite

- A, U+grad, p° +-$;-H'[_f=f
=0

div, U=0 ; Ul, =0

—A,U+grad . p°=f

(8.10) if m=oo _
- div, U=0 ; _Q'IaQ“O.

In fact, the asymptotic behaviour (8.6) contains an order function f(e),
a uniform (i.c. independent of y, 2) flow U(x) given by (8.8)-(8.10) and the
asymptotic structure V near the obstacles, Moreover, for m = (i.e. (8.10),
obstacles very small) there is no action of the obstacles on the U flow,
which is the same as in the absence of obstacles. For m = 0(1), (i.e. (8.9)) we
have the Brinkman’s flow: the global movement U takes into account the
“force of the obstacles on the fluid”. Last, for m = 0 (i.e. (8.8)) we have the
same as in (8.9) but the global flow is negligibly small with respect to that of
the preceeding case, and is given by the order function f(e).

In the two dimensional case, the analogous of the flow (8.4) does not
exist (Stokes’ paradox). In this case (8.4); must be replaced by:

R T P A T T e et

i
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(8.11) VE ~¢, log 12| (1z]=> 00) .
Moreover, f(€) in (6.7) must be replaced by:

(8.12) ) €? if m=0
. €)=

[logn !'1"' if s is infinite or finite # 0
and the asymptotic behaviour (8.6) becomes:

(8.13) v = [f(e) log 7] U (¥) V2 (z) .

9. Suspensions of solid particles in a fluid.

We pointed on that the periodicity of the microstructure is an important
hypothesis in homogenization. In fact, local periodicity is sufficient, i.e. each
cell is almost the same as the neighbouring ones, but it may be very different
from the far located cells. Now, if we have in a fluid medium particles in sus-
pension, the geometric structure, even if it was periodic at the initial time,
undertakes large deformations, i.e. the structure depends on the motion itself.
Of course, a periodic structure is not a very realistic scheme for a suspension,
but the theoretical results may be used as a model for other problems. On the
other hand, it may be seen that the local periodicity of a structure is preserved
by large deformations.

X2

Figure 9.1

We consider (Lévy and Sanchez [65], Lévy [55], Sanchez [89]) the
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equations of the fluid motion

dive® =0

(E)vf s 814) 305, L F
Po ot % axj N Bx, i

af; = =P8, + 2ue; (v°)

as well as the resultant and moment equations for each particle, and an
asymptotic expansion

vE(t, %) = 0Ot %) + €0l (t, %, ¥) + ... °
(9.1)
P, %) =polt, x) +ep'(t, x,¥) + ...

with terms which are Y-periodic functions of y, the period Y depending
on t and the large scale variable x, in a fashion to be defined later. The
asymptotic process leads to homogenized equations of the form

o0 o 3] o 069
~ ( _ i . 0 — t[ .

dive® =0

where the average stress tensor 0° is associated with an anisotropic viscosity
which depends on the form of the period at the comsidered time. On the
other hand, we see that the inertia terms contain an extra term with the coef-
ficients § which depend on the microstructure. This correction of the inertia
terms is due to the local structure of the velocity field, and even appears in
inviscid flows. _ .

As for the microstructure, it depends on a finite number of parameters
for each cell (i.c. depending on the large scale variable x). For instance, we
may take the vectors which are edges of the period, and the six parameters
defining the position of the particle. It may be shown (the fact that ° is -
independent of y and that »' is Y-periodic plays an essential role here)
that the geometric structure evolves in time keeping its locally periodic
character. The equations giving the variation in time of the set & of para-
meters take the form '

d¥
Rt . Op0
It o () : Vo

which are of the form given by Hinch and Leal {39] on the basis of a phe-
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nomenological study of the problem.

In the preceeding study we did not find any evolution of the concen-
tration of solid particles or global motion of particles under the action of
the given forces F. In fact, sedimentation pbenomena are very slow and the
terms v + €v' are more important than them. Sedimentation phenomena
may only be apparent if the terms 2° are zero. This may happen if the
initial and boundary values for ¥° are zero; in addition, if the boundary
values for »® are zero, but not the initial values, the viscous dissipation gives
(see Sanchez [89]) a dcéay of the velocity to zero as ¢t —> + oo, In fact this
decay is in certain cases exponential and the corresponding motion may be
considered to be zero after some time. In any case, if 2° = 0, lower order
terms may be studied, and sedimentation appears. This sedimentation implies
a gravity driven motion in each period which implies relative velocity of havy
portions with respect to light portions in the direction of the applied gravity.
On the other hand, this motion smplies in general rotation of the particles
and not only translational motion through the fluid.

It is then seen (see Sanchez [89] for details) that the appropriate ex-
pansion takes the form |

€ =epl(t,x)+ e?0?(t,x)+ ...

PE=po(x) +ep(t, %, ¥) + 22 (1, %, ) + ...

which is analogous to (9.1) but for “slow motions”, with factor €, and of
course a term p%(x) which is associated with the fluid at rest. The term z°
writes '

where 2?9¢f s associated with the deformation »', and % with the
gravity forces. This second term is responsible for sedimentation i.e. migration
of particles with respect to the fluid; but it should be noticed that this term
may be masked by 229¢! if the later is sufficiently large. |

There are very many open problems in this direction. The evolution of
the microstructure, which is necessary to compute the macroscopic flow is
not sufficiently known: much work is necessary (working out examples,
computing coefficients of functions of the microstructure and so on) to
understand the influence of the micro-location of particles and the location
of the applied forces (see Lévy [55] for problems with couples), See Nunan
[77] for some numerical results on homogenized viscosity coefficients. The
problem of the boundary layers near a solid wall deserves attention: there is
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very much work in this direction and of course also on the influence of the
boundary layers on the general flow. On the other hand, our knowledge ot
the evolution of the microstructure is far from complete, in particular the
question of the eventual shocks of particles seems open. Compressibility
effects would also be interesting to deal with, It is to be noticed that very
many features of suspension theory also appear in mixture theory of fluids;
in this case some equations are simpler because the complicated questions of
the rigid-body velocity field are not present, but the deformation of the
microstructure is more complicated because deformations of drops may in-
volve infinitely many parameters.

10. Composite plate theory.

We only give some indications about the difficult and interesting prob-
lem of heterogeneous plates; the reader is refered to Caillerie [13, 14, 15] for
an explicit treatment. We mention that in a heterogeneous elastic plate clas-
sical homogenization must be modified on account of the fact that there is
no periodicity of the microstructure in the direction normal to the plate.
Thus, periodicity conditions must be replaced by other conditions (Neumann,
for instance, if the plate is free) on the surfaces. But the main difficulty in
heterogeneous plate theory come from the fact that, if the plate is not sym-
metric, the traction forces in its plane induce flexural deformation of the
plate.

hard
/ F hard F
—_ . 1 ~ifr— —
— ‘ - M
\ soft \ soft

Figure 10,1

As a matter of fact flexion and traction are coupled and the “homoge-
nized” behavior is not that of the classical theory of plates. In fact, the
asymptotic behavior is given by the displacements:

005 V3
Uy T €Uy — XNy 7 Uy — EVy — X
1 1 3 axl * 2 2 3 ax2

Uy =0,

where v, »;,v; are functions of the coordinates x,,x, in the plane of the

s iy 2 e
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plate and x; is normal to it. The equilibrium equations are

ONug 2 Mug
axg | dwgdxg

0 (@=1,2)

where the stretching stresses N and the bending moments M are defined by
the relations
3%
— a4l _al 2 3
Nag = Aagys ¢80~ Aapys 5y Sy
8%v
42 1 _ a2 2 9%
Mg = Aa,B v e'ya(?.) Aaﬁ v ax. dxs

which involve the “homogenized coefficients” A depending on the micro-
structure. .

Very many problems are open in plate theory, in particular layers near
the boundary of the plate for various support conditions, and the singular-
ities of the stress associated with them. Some (far from complete!) results
may be seen in Sanchez [87]; we give some indications about them here
after.

11. Boundary layers in elasticity problems.

Let us consider a free boundary y3; =0 of a composite elastic solid
such that a boundary of the period ¥ may be taken to be also y, = 0. The
asymptotic expansion far from the boundary is classically:

(11.1) us(x) =u®w) + eul(x,y) +...

y = Xx/€
The corresponding expansions for strain and stress are
(11.2) eg(x) =eg-(x,y)+ ee,{f(x,y) + ..
(11.3) 05 %) = Bijtm €l = (%, ¥} + €0(x, ) + ...
where

eo(x,y) Eei'x(yo) + ey (l‘l)
(11.4) ‘(’1 ! Y
05 = Rijim Cim (4°)

with
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(11.5) u' = epy @)Wt () + cost

where w®" are the Y-periodic solutions of the local problems

Ma

0
(11.6) — 33',;‘ {@ij1m ) Bk B r + E1my (W)} =0

and the homogenized coefficients are v

(11.7) aﬁ}kf = {@ij1m Bkt S mr + Clmy @ "N} Y | oSk

where the tilde ~ denote average on Y. ¥iy2
Then #° is the solution of the homogenized Figure 11.1
equation (11.8) and the boundary condition

(which we writein (11.9) for the free boundary of Fig. 11.1.

d — 0
(11.8) - ™ =fg' 3 0ii = a:‘jgm Clma(¥”)
1
(11.9) 63,=0 ° on 3Q .

REMARK 11.1. In (11.9), ~ denotes the mean value on Y} in fact it is also the
mean value on the face ' of the period (see Fig. 11.2) or on any section of

the period y; =c¢ which is independent of
Y3 ¢. Indeed, the local equation for #! is

0
L _'___'___ _Mzo
C a_’)/j

and integrating by parts in the region of Y

C— AN between ¥; =0 and y,=c¢ (Fig. 11.2)
Figure 11,2 we have
(11.10) f ol dy, dy, =f afy dy, dy,
' YN {yy=c} r
(nothe that the integrals on the lateral faces cancel by Y-periodicity). .

Now we study of the boundary layer.
We introduce the complementary term #'¢:

(11.11)  #®x)=u’@) + e  (x,y) +u' (%, ) + 0(e?)

L RS

FERNEERIEE
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which satisfies (11.12)-(11.15):

a :
(11.12) "T (aiﬂm(y)elmy(glc)) =0 In S
Vi

(11.13)  u'°(x,») is S-periodic in y
(11.14)  grad, ' ——— 0

ys-»-'-n

(1 1.15) A3ilm €lmy (yl(:) == agi =- asilm(elmx (l‘o) + elmy (El)) .

The existence and uniqueness of %!¢ defined up to a constant (i.c.
only depending on x,) vector of R® follows from the Lax-Milgram theorem
by noticing that it is equivalent to find #!¢ C-V such that

(11.16) j}wm%w@“nw@m@=]?§w@a@a Vyev
S r

where V' denote the Hilbert space of the S periodic vectors (defined up
to a constant additive vector) with finite

lol?, = f ey @) ey @) dy -
S

We note, in particular that, by virtue of (11.9) and Remark 11.1, the
right side of (11.16) takes the same value for » or 2 + constant.

We note that the preceeding study only shows that grad, u'° € L(S);
this amounts to saying that in some generalized sense it tends to zero as
3 = °; in fact this is true exponentially as was proved by Tartar (see Lions

[67] sect. 1.10.4) and Dumontet [28].

12. Singularities in elliptic non smooth problems.

Singularity theory, i.e. lack of regularity of the solutions is a mathe-
matical theory which is independent of homogenization. Nevertheless, in
composite media there are very many situations where singularities appear at
the microscopic level, i.e. the local gradient, given by (4.8) or analogous ex-
pressions take infinite values at some points. This is a widely open research
domain; the references for the mathematical theory are given here after; some
physical or computational results may be seen in Anquez [1], Bogy [8, 9],
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Davet and Destuynder [23], Dempsey and Synclair {25, 26], Raju and Crews
[78], Wang [97], Zwiers [101].

Most of the solutions of problems in mathematical physics are given by
variational problems in spaces of the kind H*® of Sobolev, i.e. they exist and
are unique in spaces of functions having square integrable first order deriva-
tives. This is a2 very poor regularity, and such solutions may be singular at
some points; more precisely, grad u (where
is the considered solution) may tend to infinity
at some points.

Physically speaking, such solutions are
meaningless at the vicinity of such singularities:
in fact, the smallness hypotheses for lineariza-
tion are not fulfilled. Then, such singularities
show that new phenomena (non linearities,
qualitative modification of the medium, qua- Figure 12.1
litative modification of the medium, etc.) may
appear. An example is the lightning rod. The singularities of gradu (u isa
harmonic function, the electric potential) at the point O provokes ionization
of the air, which becomes conducting near 0.

In elasticity theory, infinite values of grad u i.e. singularities of stvain
and stress provoke modifications of the elastic bebavior: depending on the
nature of the material, it may become plastic or a fracture may appear.

The study of singularities is well developped for second order elliptic

ground

equations in R? but there is much to do concerning problems in R* and

elliptic systems, in particular the elasticity system. Fortunately, some prob-
lems in boundary layers are in fact in R?, and we have at our disposal some
(but not all) tools to study them. The principal references on these problems
are Grisvard [37, 38], Lemrabet [51, 52), Kondratiev [41, 42], Sanchez [87],
Sovin [90], and for numerical computation, Lelievre [49, 50], and Leguillon
et Sanchez-Palencia [47).

Let us consider an elliptic problem of the form

0 oU
(12.1) —3_.?@-(‘;‘."'('”) -é';CT)-f

in a domain £ of R? with appropriate boundary conditions. Under suitable
smoothness hypotheses about the coefficients and 382, classical regularity
theory holds. In particular, if f belongs locally to the H™ space (im real
> 0) and the boundary conditions are homogeneous, the solution belongs to

.
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H"*? in any subdomain D' included in D. Moreover, if £ is bounded,
an inequality of the type '

(12.2) I Ullgmsz gy < €O Npmey + 1 U )

holds for m >0, with a constant C which depends only on £, m and the

coefficients of the equation.
An analogous situation holds if the coefficients of (1.1) are pleceW1se
smooth, having a discontinuity line I’ where (1.1) is considered in the dis-
tribution sense (here the brackets denote “jump”’):

. b 1
B (12.3) [U]=0 , la,}- a—;j_n;J = 0 on I

‘ then, if fE€H™, the solution U belongs to

H™*? on each side of T' (Fig. 12.2) (of course
on [' itself the solution is not of class H”,
Figure 12.2 n > 2 as the first derivatives are not continuous
across I') (see Ladyzhenskaya et Ouralceva [45]
sect, I11.16) in regions where T' is smootb, buth not (as we shall see later)
at points as A,B in Fig. 12.2. For instance, in problems with layers smgular
ities may appear at the intersection of layers
with the boundary a£2. y
A different situation appears if the coef-
ficients are smooth (constant, say) but the o
boundary 8$2 does not, in particular if it has
angular points. In such a case, the local regular- 0
ity depends on the angle ¢ of the domain.
For instance, let consider the Laplace
equation with Neumann condition:

A

Figure 12.3

(12.4) —AU=0 “QE'—O
. = ’ an = *

Searching for solutions of the form (r, & = polar coordinates):

(12.5) Ulx,, x,) = ™u(8)
we obtain

2
(12.6) u=A cosab for a=0,if—, i,...

¢ ¢
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Of course, grad U behaves as 7*"!; we are interested by solutions
exbibiting a singularity as r— 0, i.e. grad U—> o as r = 0 and this amounts
to Rea—1<0. On the other hand, if the solution exists according to a
variational problem in H'(2), grad « € L*(f2) and this implies Re o> 0,
We see from (1.7) that such singular solutions exist if ¢ € (n,2n), i.e. if the
domain is not convex, but they do not exist if ¢ €(0,m), .e. if Q s convex,
A picture of the flux lines (i.e, lines tangent to grad U) furnishes some
insight on the physical phenomenon: for a convex (resp. non-convex) domain
the flux lines spread out (resp. push to each other) as shown in Fig. 12.4,

12.5.

non singular _ singular
\ /
/
) (T I
Figure 12.4 ' Figure 12.5

We now consider the singularities at the boundary for transmission
problems, |
We now consider the case where
the interface I" in the transmission Ql r o
problem (12.1), (12.3) touches 9. . &
We shall see that the convexity crite- e B
rion for the Laplace equation (Fig.
. 12.6) becomes now a convexity with a*
respect to the refracted fluxes. g )
Let us consider to fix ideas, the #1
transmisston problem (12.1) with piece-
wise constant coefficients, the interface ¥l L
conditions across a line T° of discon- Figure 12.6
tinuity of the coefficients being of
course (12.3). Moreover, we consider Neumann boundary conditions

oU

(12.7) a;j ™
t

nj =0 on of).

We are studying the vicinity of a point 0 where T intersects 3K
(Fig. 12.6). Let £ and £? be (in the vicinity of 0) the two subdomains
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where the coefficients are constant. It will prove useful writing the equation
and boundary conditions in terms of the vectors gradient g and the flux g,
defined by:

: U oU
(12.8) gi =7 Oi_—"az‘j’g;c;'zaijgj

then (12.1), (12.7) become:

divg=0, (g=ag)in Q
(12.9) =
o;n; =0 on 052

and of course the transmission conditions (12.3) become (the first is obtained
by differentiation of the first (12.3) along I'): '

(12.10) (81=0 ; [o,]=0

where the indexes t,7 denote “‘tangential”’ and ‘‘normal” componenté
to I'.

Solutions with constant gradient on each of the regions ', Q2 are
associated with g and ¢ taking constant values g/, ¢’ in &, i=1,2. We
shall say that g®,6 g are the ‘refracted” of gt, g'. To construct such
solutions, we give arbitrarily either g‘ or g' (the other is then obtained by

(12.11) 0; = a;; &

with the values of a;; on QY. Then, the two relations (12.10) and the two
(12.11) with the values of 4;; on $2? furnish uniquely the refracted vectors
g% et

" Now, coming back to Fig. 12.6, let us suppose that ¢' and the re-
fracted o2 are respectively paralle]l to the portions of 382 in contact with
Q! Q% (denoted by Z!, £?). In this case, the Neumann boundary condition
(i.e. the second of (2.9)) is satisfied. We then have the analogous, for equa-
tion (1.1), of the solution of constant gradient parallel to a straight boundary
for the Laplace equation. We may gess (and this is proved in Sanchez {87])
that the presence of singularities is associated with non-convexity with respect
to the line formed by ¢!, g?. Precisely:

PROPOSITION 12.1. In the framework of this section (in particular Fig. 12.6),
the Neumann problem (12.1), (12.7) bas (vesp. bas not) a singularity at the
point 0 of Fig. 12.6 (i.e. there exists a solution of the form (12.5) with
0 <Rea<1) if when constructing a flux vector g parallel to the portion
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of 98 adjacent to S, pointing to 0 (see Fig. 12.7 a) and b)), the refracted
vector @ is inside (respectively out of) §2.

r ' r
Q! 0? ok Q?
a)
o
gl , b)
] it .
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non singular singular

Figure 12.7

Analogous rules hold for Dirichlet or mixed {(Neumann and Dirichlet on
two adjacent segments) problems (see Sanchez [87]). On the other hand,
the corresponding problem for the elasticity system seems to be much more
involved, and simple criteria as the preceeding one are not available. But the
numerical method of the following section works in somewhat general prob-
lems.

We now give a general method for computing singularities.

When singularities appear, the general form (roughly speaking) of the
solution is

(12.12) U(xy, X5) = cr®u(8) + Ursvlar(y  x.,)
where o and u(0) depend on the local geometry and coefficients ot the

problem, and the coefficient ¢ and the regular part U™ (x, x,) depend
on the other data of the problem. The knowledge of « for a given problem

shows if wether or not a singularity exists. Moreover, if #(®) is known, the

solution (12.12) may be computed in an accurate way by using a standard
finite element discretization plus a special finite element in the vicinity of
0. This finite element is constructed to describe the singularity with not very
important perturbation of the voids of the discretized matrix (see Leli¢vre
[49], [50]).

The problem of finding a and %(0) may be reduced to some implicit
eigenvalue problem, and may be solved by numerical methods (at least theo-
retically, for the real singular values a).
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We now explain the method for an elliptic equation, but it is useful
for general systems (with two independent variables x,,x, of course). To
fix ideas, we consider the problem of Fig. 12.6, where the domain £ is an
angle w =¢; +¢, in the vicinity of 0. Moreover, the boundary conditions
are of the Neumann type and the coefficients depend only on @ in the
vicinity of 0. The sesquilinear form associated with the problem is

oU oV
(12.13) fa,] T—E)'““dx
Q x; 0x;
we take as £ the angle
(12.14) Q={r,0; r€(0,); 0€(0,w)}.

In order to search for solutions of the form #*u(8) which do not
belong to H!(Q) we take

Uxy, %) =r%u(0) ; u€H'(0,w)

(12.15) |
3V(x1,x2)=¢(r)v(6) ; vEH'(0,w) ; ¢EZ(0,)

and the homogeneous equation with Neumann boundary conditions become

0o

which after the change

2 3 sin® @
B, Y T r o8
0 ) 0 cos@ 9
o, SOt %

and after integrating with respect to 0, becomes:
’ =f (Floa,u,0)r%¢" + @ (o, u,0)r* ' g)dr VoS D(0,)
8

or integrating by partsin r:

=f (—aF + )r* Lodr
0
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which amounts to
(12.17) O=—aF(,uv)+w(o,u v)=Eb(n,u,v)

which defines a sesquilinear form & (depending on «) for #,v € H!(0, w).
The problem reduces to find the values of « such that a non zero # €
€ H'(0, w) exists satisfying

(12.18) b(o,u,v)=0 VveEH (0,w).

This is an implicite eigenvalue problem as it amounts to find the values
of a for which zero is an eigenvalue of the operator B(wo) associated with
the form b. )

In order to compute the singular values o, we discretize (by finite ele-
ments for instance) and use a finite dimensional basis »!, ...,9"™ of the
discretized space H'(0,w). The searched values a are those for which the
matrix with coefficients

(12.19) b = b(o, u, ut)

is singular. For real &, as 0 <wa <1, it suffices to compute the determinant
of the matrix for several « and to obtain by interpolation the values for
which it vanishes. When the value o is known, the corresponding (discretized)
u(8) is the corresponding eigenvector which may be obtained by the inverse
iteration method, for instance,

13. Other references and open problems.

Problems about non homogeneous media with holes or cracks are con-
sidered in Krasucki [43], Léné and Leguillon [53, 54], Lions [66], Sanchez
[84], sect. 6.6, 6.7, 6.8. Problem with inclusions located near a surface,
undulated boundaries, flow past a grid, and associated questions may be seen
in Conca {22], Nguetseng et Sanchez [76), Sanchez [83]. Spectral and scat-
tering problems are considered in Codegone [17, 18], Kesevan [40]. Problems
in electromagnetism where dealt with in Codegone and Negro [19].

There are very many problems involving several small parameters. In
addition to the above mentioned in sect. 7 and 8, we mention problems with
small concentration inclusions; this problem is related with the Einstein ap-
proximation of the viscosity of suspensions: see Cioranescu et Murat [16],
Lévy [56], Sanchez [88]. Problems with narrow but elongated inclusions are
dedlt in Caillerie [10, 11, 12}, Marchenko and Khruslov [70]. Acoustic vibra-
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tions in the suspensions may be seen in Fleury {31], Lévy {58, 62] and Lévy
and Sanchez [63].

Exact bounds for the homogenized elasticity coefficients are consid-
ered in Francfort and Murat [35].

Stochastic distribution of inclusions are dealt with in Bensoussan [6],
chap. 2 and Attouch [2].

Nonlinear problems and bifurcations may be seen in Duvaut [29, 30],
Luborski and Telega [69], Mignot [71]. .

To conclude this survey, we mention two widely open problems.

The first one is the buckling of periodic structures made of elastic bars.
Local buckling may appear for deformations with a local period different
from that of the structure (Fig. 13.1).

; o —— I.
/ #
Figure 13.1

The second one is an asymptotic description of the stress field for
elastic bodies with “round corners” for instance with boundaries formed by
two segments joined by a small radius arch.
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