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APPENDIX

ANALYSIS OF A HOT-FILM ANEMOMETER

A.1 Introduction

All the velocity profiles measured in arteries (and reported in
chapter 1), almost all the profiles measured in models or casts of
arterial junctions (chapter 5) and all direct measurements of wall
shear-rates in models have been obtained by the use of a hot-film
anemometer (or its close relation, an electrochemical shear probe).
Therefore it is important to understand how such a device operates,
particularly since the main justification for the detailed theoretical
analysis of flow in bends and bifurcations (chapters 3 to 5) rests on
the claim that hot-film anemometry is not at present capable of the
accurate measurement of unsteady wall shear in arteries.

A constant-temperature hot-film anemometer consists of a thin
metallic (usually gold) film mounted flush with the surface of an
insulated solid probe, which is inserted into the fluid whose velocity
is to be measured. The temperature of the film is maintained by an
electronic feedback circuit at a fixed value, T7, slightly higher than
the temperature of the fluid, Ty, which is also assumed to be
constant. The power required to maintain it is proportional to the
rate at which heat is lost to the fluid, which is in turn related to the
velocity of the fluid flowing past the probe. In steady flow, this latter
relation is obtained by calibration in known flows, after which the
probe can, in principle, be used in any steady flow of the same fluid.
In order to use such a probe unambiguously in unsteady flow, it is
necessary that the same relation between heat loss and fluid velocity
should obtain at all times, i.e. that the behaviour of the probe should
be quasi-steady. This appendix consists of a review of the theoreti-
cal progress that has been made in understanding the response of a
hot-film anemometer in steady and in unsteady flow. We shall
concentrate exclusively on fluid mechanical aspects, and shall
therefore assume from the start that the electronics faithfully record
the rate of heat loss from the probe as a function of time, that the
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370 APPENDIX: ANALYSIS OF HOT-FILM ANEMOMETER
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Fig. A.1. Sketch of a hot-film anemometer probe. The dark rectangle

represents the film; the shaded region around it represents the insulating

substrate. Lengths [, L, X, are defined. The temperature of the film is T},
while that of the oncoming fluid is T,. (After Pedley, 19765.)

film itself is of uniform thickness and uniform, high conductivity (so
that the temperature at its surface is uniform and constant) and that
the thermal conductivity of the insulated substrate is much lower
than that of the ambient fluid so that heat loss through the substrate
is negligible. The last assumption was shown by Bellhouse & Schultz
(1967) to be satisfied in a conducting liquid such as water or blood,
but not in air.

The type of probe most commonly used to measure velocity
profiles in arteries is depicted in fig. A.1. The insulating substrate in
which the rectangular film is embedded is mounted on the surface of
a hypodermic needle that has been bent into an L-shape so that the
point can be aligned with the flow after insertion through an artery
wall; such a probe has been used by Schultz et al. (1969), Seed &
Wood (1970a, b, 1971), Nerem & Seed (1972), Clark & Schultz
(1973), Clark (1974), Nerem et al. (1974a) and others. We denote
the streamwise length of the probe by L, the streamwise length of
the hot-film by I, the transverse breadth of the film by b, and the
distance of the leading edge of the film from the leading edge of the
probe by Xp; the values of L, [ and X in two of these studies are
given in table A.1. These studies, by Seed & Wood (197056) and by
Clark (1974), are the two in which careful calibration measure-
ments were made in known unsteady flows of different amplitudes
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Table A.1

Temperature of

ambient Prandtl no.
Author { (cm) X, (cm) L (cm) water (°C) v/k v (see text)
Seed & Wood (19705b) 0.01 0.15 0.3 37 4.6 0.17
Clark (1974) 0.02 0.25 0.5% 20 6.9 0.22

T Clark did not report the value of L, but since he did not use the probe in reversing flow, it is irrelevant. We choose
L =0.5cm so that X,,/L can be taken equal to 0.5 in each case.
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372 APPENDIX: ANALYSIS OF HOT-FILM ANEMOMETER

and frequencies: see § A.4 below. In each of these studies, b was
about 2.5/ (Note that hot-film probes were first developed to
measure the skin friction (or shear-rate) on given surfaces such as
the outside of solid bodies or the inside of tubes (Liepmann &
Skinner, 1954); in this case the film is mounted directly onto the
surface in question. The electrochemical technique differs only in
that solute is transported from an electrode rather than heat from a
film.)

The object of theoretical analysis is to predict the rate of heat
transfer from the film to the ambient fluid. This requires a know-
ledge of the temperature field in the neighbourhood of the hot-film,
which is expected to be determined by a balance between advection
and diffusion, assuming that free convection is negligible.? Given
this, the advecting flow over the film is independent of the tempera-
ture field; in the example depicted in fig. A.1 it can be determined
by an analysis of the viscous boundary layer over the probe. In the
case of wall shear probes in models of arteries, the advecting flow
would be that discussed in chapters 3 to 5.

In the studies to be reviewed, a number of simplifying assump-
tions are made, as follows.

(i) The only property of the flow field that influences the heat
transfer is the wall shear-rate on the film, $. This implies that the
thickness, &1, of the region where the temperature differs
significantly from T, (the thermal boundary layer) is much less than
the transverse length-scale for variation of the longitudinal velocity
(i.e. the thickness, 8y, of the viscous boundary layer on the probe),
with the result that (a) the local velocity profile is linear and (b) the
normal component of velocity can be neglected. In other words, if £
is the Cartesian coordinate parallel to the film in the direction of the
wall shear, § is perpendicular to the film, and Z is perpendicular to

the other two (fig. A.2), then the velocity field (&, 6, w) is given by
2=8y, od=w=0. (A.1)

+ Free convection will be negligible if the dimensionless parameter F = U, 3/ Bogf AT
is very large, where U, is a typical advection velocity, 8, is the volumetric
coefficient of expansion of the fluid, g is the gravitational acceleration, and AT is
the temperature difference between the film and the fluid (Ostrach, 1964). In the
experiments referred to above, AT was always less than 5 °C, to avoid damage to
the blood, B, for water is about 3.7 x 10™* °C™", so with [ =0.02 cm (table A.1), F

is about 27 even for a velocity as small as 1 cms™".
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When both the velocity field over the probe and the temperature
field over the film are given by boundary layer theory, this assump-
tion requires that f/Xo « min (1, o), where o is the Prandtl number
of the fluid (Pedley, 1972a); o > 1 for liquids like water and blood.

(ii) The wall shear rate, §, is independent of X over the film
(3£ f); this also requires that f/Xo « 1. Both this and the
previous assumption seem to be reasonably well satisfied for the
probe dimensions listed in table A.1 (Pedley 1972a, 1976b).

(iii) The flow over the probe is effectively two-dimensional, with
the consequence that, however the wall shear, §, might vary with
time, it never develops a component in the Z-direction, and does not
vary with Z. This too is reasonably well satisfied by the velocity
probes of fig. A.1 as long as they are carefully aligned with the flow,
since they are approximately cylindrical in cross-section. It is also
exactly satisfied for a wall shear probe in a long straight pipe where
the flow is unidirectional, but may not be so near bends or bifur-
cations on account of the secondary motions.

(iv) In applying the theory of the hot-film to a particular velocity
probe, we assume that the flow over the probe is the same as that
over a finite flat plate, i.e. that (a) there is no longitudinal pressure
gradient and (b) the effect of transverse probe curvature is negligi-
ble. Condition (a) will be satisfied if the probe is not yawed and is
approximately cylindrical, while (b) requires that the radius of the
cylindrical mounting be large compared with the viscous boundary
layer thickness. This is not well satisfied by the probes under
investigation, but the error is easy to assess, as shown in § A.4.3.
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374 APPENDIX: ANALYSIS OF HOT-FILM ANEMOMETER

(v) In making application to the velocity probes, we also assume
that viscous boundary layer theory can be used to calculate the flow
field, which requires that the Reynolds number based on X, and the
free-stream velocity be large. This is also discussed in § A.4.

(vi) A further fundamental assumption, which has been made
throughout this book, is that the non-homogeneous character of
blood does not affect the behaviour of the hot-film. However, the
maximum thickness of the thermal boundary layer over the hot-
film is only about 40 wm when the blood velocity is steady at 1 ms™"
(taking [=0.01 cm,; see Pedley, 1972a), and this is only five times
the diameter of a red cell. Thus the assumption is almost certainly
false, and the analysis below is not directly applicable when blood,
not water, is flowing past the probe. Possible ways in which the red
cells could influence heat transfer in steady flow are discussed by
Seed & Wood (1970b) and by Clark (1974); the former found that
the slope of the (linearised) graph of anemometer output against
velocity is the same for whole blood as for water, whereas a crude
theory indicates that the slope for blood should be less by about
30% (the slope for blood plasma was as predicted). However, no
way of analysing the effect is at present known to the author.
Experimentalists usually overcome the difficulty by calibrating their
instruments in blood from the animal being studied, or at least from
another animal of the same species.

That is a complete list of the assumptions made concerning the flow
field over the hot film. In order to analyse the temperature field, two
additional assumptions are made:

(vii) The temperature field over the film is two-dimensional; since
b/l is only about 2.5 for the probes under discussion, this is likely to
be a source of considerable error, which has so far not been
examined theoretically (see § A.6).

(viii) the film length [ is sufficiently large for thermal boundary
layer theory to be applicable in calculating heat transfer. As we shall
see (§ A.4) this is also unlikely to be accurate, and improved
theories for steady flow are presented in §§ A.5 and A.6.

Making all the above assumptions except (viii), we can now give a
mathematical formulation of the problem to be solved (with
reference to fig. A.2). A fluid of constant thermal diffusivity «
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A.2 STEADY BOUNDARY LAYER THEORY 375

occupies the region y > 0, and flows in the £-direction with velocity
given by (A.1), where the wall shear, §, is a known function of time,
f.The temperature of the fluid far from the wall is Ty; the regions
£<0and £ > of the wall consist of insulating material, while the
region0<s i< [ is maintained at temperature T. If T(£, 7, [) is the
fluid temperature, then the equations and boundary conditions
from which it is to be determined are

T +8()JT: = k(Tsz + Tyg5) (A2)
and
T->T, as|f?+7%-00,
T=T, ony=0,0<i<] (A.3)
T;=0 onj=0,£<0and£>1

The object of the theory is to calculate the rate of heat transfer from
the film, per unit length in the Z-direction, equal to

i
O(1)=-pCor [ Tsls-0ds (Ad)
(1]
where p and C, respectively are the density and the specific heat at

constant pressure of the fluid.

A.2 The steady boundary layer solution

We begin by considering the simplest case, that in which the flow is
steady, so that $ is constant and the first term in (A.2)is absent, and
in which the film is long enough for the boundary layer approxima-
tion to be made, so that T ¢; is negligible compared with T g;. This
means that the equation becomes parabolic in ¥, and the solution at
a given value of £ depends only on conditions at smaller values; in
other words, the heated film can be treated as if it were semi-
infinite. Balancing the advective and the diffusive terms shows thata
lateral length-scale for the temperature variation (the thermal
boundary layer thickness, 81) is proportional to (k£/S)"/>. Thus the
boundary layer approximation will be valid over most of the film if
this is much less than £ for most £, i.e. if the Péclet number, 2, is
large, where

P=8%xk; (A.5)
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376 APPENDIX: ANALYSIS OF HOT-FILM ANEMOMETER

in fact, it is shown in §§ A.5 and A.6 that /* must exceed about 400
for accurate prediction of the heat transfer (to within 2%).
If we introduce dimensionless variables

A A

T—T, A(S)“2 A(S>1/2
= s = —_ R = — R A.6

O =r Ty TN YA (A4-6)
the boundary layer equation becomes

y0. = 6,, (A7)

with boundary conditions
6=1 ony=0, >0 asy—>o0, (A.8)
The solution of this problem, first obtained by Lévéque (1928), is

n
0=0p(n)=1—co J e’ ds, (A.9)
0
where
c0=1/j e ds=1/T$)=1.120
(]
and
n=yOx)""". (A.10)
If
q(x) =—8,|y-0=co(9x) ">, (A.11)
then the dimensionless heat transfer from the film is
0 i
Q=—r——r—7—= J’ x)dx A.12
pCo(Ti—Tox  Jo q(x) ( )
=13"7¢ol?>. (A.12a)

As well as being the square root of the Peclet number, / can be
seen to be the dimensionless length of the hot-film. For a given
hot-film, however, I*/* is proportional to §'3 i.e. the heat transfer
from the hot-film, and hence the output from the anemometer, is
proportional to the one-third power of the local wall shear. This is
found experimentally (Liepmann & Skinner, 1954; see also fig.
A.17). Since in a steady, flat-plate boundary layer the wall shear is
proportional to the three-halves power of the free-stream velocity,
the heat transfer from a film mounted on a probe like that in fig. A.1
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A.2 STEADY BOUNDARY LAYER THEORY 377

should be proportional to the one-half power of the velocity; this
too is found experimentally (see Seed & Wood (19704) for
example).

In addition to the boundary layer, it is useful for future reference
(§ A.5) to consider the thermal wake of the hot-film, for £ >» [ Since
the downstream wall is an insulator, all the heat put into the fluid by
the film will be convected downstream in the wake, so that the rate
of heat flux in the £-direction in the wake must be equal to O.In
dimensionless terms this implies that

J 8(x, y)y dy = Q. (A.13)
(0]

The temperature distribution in the wake, to which boundary layer
theory will always be applicable sufficiently far downstream, can be
obtained by noticing (a) that the balance of advection and diffusion
still means that 7 is the appropriate similarity variable and (b) that
the integral constraint (A.13) therefore requires 6 to take the form
x~%/* times a function of n. By transforming from (x, y) to (x, 1),

(A.7) becomes
B + 31760, —9x6, =0. (A.14)

The boundary condition at the wall in the wake is 6, =0, and the
solution of the required form turns out to be

9=Ax""e™™. (A.15)
The integral constraint then shows that

A=Q/9"3,, (A.16)

where
1= j se ™ ds =3T().
(]

When Q is given by (A.12a), this means that A = ¢o/*/*/6¢1, but the
main interest in the result (A.16) is that its validity is independent of
whether or not boundary layer theory is applicable in the region
0<x </, i.e. independent of the value of /. In fact, for fairly short
films it proves to be simpler to calculate the temperature in the far
wake than the temperature gradient over the whole film, so that Q is
derived from (A.16) instead of (A.12) {see § A.5). For unsteady
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378 APPENDIX: ANALYSIS OF HOT-FILM ANEMOMETER

flows, however, there is no integral constraint like (A.13), so (A.12)
has to be used directly.

A.3 The unsteady boundary layer with non-reversing shear

Here we retain the boundary layer approximation but allow the wall
shear to vary with time, restricting it only by the requirement that it
remains positive, so that £ = 0 is the ‘leading edge’ of the hot-film at
all times. Thus the film is still effectively semi-infinite, and the
solution will be independent of I We suppose that the wall shear
varies with time according to

$()=$,8(Q ),

where S, is a dimensional scale factor and Q is a typical frequency
of the time variation. The theory for this problem was given by
Pedley (1972a), and follows closely the method presentedin § 3.2.2
for the unsteady viscous boundary layer on a flat plate. We again use
the non-dimensionalisation (A.6) with §0 for $ and introduce the
dimensionless time ¢=Qf. The boundary layer equation now
becomes

w0, +S(t)yb, = b,,, (A.17)

where o =)/ So; this equation has to be solved subject to the
boundary conditions (A.8).

It is clear, by analogy with the viscous case, that if either x or the
dimensionless frequency, w, is sufficiently small, the other being
fixed, the temperature field will be quasi-steady, while if either is
large the oscillatory and the mean components will become un-
coupled. The relevant combination of x and w turns out to be the
quantity

x1=w(9x)*3. (A.18)

A.3.1 Small x,

We seek an expansion in powers of x;, whose leading term
represents the quasi-steady solution, and therefore make the trans-
formation (x, y, t) > (x;, 11, t) where

= y[S(t)/9x]". (A.19)
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A.3 NON-REVERSING UNSTEADY SHEAR 379

The transformed equation is
X1 S(t)
O + 300 =m0, = s 0043605 mon |

and we seek a solution in powers of x;:

0(x1, n, )= L x10,(n1, ). (A.20)
0

The first term is of course the quasi-steady solution (A.9):
Bo(n1, 1) = o(m1);
the next two terms are (Pedley, 1972a)
61 = B()61:1(m), 0> =B*(1)621(n1) + B)S™>()822(m1),
where
B(1)=38(1)S™"*(1)

and the functions 811, 81, 8., satisfy the following ordinary
differential equations:

olr;m +37’%0:nm "'6n7710nm = an(”ﬂl),
F11=m00, Fo1=1,011, Fy;=041.
These can be solved either analytically, in terms of confluent
hypergeometric functions, or numerically, which is more con-

venient. The quantities needed for calculation of the heat transfer
are the gradients of these functions at n, = 0, and these are

011(0)=0.143, 031 (0) =—0.00243, 05,(0)=-0.0118.
The dimensionless heat transfer per unit length of the film,

q(x, t)=—86,|,-0, (A.21)

is thus given by

(9x)'2q = $'*(t){co~x:18(2)041 (0)
—x3[B%(1)65:1(0)+ B(DS P (1)0%(0)]+- - -}, (A.22)

of which the first term is the quasi-steady result. The total heat
transfer, Q(¢), from a hot-film of dimensionless length / is obtained
by integrating (A.22) over the range 0 sx </
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380 APPENDIX: ANALYSIS OF HOT-FILM ANEMOMETER

The above expansion shows that the quasi-steady solution is
accurate at a given value of x as long as

3322 d§/df

A=xB801)|= (A.23)

is always less than 1 (cf. (3.3)). The series itself will be a useful
asymptotic expansion if the O(x?) term is always much less than the
O(xy) term, and in that case the first two terms of (A.22) will be a
good approximation to the almost quasi-steady solution. Pedley
(1972a) made a number of computations for sinusoidally oscillating
shear,

S(t)=1+a;sint, (A.24)

and these suggest that the first two terms of (A.22) are sufficiently
accurate if A is less than 0.5, and the quasi-steady result is accurate if
A is less than 0.1. An example in which the maximum value of A is
0.49 is given in fig. A.3, in which the quantity (9x)'/?q is plotted
against ¢ over a complete cycle (here x; =2, a; =0.5). The three
curves were computed from the one- two- and three-term expan-
sions of (A.22) respectively; it can be seen that the two- and the
three-term expansions differ by very little, whereas they both have a
marked phase lag behind the quasi-steady term. The case x; =0.1,
a;=0.8 (not shown here) is an example in which the maximum
value of A is 0.097, and in which the one- and the two-term
expansions differ by less than 2% for all .

A.3.2 Large x;

Here we examine the case of high frequency, or large distance from
the leading edge, in which the temperature field is far from quasi-
steady. We restrict attention from the start to sinusoidal oscillations
in shear, about a non-zero mean, with S(¢) given by (A.24). This
case may not be relevant to the practical use of a hot-film ane-
mometer, since that requires approximately quasi-steady
behaviour, but could be useful in interpreting particular experi-
mental results (especially when the electrochemical technique is
being used, since « is much smaller for solutes than for heat, and
hence x; and A are larger: see (A.23)). We shall give only a brief
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A.3 NON-REVERSING UNSTEADY SHEAR 381

0.8 1 ! 1 J
0 7 n 3 27

Fig. A.3. Dimensionless heat transfer as a function of time (small-x;

expansion). Here (9x)"/?q is plotted against ¢ over a complete cycle for the

case x; =2, a; = 0.5. The three curves represent one, two and three terms
of (A.22) (continuous, dot—dash and broken curve, respectively).

outline of the solution, since it is similar to, but rather simpler than,
that in § 3.2.2.

When a; =0, the shear, and hence the temperature field, is
steady, and the relevant y-coordinate is i (see (A.10)). If there
were no mean shear, on the other hand, heat would be confined to a
thermal Stokes layer, of thickness («x/ 0)"2, and the appropriate
y-coordinate would be

£=5(Q/k) =517,

We therefore seek matched asymptotic expansions for 6 in powers
of x7"?, with n as the outer y-variable, and { the inner one.
In terms of the outer variables, (A.17) is

6, =x7' [0,y +(1+ajsin )(30%6, —6mx16,)], (A.25)

and the boundary conditions are that § >0 as n -0 and that the
expansion should match to an inner expansion as n - 0. We propose
the outer expansion

6= Z xl_n/zén(n, t)7
n=0

this is substituted into (A.25) to derive the equation for 8., which is
of the form

ént = F(Tl, t)?
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382 APPENDIX ANALYSIS OF HOT-FILM ANEMOMETER

where F depends only on 0~,, _». The solution for 67,, thus consists of a
known function of n and ¢, plus an as yet arbitrary function of 7, say
fa(m); this function is determined (apart from a multiplicative
constant a,) by the requirement that secular terms are absent from
5n+2. The first few terms of the outer expansion, taking into account
the outer but not the inner boundary condition, are found to be

fo= 8o(n)(1+ ao), ]
where 6, is the steady solution (A.9),
61=a,e""[1-3Gn+in’+0(n"),
62 = 3coa; cOS tn?e ™ (1+ag)+are ™,
f3=asme ™ +ai -], (A.26)
64 =6coaysinte ™ (1-37>)(1+ao)
—3coal € [3 cos 2¢(4n> = 30°)(1 +ao)
+2+67°-90°T+aql- - ]

+ay e_"3[1—6Gn—n3+O(TI4)], J

where

G =T*G)/T*G)
and certain functions multiplying a, and a, have been omitted since
these constants are subsequently shown to be zero. Further details

are given by Pedley (1972a), who took the expansion up to n =7.
In terms of inner variables, (A.17) is

0 — 60, =x1"">(1+a, sin 1)66,,, (A.27)

and the inner boundary conditionis # = 1 at { = 0. We seek an inner
expansion of the form

6= % x"0.4 ),

and the outer boundary condition on the ®,, is obtained by rewriting
the outer expansion in terms of £, and expanding again in powers of
x1"/2. This matching serves to determine most of the a, as well as
the functions ®,. When n = 3m (m an integer), however, the a,, are
not determined, because f,(n) is an eigenfunction (for example, it
can be seen from the expression for 673 in (A.26) that f3(0) =0). Asin
the viscous case, the presence of such eigenfunctions is to be
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A.3 NON-REVERSING UNSTEADY SHEAR 383

expected, since it is only through them that upstream conditions can
influence the expansion in inverse powers of x;. Pedley (1972a)
found that ag=a, =a,=as=a; =0, a, =3coas, and

@0————1, @1-=—_Co{, @259359650,
®4=%c0{4+a3{+3c0a1 COos t{z

+6coaq[sin t—e 2 in (t—¢/V2)},
0;5= ‘%04G(;

he also calculated ©4, which is fairly complicated. The dimension-
less heat transfer per unit length, g(x, ¢) of (A.21), is given by

9x)"3q = —x120,|; -0
=co—x1""*[3v2coa1(cos t +sin £) + as]+x1° - Jcoa1G
—x1{ae+ 18V2coay[cos (1 +2V2 —2as/3¢o)
—sin £(1+2a3/3¢co)]—9coa] sin 24(8v2—7)}
+0(x77%). (A.28)

It can be seen that the unsteadiness of the wall shear affects the heat
transfer only at O(x 7>/?); this is in contrast to the viscous case
where the leading term in the skin friction expansion (see (3.30)) is
oscillatory. The eigenfunctions, represented by the constants a3 and
as, also first have an effect on the mean heat transfer at O(x Pl 2),
but do not affect the oscillatory heat transfer until O(x1>). The
numerical results of Pedley (1972a) suggest that the O(x1>) term is
a small correction (and therefore the O(x1*?) expansion can be
used accurately) for x; > 20 and for values of a; up to at least 0.8.
Fig. A.4 illustrates this for x; =20 and «; = 0.5, with a3 and ae set
equal to zero.

The values of a; and a¢ etc. should be determined by some sort of
matching with the small-x; expansion. However, overlap between
the two expansions is much less good than in the viscous case (fig.
3.4), as can be seen from fig. A.5, where (9x)'/3q is plotted against ¢
for x; = 6.0, a; = 0.5. The two continuous curves represent the first
two terms of (A.22) and (A.28) respectively, while the broken curve
represents all of (A.28) with a3 = a¢ = 0. The value of x; = 6.0 is that
at which the amplitudes of the heat-transfer oscillations, according
to the two two-term expansions, are approximately equal, but it can

Downloaded from Cambridge Books Online by IP 128.179.164.247 on Mon May 12 16:56:33 BST 2014.
http://dx.doi.org/10.1017/CB09780511896996.008
Cambridge Books Online © Cambridge University Press, 2014




384 APPENDIX: ANALYSIS OF HOT-FILM ANEMOMETER
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Fig. A.4. Dimensionless heat transfer as a function of time (large-x,

expansion). Here (9x)'/3q is plotted against ¢ for the case x; =20, a; = 0.5.

The straight line represents the leading term of (A.28), while the two curves

represent the O(x7*?) and O(x7*) approximations (continuous and
broken curve, respectively) with a; = as=0.

be seen that the phases are not in close agreement (use of the full
equation (A.28) improves the phase agreement, but the large
difference between the broken and the continuous curves shows
how inaccurate the large-x; expansion is at this value of x,). Pedley
(1972a) suggested that an indication of the value of a3 could be
obtained by choosing it so that the means of the two expansions
should be the same as the chosen ‘overlap’ value of x;. From two
terms of the expansions (A.28) and (A.22) this choice gives

2

_ Co .

co—a3x13/2=—J (1+alsmt)1/3dt.
27T 0

The value of a; thus obtained depends on a;; for x; = 0.6 we have

0.037 fora;=0.2,
a3 =+<0.247 for a1 = 05,
0.743 for ay =0.8,

and it can be seen from (A.28) that such values of a3 will have only a
small effect on the heat transfer. It should be emphasised, however,
that any such determination of as (or as) will be very inaccurate;
improved accuracy can be achieved only by a full numerical solution
of the boundary layer equatif)n.
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Fig. A.5. Comparison of the small- and large-x, expansions: (9x)"’q

plotted against ¢ for the case x; = 6, a; = 0.5. The continuous and dot-dash

curves represent the two-term expansions of (A.22) and (A.28), respec-
tively, while the broken curve represents all of (A.28).

A.4 A hot-film in reversing flow

We have seen that for a hot-film anemometer to be useful its
response must be quasi-steady (the heat transfer being given by
(A.12)), and that this requires A, in (A.23), to remain less than about
0.1 for the majority of the cycle (in periodic flow). If the wall shear
over the film, §, approaches zero, then A cannot remain small and
the heat transfer cannot be quasi-steady. Now blood flow in large
arteries reverses its direction at least twice each beat (fig. 1.17 or fig.
3.3), and therefore so does S (indeed, § will reverse before the
centre-line velocity, as does the shear on the artery wall: fig. 3.6).
How then can a hot-film anemometer be used to measure blood
flow? The answer, of course, is that it cannot be employed near the
time of shear reversal, but that it will be useful if A exceeds 0.1 most
of the time, whatever the direction of the shear (note that the heat
transfer will remain positive during reversal, and the signal will
therefore be rectified; a single hot-film cannot determine the flow
direction).

In order to assess the extent to which the heat transfer is quasi-
steady, and to predict how the departures from quasi-steady
behaviour will manifest themselves, we need to know both what Sis
as a function of time and what the heat transfer is while A exceeds
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0.1. We begin by showing how the approximate method of Pedley
(1976a), outlined above in § 3.2.3, can be used to calculate §(t‘),
and then describe a similar approximate method for estimating the
heat transfer while the shear is reversing.

A.4.1 The shear on the probe

The basis of the approximate theory of Pedley (1976a) was the
realisation that, when the stream velocity passes through or close to
zero, the flow at a given position, £, on a flat plate will represent a
diffusive balance between local inertia forces and viscosity.
However when, after a reversal, fluid that has passed the leading
edge arrives at £, the diffusive flow will give way to an approximately
quasi-steady flow in which viscous forces are balanced by con-
vective inertia. In chapter 3 this idea was applied to flow in the
entrance of the aorta, represented as a semi-infinite flat plate; only
when the stream velocity is in the positive-£ direction can there be
an approximately quasi-steady flow. Here, however, we represent
the anemometer probe as a finite flat plate of length L, and the film
over which we need to know the shear is taken to be at its mid-point
(xo=3%L in fig. A.l). For the sake of definiteness, and for
comparison with the experiments of Clark (1974) and Seed & Wood
(1970b), we take the free-stream velocity to vary sinusoidally with
time, according to

U(7) = Uy(1+a cos QF), (A.29)

where the amplitude parameter, «, exceeds 1 for a reversing flow
(fig. A.6).

We suppose that, at some time close to that of peak forward
velocity (=0 in fig. A.6), there is an approximately quasi-steady
boundary layer with leading edge at £ =0 (here £ =0 is measured
from one end of the probe, not of the film as in the rest of this
appendix). If the free stream reverses at time 7 =74, then the
sequence of events will be as follows. Some time before reversal, at
f =F14(X) say, an approximately diffusive flow will take over; this
will persist through reversal until at some later time, 7 = 4 (%), fluid
particles that have passed the other end of the probe (£ = L) arrive
at £. Then we expect a new, approximately quasi-steady boundary
layer to take over, with its leading edge at £ = L. This will persist
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2n/82

7

Fig. A.6. Sinusoidal velocity U(f) given by (A.29), for the case a =2.0.
Times of flow reversal are 7,4, 7 5. Values of 7; 4 g are also plotted for the case
x=0.5 0'=1.0in (A.31).

until the reversed flow has itself decelerated and is approaching
zero, when another diffusive flow takes over, and so on.

Various modifications of this sequence of events may arise. For
example, if the period of flow reversal is short-lived, it may be that
fluid particles that have passed £ = L never arrive at £; in that case,
the diffusive flow will persist until after the second reversal (f =755
in fig. A.6). It may also be that there are values of £ at which the flow
is never approximately quasi-steady, as for values of (dimension-
less) x greater than 0.25 in § 3.2.3. In that case the flow will consist
of a steady boundary layer superimposed on an oscillatory Stokes
layer with little interaction, as analysed in § 3.2.3; this situation
does not occur in the examples worked out below. Finally, there will
be non-reversing flows (a <1) in which the quasi-steady solution
breaks down for a time, and a diffusive solution must be interposed.

The changeover times f1 .4, /24 €tc. are calculated in the same way
as in (3.36). That is, f, 4, [24 are given by

=J “Uwd,  1-x =J' “Uwar, (A.30)

where U, £ and 7 have been non-dimensionalised with respect to
U,, L and L/ U, respectively, so that
Uit)=1+acosw't
and (A.31)
w' =QL/U,.
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Similar equations hold for #,5 and ¢,p, except that x and 1 —x are
interchanged. The changeover times defined in this way were shown
by Pedley (1976a) to be very close to those for which £ (equal to
IxU/U?| or |1-x)U/U?: see (3.16)) is equal to 0.5, the value
below which the approximately quasi-steady boundary layer solu-
tion is known to be accurate. During the periods of approximately
quasi-steady flow with leading edge at x =0 (0<t<t14, hp<St=<
2, etc.), the velocity in the boundary layer at any x will be given by
(3.34). During the periods of reversed quasi-steady flow (f,4 st <
t1), it will be given by a similar equation, but with 1 —x for x and
the sign of the second term changed:

u=U){fo(n)~[(1=x)U/U’If11 ()},

where 7, = y[— U(1)/2(1-x)}""* and y = §(Uo/vL)""?. During the
diffusive periods (14 <t <t,4, etc.) u will be given by (3.33). In
each diffusive phase, the virtual time origin of the diffusion, 5 in
(3.33), will be determined by the requirement that the displacement
thickness of the diffusive boundary layer is equal to that of the
approximately quasi-steady layer from which it takes over, at the
takeover time ¢;4 or ¢ (cf. (3.35)).

During the first flow reversal, therefore, the dimensionless wall
shear, $ = S(vL)/?/UY?, will, ata particular value of x, be given by
the following equations

U3/2(t)

W[ (0)+— (0)] forO<st<t4, (A.32a)

1
[ﬂ(t—tf))]_l/z{ U(th)+2(t—t}) I Ult—A%(t—1h)] d)\}
0

for ha<t<tya, (A.32b)

U ’[2(1U(t))]1/2[f j0-C52 x)Uf ]

for thbast<tig. (A.32¢)

Similar equations will hold for the second reversal. We present
numerical results for various values of ' and two values of « but for
only one value of x( = 0.5) because the hot-film is assumed to be at
the middle of the finite probe surface (X, = iLin fig. A.1). Nothing
unexpected happens at other values of x (Pedley, 1976a).
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A.4 A HOT-FILM IN REVERSING FLOW 389

Fig. A.7. Dimensionless wall shear-rate, S, calculated from (A.32), and

plotted against o't for different values of ' (0, 0.1, 1.0, 5.0) with « =2.0

and x =0.5. Also plotted (broken curve) is the modified quasi-steady
solution, (A.32a) and (A.32¢), for o’ =1.0. (After Pedley, 1976a.)

In fig. A.7, S is plotted against w't for the case a =2.0 and
x = 0.5, with »' taking the values 0 (quasi-steady), 0.1, 1.0, and 5.0.
Also plotted for the case w'=1.0 is the modified quasi-steady
solution, i.e. the expressions (A.32a and ¢), without the intervening
diffusive solution (A.32b); this is, of course, singular at the times
when U reverses. However, if it is accepted that this modified
quasi-steady solution is accurate in the regions for which it is used
(and for which £ <0.5), then itis clear that the approximate solution
(A.32) is a much better indication of wall shear than the quasi-
steady one. This is because it incorporates the known facts that both
the relative amplitude of the wall shear and its phase lead over the
stream velocity increase with frequency (Pedley (19724) and fig.
3.4). The jumps in the approximate curves at the changeover times
indicate that the predictions are not very accurate at the highest
frequency (w’ = 5.0), when the relatively inaccurate diffusive solu-
tion is used for a large fraction of the cycle, but in the subsequent
application to experiment w’ never exceeds 1.0.
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I

Fig. A.8. Graphs of S against w't for the case a =0.98, x =0.5, ' =1.0.

Continuous curves are the quasi-steady solution (QS) and the approximate

solution derived from (A.32). The broken curve is the modified quasi-
steady solution. (After Pedley, 1976a.)

Fig. A.8 shows the results for a case in which the free stream does
not reverse (a =0.98), but for which the flow has a diffusive
character for about half the cycle (o’ = 0.1, x = 0.5). Once more it
can be seen that the present approximate solution departs markedly
from the quasi-steady result, predicting wall shear reversal
significantly ahead of the minimum stream velocity, and indicating a
maximum negative value of shear equal to about 35% of the
maximum positive value.

A.4.2 The heat transfer from the film

Now that the wall shear over the hot-film, §(t‘ ), is known, we can,
according to our model of the anemometer, use the thermal boun-
dary layer equation (A.17) to calculate the temperature distribution
over the film and hence the heat transfer from it. When the shear
over the film is not close to zero and the parameter A in (A.23) is
small (or the corresponding parameter with [—#£ for £ when $ is
negative), then the temperature field at the value of £ in question
will be approximately quasi-steady, and the heat transfer per unit
length of the film will be given by the first two terms of (A.22). When
the shear comes close to zero or reverses, however, so that A
exceeds 0.5, then (A.22) will not be accurate. Instead, we might
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expect the temperature field to be represented approximately by a
diffusive balance between the terms w8, and 6,, in (A.17) (recall
that w = Q/ﬁo). On the basis of this expectation, Pedley (19765b)
worked out an approximate theory for the thermal boundary layer
over the film that closely parallels the above theory for the viscous
layer over the probe; the salient features are outlined below. Note
that in this subsection, the non-dimensionalisation reverts to that of
(A.6), with t =QF,as in § A.3.

Suppose that S(¢) reverses at ¢ = tr and is positive for t < tg. Then
we assert that there are times #;r(x) and fr(x) such that the
dimensionless heat transfer per unit length, g(x), is given by the
first two terms of (A.22) when ¢ < g, and by the corresponding
expression

q=[-50)/9(-x)1"[co—x28:(1)07:(0)],  (A.33)
where
x=0[9(-x)? and B(t)=3-SOI-S®O1",

when 7>1r and x =1 is the new leading edge of the film. In
between, we propose a purely diffusive solution, in which

6 = erfc no, No = %y{w/[t - tOR(x)]}l/Z’ (A.34)

where #r is a virtual origin of the diffusive solution, analogous to
the quantity ¢ in (3.33) and (A.32). Thus

q =[w/7r(t-—t0R)]”2 for tig <t <trg. (A35)

The choice of the tr, t1ir and tr is less clear-cut than the
corresponding choice in the viscous case. In that case it was argued
that the diffusive solution would take over from the initial quasi-
steady solution, at a given value of x, when the influence of the
leading edge ceased to be felt there, i.e. when fluid particles that had
passed the leading edge first failed to arrive at x before being swept
away by the reversing flow. This defined #14 (see (A.30)). Similarly,
the new quasi-steady solution would take over from the diffusive
solution when fluid particles that had passed the new leading edge,
travelling with the free-stream velocity, U(z), first arrived at x
(defining t,4). In the present case, however, there is no unique
free-stream velocity because the flow consists of a uniform shear,
and the velocity is proportional to y. In order to apply a similar
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condition it is necessary to fix the convection velocity by picking a
particular value of y. Pedley (1976b) proposed that the most
sensible value of y would be one that was representative of the
boundary layer thickness at the changeover time in question. It
would thus correspond to a given value of 5, (or 7,), say 7, (or 72),
which Pedley chose to be the value at the ‘heat thickness’ of the
thermal boundary layer, i.e. at the centre of mass of the temperature
field:

1 =I 0 d771/J‘ 6 dny, (A.36)
o o

where 7, is given by (A.19) and 6 by the first two terms of (A.20).
Then #,r would be the solution of

t /3
2L sl
== S(r)de h = —_—
g W Jiygp ( ) ¥ eny m S(tIR)
i.e. of
1 ('=
Besal =i — [ S0
W Jyr
Similarly ; (A.37)

[ - x)’S(t20)]""% = 2 1 j s de
w

R

From this choice of #1r and #,g, the selection of ¢k arises naturally:
it should be chosen to make the ‘heat thickness’ of the diffusive layer
continuous at ¢ = 1. Using (A.22), (A.34) and (A.36), we obtain

(/407 (tir — tor) = [9x/S(11r) 71 (A.38)

This is equivalent to the choice in the viscous case, in which the
displacement thickness, and hence the mass-flux deficit, is
continuous.

Other choices of 771, 172, and g are, of course, possible, but the
present choice is reasonably self-consistent, and has the added
merit that the value of A, from (A.23), or its equivalent for reversed
shear, is close to 0.5 at the changeover times, so that at least the
approximately quasi-steady solution is accurate for ¢<tjg and
t > t,r. In future applications, in fact, the author would probably use
the less cumbersome criterion A = 0.5 for choosing the changeover
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Fig. A.9. Dimensionless heat transfer per unit length, g, as a function of

time, ¢, for uniformly decelerating shear, at x =0.5. Dotted curve is

quasi-steady; continuous curve is the approximate solution proposed here.
(After Pedley, 1976b.)

times (as is necessary anyway for shear variations S(¢) that do not
reverse, but that do approach zero); the results presented below,
however, from Pedley (19765b), were obtained with the choices in
(A.37).

One indication of the usefulness of this approximate theory can
be obtained from the presence or absence of wide discontinuities in
heat transfer at a particular x as a function of ¢. In the viscous case
(fig. A.7) the discontinuities are not very great, at least for v < 1.0.
In the present case, however, the discontinuity at the second
changeover time, f,g, is considerable. Fig. A.9 shows a plot of the
dimensionless heat transfer, g (see (A.21)), against 7 at x = 0.5 for
the very simple case of a uniformly decelerating shear, §(¢) =—t (in
this case we are free to choose the time-scale 1/} in such a way that
@ = 1). It can be seen that although the choice of for in (A.38) leads
to a very small jump at ¢ = f,R, there is a very large discontinuity at
t = t,r. This is because there is no freedom to take account of the
increasing convection from the trailing edge until ¢ = #,. It must be
accepted that the present method leads to an underestimate of heat
transfer for a period just after shear reversal.

The discontinuities are less apparent in the curves of total film
heat transfer, Q (see (A.12)), against time, as can be seen from fig.
A.10. Once again the dotted curve represents the quasi-steady
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Fig. A.10. Dimensionless heat transfer Q from the whole film as a function

of ¢ for uniformly decelerating shear. Dotted curve is quasi-steady;

continuous curve is the present approximate solution. (After Pedley,
1976b.)

solution and the continuous curve represents the present approxi-
mate solution. From the previous discussion we can expect an
underestimate of heat transfer after the shear reversal, at r=0;
nevertheless, we can clearly see that a considerable departure from
quasi-steady behaviour is to be expected from just before reversal
(¢ =—0.1) to some considerable time after (r = 1.4, say).

Before applying this theory to the hot-film anem.ometer, with
wall shear given by curves such as those in figs. A.7 and A.8, we give
in fig. A.11 the results of applying it to a sinusoidal shear variation,
with S(¢) given by (A.24). This constitutes an extension to larger
amplitudes of the small-x; theory of § A.3.1 and fig. A.3. The
different curves in each of figs. A.11(a), (») and (c¢) represent
different values of the relevant dimensionless parameter, called w4
by Pedley (1976b), and equal to w!*’?; this is just 97> times the
value of x, (see (A.18)) when x =1L

The results for a; = 10.0 (fig. A.11(a)) show that in this case the
two shear reversals are independent, with a period of approximately
quasi-steady (but reversed) heat transfer in between. Each reversal
looks like the single reversal in fig. A.10, with both ¢ and Q
appropriately rescaled. For a;=2.0 (fig. A.11(d)), however, the
reversed quasi-steady heat transfer is not attained between the two
reversals, at least when w; = 1.0. This indicates that some part of the
film (near x = 0) experiences purely diffusive heat transfer for the
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Fig. A.11. Graphs of dimensionless heat transfer, Q, against ¢ for oscil-

latory shear from (A.24). Broken curves, quasi-steady (w, =0); dotted

curves, w, = 0.1; continuous curves, @, = 1.0. (a) a, = 10.0, (b) a; = 2.0, (¢)
a; =0.9. (After Pedley, 1976b.)
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whole of the reversed phase. Fig. A.11(c) is an example of a
non-reversing case («a; = 0.9), in which diffusion must nevertheless
take over on much of the film for a part of each cycle (of course, the
region very near x = ( will always have quasi-steady heat transfer in
this case). All the results of fig. A.11 show a slight phase lag behind
the quasi-steady solution at periods of maximum shear (associated
entirely with the second term in (A.22) and (A.33)), and a rather
larger phase lag near times of minimum heat transfer. However, the
latter may merely reflect the inaccuracy inherent in the method.

A.4.3 Comparison with experiment

We are now in a position to apply the theory in an attempt to
simulate the unsteady calibration experiments of Seed & Wood
(1970b) and of Clark (1974). Each author used a sinusoidally
varying free-stream velocity, as given by (A.29), so the dimension-
less shear must be calculated from (A.32) and will vary as in figs. A.7
and A.8. The dimensional scale for the wall shear-rate, 3‘0, is equal
to U3/?/(vL)""?; the dimensionless parameter important in cal-
culating the heat transfer is thus

Wl = (QL/ U)LY (v/x)"* = 0'y. (A.39)

Here o' =QL/U, is the dimensionless frequency parameter that
determines the relation between the wall shear and the stream
velocity (cf. (A.31) and figs. A.7 and A.8), and since X, = 3L, thisis
equal to twice the Strouhal number (St = Q1.X,/ U,) defined by Clark
(1974). The quantity v depends only on probe design (through /L)
and on the Prandtl number, v/ «, of the ambient fluid, which varies
significantly with temperature; the values of y in the two sets of
experiments being modelled are given in table A.1.

The results of the theory will be presented in terms of the velocity
which would be inferred from the heat transfer measurements if the
quasi-steady relation between velocity and heat transfer were
assumed (Clark (1974), fig. 9, presented his measurements in this
way). The complete cycle is examined in five cases, as listed in table
A.2. Seed & Wood (1970b) reported some measurements in
reversing flow and some in non-reversing flow; however, their data
were presented in terms of the ratio between actual probe output
and the output that would have been measured at the known
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Table A.2
Flow Shear

Author a ' reverse?  reverse?  Fig. no.
Seed & Wood 0.98 0.28 No Yes A.12(a)
Seed & Wood 2.8 0.75 Yes Yes A.12(b)
Clark 0.31 0.44 No No A.13(a)
Clark 0.56 0.80 No Yes A.13(b)
Clark 0.68 0.80 No Yes A.13(c)

instantaneous velocity in steady flow. When the latter becomes very
small, inferring velocities from their data becomes very inaccurate
and the position of the points becomes uncertain. Therefore only
two of their cases are chosen. Clark did not examine reversing flow,
butin two of the three cases he presented, the shear on the probe did
reverse, and the experiments provide a reasonable test of the
theory. The two Seed & Wood cases are presented in figs. A.12(a)
and (b); the three Clark cases are presented in figs. A.13(a), (b) and
(¢). In each case the actual velocity waveform is also shown (so too,
in fig. A.12(b), is the rectified form of it, which a perfectly quasi-
steady anemometer would measure).

Figs. A.12(a) and (b) show reasonable qualitative agreement
between the theory and Seed & Wood’s experiments, especially
near the points of flow reversal, although in each case the apparent
velocity inferred from their data when the actual velocity is very low
is enormous, and must be regarded as uncertain. Not enough
experimental points were given in each cycle to constitute a good
test of the theory. In the approximately quasi-steady regimes the
predictions show a slight phase lead over the experiments, which
rather follow the exactly quasi-steady curve. This phase lead comes
from the phase lead of wall shear over free-stream velocity.
Apparently the heat transfer in practice lags behind the wall shear
more than is predicted by this theory.

Fig. A.13(a) shows an example in which the shear stress does not
approach close enough to zero for a diffusive regime to appear at all.
It is included in order to show that the phase lead of theory over
experiment is quite pronounced here too (about ). Fig. A.13(b)
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Fig. A.12. Dimensional velocity, U, plotted against w't for two cases from
Seed & Wood’s (1970b) experiments. Dotted curves represent the actual
velocity, which would be measured by a perfectly quasi-steady instrument
(including the rectified signal during flow reversal in (b)). Continuous
curves represent the present predictions of the velocity that would be
recorded by the instrument. Filled circles are measured data. (a) « = 0.98,
©'=0.28; (b) a =2.8, 0’ =0.75. (After Pedley, 1976b.)

shows a case in which the flow does not reverse but the shear does. A
comparison between the theoretical curve and the points represen-
ted by open triangles shows excellent agreement, apart from a slight
underestimate of the maximum heat transfer in the approximately
quasi-steady regime. Unfortunately, however, the open triangles
are not the experimental points, which are in fact represented by
closed circles; the open triangles are the same points given a phase
shift of %w. In other words, the phase lead, remarked on above, has
become considerable, but the shape of the heat-transfer response,
especially near minimum velocity, is very well predicted. Fig.
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Fig. A.13. As figure A.12 for three cases from Clark’s (1974) experiments.

(a)a=0.31,0' =0.44;(b)a =0.56,w' =0.80; (c) a =0.68, w' = 0.80. The

open triangles in (b) and (c) are the measured points given a phase lead of
im. (After Pedley, 19765.)

A.13(c) shows another case of even larger-amplitude non-reversing
flow. Again the agreement between theory and the open triangles is
quite good (apart from underestimating the maxima of heat trans-
fer), and again these represent a phase lead of 3 over the experi-
mental points. Note that the 7 in fig. A.13(a) and the §7 in figs.
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A.13(b) and (c) represent an approximately constant time lead,
independent of frequency. Possible reasons for the phase lead are
discussed below, but we should note that it was also remarked on by
Pedley (1972a), who considered only the first departures from
quasi-steady behaviour, and is therefore not an aberration intro-
duced by the inaccuracy of the diffusive solution near times of flow
reversal. Indeed, the discussion of fig. A.10 suggests that that
inaccuracy would tend to cause a phase lag in heat transfer, not a
phase lead.

In most of the cases he studied, Clark did not calculate the
apparent velocity throughout the cycle, merely at the times of
maximum and minimum probe output. He then plotted the ratio of
the apparent velocity amplitude to the actual velocity amplitude
against the Strouhal number, S$t(=0.50’); a value significantly
different from 1 indicated that the quasi-steady calibration was
inapplicable. Fig. A.14 shows his results (closed circles) together
with the predictions of the present theory for six of his cases (open
circles) and four of Seed & Wood’s (open triangles); the two closed
triangles are Seed & Wood’s experimental results corresponding to
the open triangles at the same values of Sz. In cases where the heat
transfer shows a second maximum (as in fig. A.12(b) and fig.
A.13(c)), this is interpreted as measuring a negative velocity, even
when the free stream does not reverse. The results show good
agreement between experiment and theory up to a value of St of
about 1.0; above that value the theory is not directly applicable.
There is considerable scatter in both sets of results at any given
value of St, especially around 0.3, which is associated with the fact
that the result depends on amplitude as well as on frequency.
Nevertheless, the theory confirms the experimental finding that the
quasi-steady calibration cannot be used for St>0.2. Even for
smaller values of St, the theoretical results (e.g. point A on fig.
A.14) underline the fact that the quasi-steady calibration will break
down if the amplitude of the oscillation is sufficiently large that the
shear on the probe reverses.

In an attempt to discover the cause of the discrepancy between
theory and experiment it is important to examine those assump-
tions, made in § A.1, that have not been adequately dealt with.
These are assumption (iv), that the flow over the probe is similar to
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Fig. A.14. Ratio of amplitude of probe output to amplitude of actual

oscillating velocity plotted against Strouhal number, 8$t(=0.5w"). Filled

circles, Clark’s experiments; filled triangles, Seed & Wood’s experiments;
open circles and open triangles, present theory. (After Pedley, 197654.)

that over a finite flat plate; assumption (v), that this fiow can be
calculated using viscous boundary layer theory; assumption (vii),
that the temperature field over the hot-film is effectively two-
dimensional; and assumption (viii), that this temperature field can
be calculated using thermal boundary layer theory. Our discussion
of these assumptions should centre on whether (a) the phase lead of
wall shear would in practice be less than predicted or (b) the heat
transfer lag would be increased.

Assumption (iv). The probes are approximately cylindrical in cross-
section, and at the station occupied by the film the steady boundary
layer thickness is about 0.01-0.02 c¢m for velocities of 20-80 cm s_l,
while the cylinder diameter is about 0.045 cm (in Clark’s experi-
ments). This means that the quasi-steady wall shear-rate is greater
by about 30% than on a flat plate (Rosenhead, 1963, p. 450). The
argument by which the unsteady shear is predicted to have a phase
lead over the outer velocity, because the flow near the wall responds

more readily to the unsteady pressure gradient than that far away, is
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unaffected by the cylindrical geometry. If the correction to the
quasi-steady shear is unchanged, the difference between the one-
and two-term expansions could be significantly reduced. The phase
lead could be reduced from 47 to about &7 in the case of figs.
A.13(b) and (c); this does not explain the whole discrepancy, but
clearly deserves further investigation.

If the probe is yawed, or not quite cylindrical, then the flow may
be subject to a pressure gradient. Pedley (1972b) showed that a
favourable pressure gradient cuts down the phase lead of shear over
outer velocity. For two-dimensional flow impinging symmetrically
on a 90° wedge, the relative magnitude of the term producing the
phase lead (the second term of the expansion whose first term is
quasi-steady) is reduced by about 75% . However, it is inconceiv-
able that the present probes induce such a strong pressure gradient
and this factor cannot explain the discrepancy.

Assumption (v). The Reynolds number based on the mean velocity
and the distance of the film from the leading edge of the probe,
Re= Uy X,/ v, is only about 1000 in Clark’s experiments (fig. A.13).
Thus viscous boundary layer theory may not be adequate to predict
the shear over the film, but it is not easy to see how this inadequacy
would reduce the phase lead of the shear over the outer velocity.
Indeed, since the viscous region would be thicker than in boundary
layer theory, one might expect the phase difference to be, if
anything, greater. Another argument against this as the explanation
of the discrepancy is the fact that one would expect the effect to
increase as Re falls, whereas the discrepancy is less in Seed &
Wood’s experiments (fig. A.12), where Re=~450.

Assumption (vii). The hot-films in both sets of experiments are only
about 2.5 times longer in the cross-stream direction than in the
streamwise direction, so lateral end-effects are likely to be
important. The heat transfer in steady flow is likely to be increased
by the lateral diffusion in a manner that is almost fiow-independent,
but the effect on the phase is difficult to assess. It probably does
increase the phase lag, in the same way as diffusion through the
substrate increases the phase lag through an increase in ‘thermal
inertia’ (Bellhouse & Schultz, 1967). This is the second of the
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possible explanations that cannot be ruled out as the explanation of
the phase lag, and clearly warrants further theoretical and experi-
mental study.

Assumption (viii). Thermal boundary layer theory is inadequate for
predicting steady heat transfer from a hot-film if the Péclet number,
12=§,i?/«, is too small (less than about 400, as we shall see in
§ A.5). For Clark’s experiments the mean Péclet number is about
1000, but for Seed & Wood’s it is only about 200, so the effect of
departures from boundary layer theory should be considered. The
problem is not susceptible to immediate intuitive solution. On the
one hand, the presence of axial diffusion increases the effective
length of the thermal boundary layer, which would indicate a
greater time lag between heat transfer and wall shear than that
predicted by boundary layer theory. On the other hand, we shall see
that in steady flow it increases the net heat transfer-rate in a manner
only slightly dependent on the flow, which would suggest that the
effect of unsteadiness would be less. Once again, however, if this
effect were responsible for the discrepancy, one would expect a
greater, not a smaller, discrepancy in Seed & Wood’s experiments
than in Clark’s.

Of the potential fluid mechanical reasons for the unwanted phase
lead, the ones that require further study are three-dimensional
effects in the velocity and temperature fields, and the fact that the
hot-film may be too short for thermal boundary layer theory to
hold. We cannot be certain of the importance of any of these
without further research. The only one that has received any
detailed analysis is the last, and that only in steady shear flow; this
analysis is presented in the next two sections. Apart from these
reasons, the explanation can only be in probe construction or
electronics, and these are unlikely because of the great care that
both authors took to eliminate such artefacts. Thus the phase
discrepancy remains a mystery, but should not be allowed to
obscure the fact that the theory agrees very well with experiment as
far as the amplitude response (fig. A.14) and the general shape of
the response throughout the cycle (see especially fig. A.13(d)) are
concerned.
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A.5 Departures from boundary layer theory for a short hot-film

Whatever the value of the Péclet number, /% in (A.5), there are
regions near the leading and trailing edges of the hot-film where
longitudinal diffusion is important and hence the boundary layer
approximation is invalid. Only if /* is sufficiently large will these
regions have a negligible effect on the overall heat transfer, 0,
which in steady flow is given by (A.12a) according to boundary
layer theory. It is the purpose of the rest of this appendix to analyse
short hot-films in steady flow. In this section we seek to predict the
value of /? at which (A.12a) ceases to be accurate and the cor-
rections that should be made at smaller (but not too small) values;
the analysis will be that of Springer & Pedley (1973) and of Springer
(1974). In the next section we outline the recent theory of Acker-
berg, Patel & Gupta (1978) for very short films (/ « 1),

The analysis of this section is based on the assumption that the
leading- and trailing-edge regions in which boundary layer theory is
inaccurate are independent of each other. This is equivalent to the
statement that there is a region in the middle of the hot-film, albeit
very short, in which the temperature field is accurately described by
boundary layer theory. Ling (1963) performed a numerical solution
of the problem of a finite hot-film in a steady, uniform shear, and his
results can be interpreted as suggesting that each ‘non-boundary-
layer’ region has a length of about 1.2 (x/$)*'%. Thus boundary layer
theory might be expected to be valid somewhere on the film if I*= 6.
The results of this section suggest that in fact the trailing-edge
region is somewhat longer than the leading-edge region, and that
the value of 6 should be replaced by about 16.

The problem to be solved is made dimensionless by the scaling
(A.6), and can be stated mathematically as follows: we seek the
function 6(x, y) that satisfies the equation

yex = Bxx + Oyy (A.40)

and the boundary conditions

ony=0, 0=1 forO=sx=</ 6,=0elsewhere,
(Adla)
as (x2+y2)”2—>00, 6-0.
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Results should be expressed in terms of the dimensionless heat
transfer, either per unit length (g(x) from (A.11)) or total (Q from
(A.12)).

A.5.1 The leading edge

Here we suppose that ‘far’ downstream from x = 0 the temperature
distribution is given by the boundary layer solution (A.9). This
means that the film can be regarded as effectively semi-infinite, and
the boundary conditions (A.41) should be replaced with

ony=0, 8=¢ forx=0, 6,=0 forx<0,
(A.41b)

asy->o(allx) and x->-co(ally) 6-0.

Here a is a small positive quantity that is introduced to ensure
existence of the Fourier transform of 6, but that will be allowed to
tend to zero as soon as is convenient. We further assume that the last
condition can be strengthened to

0=0(e") asx->- (A.41c)

for all y and for some real number b > 0; the consistency of this
assumption is confirmed a posteriori. The temperature field 8(x, y) is
expected to be continuous and bounded everywhere. However, its
gradient at the wall, 6,(x, 0)=—¢q(x), must be discontinuous at
x=y=0. Now, as (x> + y2)1/2—> 0, (A.40) reduces to Laplace’s
equation, and the least singular solution turns out to be such that

lg)|=0(x7"%) asx->0+. (A.42)

The problem is solved by means of the Wiener-Hopf technique.
We therefore begin by taking Fourier transforms with respect to x,
and define

(= o)

Gy =[ 00y ar

so that (A.40) transforms into
6y, —ik(y —ik)d = 0. (A.43)
The solution of this that satisfies the boundary condition at infinity is
6 = H(k)Ai(s), (A.44)
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where
s =(0+ik)"3(y —ik)

and H (k) is afunction to be found, as long as — ir< arg s < 3. This
means that the k-plane should be cut along the positive imaginary
axis, with —37 <arg k <3.

We now split d(k, y) into two functions, analytic in upper and
lower halves of the k-plane respectively, and denoted by subscripts
+, —: we define

s =]

6_(k, y)= I 6(x, y) e ¥ dx,

0
-~ 0 .
0.(k,y)= I 8(x,y) e dx,

so that § = 6, + 6_. From the boundary conditions on y = 0 and the
fact that 9 is bounded, we see that 4., is analytic in the upper
half-plane Im k > — b, and that 6_is analytic in the lower half-plane
Im k <a. From (A.44) we have

6.(k, 0)+6_(k, 0) = H (k)Ai(so),
6', (k, 0)+ 6" (k, 0) = H(k)Ai'(so)(0+ik)"",
where primes on 6. denote differentiation with respect to y, and
so=—ik(0+ik)"?, (A.46)
the value of s at y = 0. Now, if we transform the wall conditions in
(A.41b), we obtain
6-(k,0)=1/i(k ~ia),  6.(k,0)=0,
so that on elimination of H(k), (A.45) gives
(0+ik) [ Ai(s0)/ Ai'(50)16" (k, 0) = 6..(k, 0)~ 1/i(k —ia)=0.
(A47)
This equation is in a form to which the Wiener-Hopf technique can
readily be applied in the k-plane. We note that Ai(s,) and Ai'(so)
both have zeros on the negative imaginary k-axis, as well as a
branch point at k =0. Thus if » is chosen to be less than the
magnitude of the first zero of either Ai(so) or Ai’'(so) every term in
(A.47) is defined and non-zero everywhere in the strip —b <Im k <

0. We also note that G(k) = —6"(k, 0) is the Fourier transform of the
heat-transfer function q(x).

} (A.45)
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In order to obtain an expression for §(k), we must split the
left-hand side of (A.47) into the sum of two functions, one analytic
in Im k <0 (a ‘lower function’) and one analytic in Im k > —b (an
‘upper function’). To this end we first split the factor multiplying
4 (k) into the product of an upper function and a lower function. If
we define

F(k)=—(0+ik)"3Ai'(s0)/ Ai(so), (A.48)

then upper and lower functions K. (k) and K_(k) with the property
that

F(k)=K.(k)K_(k)

are given by

1 0
log K, =— J. log [F(z)] dz , Im k>0, (A.49a)
2771 ) z—k
-1(= dz
logK.=— I log [F(z)]—, Im k <O, (A.49b)
27 J_w z—k

where the integral is in each case taken along the real axis, indented
below the branch point at z =0 (these definitions correspond to
those used by Stewartson (1968) in a related problem). The relevant
properties of K. will be derived below.

With K. determined, (A.47) can be rewritten

G(k)/K_(k)=6.(k, 0)K.(k)— K. (k)/i(k —ia)=0.

The first term is a lower function and the second is an upper
function, but the third is neither because of the pole at k =ia.
However, this difficulty can be removed by writing

K. (k)/i(k —ia) = [K.(k)—K.(ia))/i(k —ia) + K.(ia)/i(k —ia);

the first of these terms is now an upper function, say R.(k), and the
second is a lower function, R_(k). Thus we have

d(k)/K-(k)~R-(k)=6.(k, DK, (k) + R.(k), (A.50)

of which the terms on the left-hand side are analytic for Im k <0,
and those on the right-hand side are analytic for Im k > —b. By the
principle of analytic continuation, therefore, there exists an entire
function, J(k), equal to either side of (A.50) wherever that side is
defined. Furthermore, all the terms in (A.50) tend to zero as
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|k| = oo (since from (A.42) |G (k)| ~|k|""/?, and we show below that
|K (k)| ~|k|'/?, as |k| > 00), so J (k) is identically zero by Liouville’s
theorem. Hence, letting a - 0, we have

q(k)=K_(k)R_(k) = K.(0)K_(k)/ik,

and inversion yields

q(x)= e'** dk. (A.51)

K.(0) ro K_(k)
27i —o0 k

Properties of K.(k)

Following Stewartson (1968), we first examine K_, noting that the
argument s, (see (A.46)) of the Airy functions occurring in F (k) is
real and positive on the straight lines arg k = {7 and arg k = ~3m.
We therefore deform the contour of integration in the Cauchy
integral (A.49b) to lie along these straight lines, together with two
arcs of large radius, z =R '’ with 57/ >6>0 and —7 > 6>~
and a small indentation round the origin that does not contribute to
the integral (see fig. A.15). The contribution to log K_ from the two
circular arcs is

i log R ~Lin
for large R. When k =r e"™*, F(k) =e"™*M(r), where
M(r)=—r'Ai'(r*?) ] Ai(r*7?),
while when k = r e >™* F(k)=e "™*M(r). The integrals along the

straight lines from r =0 to r = R can then be combined to give the
following contribution to log K_:

-1 V2k dr
Z_m,[ log[M(r)]m ilog k - 4logR+§

Hence, writing ¢ = 0 +ik, we obtain

t (Tlog[M(r)ldr , 1.
=7 m o ptelogt—s .
log K - 24[0 pEI— o 1log t —sim, (A.52)

the first term of which is real when ¢ is real, i.e. on the negative
imaginary k-axis, and on either side of the branch cut along the
positive imaginary k -axis. This means that, apart from factors of the
form e'®, the integral in (A.51) can be reduced to a real integral if
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Fig. A.15. Sketch of the complex k-plane, showing the deformation of the
original contour of integration (the indented real axis) in (A.51).

the inversion contour along the real axis is deformed to run along
both sides of the branch cut. It is then in a form suitable for
numerical evaluation.

As a check on the numerical work, and to aid physical under-
standing of the results, it is important to derive asymptotic expan-
sions for K.. at large and small values of |k|. We consider large |k|
first, noting that

M) =r[1+1/4r+O0(™*] asr-oc0.
The first term on the right-hand side of (A.52) can be rewritten as

t J'°° logrdr . 1
w2 o V24t w2

(Springer, 1974), which is equal to

J log (Ar—l) dr+0( 2 log 1)
0

tlogt+y1/t+0(t *log ),
where

1 (® M
n=—y J:) log (7) dr=0.1797.
Thus

log K_~3logt—gim+vy1/t+O(t % log t) as |t| » oo,
or (in terms of k),

K_~e ™0 +ik)"[1+v,/ik + O(k 2 log |k|)] as k|~ oo.
(A.53a)
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The corresponding expansion for K., can be derived from (A.53a)
and a direct asymptotic expansion of F(k), and the leading term is

K.~e™30—-ik)" [1+0k™M)]. (A.53b)

The resultsin (A.53a, b) confirm the stated asymptotic behaviour of
the terms in (A.50), and justify the conclusion that J(k)=0.

In order to derive the expansions at small values of |k|, we note
that

M(r)y=pr'[1+pr* 2+ O(r*?)] asr-0,
where
p =—Ai'(0)/Ai(0)=3"’TG)/T(3G)=0.7290.  (A.54)
Thus we may rewrite (A.52) in the form
t J’°° log (pr'/?)ydr
w2 o P2+

t [ log (M/pr'?)
+‘IT\/2 {J‘l 2 dr

r
N J '{log (M/pr'’?) - pr*’®]
0

logK_=37log t—sim+

> dr
r

J.1 r4/3 dr
0

i+ O(t)}

=%log t——%iq-r+4llogp+31t+0(t4/3),

where

o 1/3
g, =— J log (M/pr ) 4, — 0.6856.
w2 r

0

Hence

K_(k)=p"*e ™30 +ik)[1+ Biik + O(k*?)] aslk|-0.
(A.55a)

The leading term of the corresponding expansion for K, which is
required for the evaluation of q(x) from (A.51), is derived directly
from (A.55a) and the definition of F(k) and is given by

K.(k)~&™®p**[1 - Biik + O(k?)] as|k|]->0. (A.55b)
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A.5 DEPARTURES FROM BOUNDARY LAYER THEORY 411

Results

The heat-transfer function q(x) can be expanded asymptotically for
large x by using the small-k expansion of K_(k). Thus, from (A.51),
(A.55a) and (A.55b), we obtain

© .. dk
q(x)~L.j (0+ik)"’[1+ Biik + O(k*?)] ™ —
2mi ) k

~[3%°T3)/2mx K1 - B1/3x + O(x*?)}. (A.56)

The leading term of this can be seen to be identical to that obtained
from Lévéque’s (1928) boundary layer solution (see (A.11)), if the
identity TG)['3) = 2m/+/3 is used. Springer & Pedley (1973), who
developed the analysis - { K., in terms of an infinite product, rather
than the Cauchy integrals (A.49a and b), took the expansion (A.56)
as far as terms of O(x™'"/?) in the curly brackets. However the
numerical results show that this complicated expansion is actually
less useful than its leading term. In fig. A.16, g is plotted against x
on a log-log plot. The continuous curve was obtained by direct
numerical integration of the real integral derived from (A.51), the
broken curve represents the full expansion of Springer & Pedley,
while the dot—dash curve represents the first term of that expansion,
the boundary layer result (A.11). It can be seen that, as x is
decreased from a very large value, g at first falls slightly below its
asymptotic form before rising above it again for x < 1.7. The full
asymptotic expansion faithfully follows this deviation from the
leading term, until near x =2.5 it becomes wildly inaccurate.
However, the leading term itself is accurate to within 2% for all
x > 1.0, confirming Ling’s (1963) numerical conclusion.

At small x, the continuous curve asymptotically approaches the
straight (dotted) line

q(x)=0.445x""2,

This too can be verified by using the large-k expansion of K_(k) in
(A.51). Using (A.53a) and (A.53b) we obtain, as x » 0,

3/4 ac© ikx 3/4
p J e dk p ~1/2
~— 5= -=0.4451 . (A.57
a(x) 2 o (0+ik)? (mx)'? * ( )

This expression, together with the leading term of (A.56), can be
seen to give a very accurate representation of gq(x) for all x.
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g (x)
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Fig. A.16. Dimensionless heat transfer q(x) plotted against x (logarithmic

scales). Continuous curve, exact solution; broken curve, seven-term

asymptotic expansion for large x ; dot—dash line, Lévéque’s boundary layer

solution (A.11); dotted line, leading term of the small-x expansion (A.57).
(After Springer & Pediey, 1973.)

Finally, we should check that 6(x, y) = O(e”™) as x > — for
some b > 0. Assuming that it is adequate to carry out the check at
y =0, we note from (A.50) that

8..(k, 0) = (1/ik)(K+(0)/K (k) —1).

This is regular at k =0, but has an infinite number of poles on the
negative imaginary axis (the zeros of Ai’(sg)), the first of which is at
k = —ik;=—1.014i. Completing the inversion contour in the lower
half-plane for x <0, therefore, shows that the behaviour as x - — oo
is given by

8(x,0)= O™,

where § is an arbitrary small positive number. This confirms the
assumed upstream condition.

A.5.2 The trailing edge

In this case, we shall suppose that the boundary layer solution (A.9)
holds far upstream from the trailing edge x = I. If we define a new
x-variable, x* =x — I, and a new @-variable

0*(x*9 Y) = e(x*7 y)_ebl(x,k’ Y),
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A.5 DEPARTURES FROM BOUNDARY LAYER THEORY 413

where

Op(x*, y) = coj e’ ds, n=y[9Cx*+1]3,

n
and ¢o=1/T'(), then the governing equation remains (A.40) (with
starred variables) and the boundary conditions become
#*=0 forx*<O0,
0% = —6uy = co/[9(x*+ 1] forx*>0;} (A.58)

1/2

ony=0{

as (x*2+y%) %500, 9* > 0.

Asin § A.5.1, we assume that the supplementary condition can be
applied, that ¢* = O(e*™") as x* » —oo for some b > 0; we also note
that #* will be continuous at (0, 0), but that 8% (x*, 0) will behave
like |x*|""/% as x*>0—.

The development of the Wiener—-Hopf analysis is exactly the
same as for the leading edge, and the equation corresponding to
(A.47)is

6_(k)F(k)+ 6" (k)+G_(k) =0, (A.59)

where @ is the Fourier transform of 0%, F(k) is again defined by
(A.48), and

S —~ikx* *
G_(k)=o'_(k,0)=coj ¢ dx (A.60)

o [9Ge*+ D]
If K. (k) are defined as in (A.49), and if G_(k)/K.(k) is expressed
as the sum of an upper and a lower function, H.(k)+ H_(k), then
(A.59) can be written

6_(k, 0)K_(k)+H_(k)=—[8" (k, 0)/K.(k)+ H.(k)). (A.59a)

The theory of analytic continuation and the asymptotic properties
of the functions involved again show that each side of this equation
is identically zero, so that 6_(k, 0) and §’, (k, 0) are both, in prin-
ciple, determined.

The function 8 (k, 0) is the Fourier transform of the heat-
transfer function, g(x), less its boundary layer component, and it
might be thought that to calculate the heat transfer from the whole,
finite hot-film it would be necessary to invert this function and
integrate a composite of it and the function plotted in fig. A.16 over
the whole length of the film. That, however, would be very
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laborious, and ignores the identity established in § A.2, by which
the dimensionless heat transfer, Q, is shown to be proportional to
the coeflicient of the leading term, x -2/ 3 inthe large-x expansion of
0(x, 0) (see (A.15) and (A.16)). It is therefore more convenient to
calculate _(k, 0) and evaluate the leading terms in the asymptotic
expansion of its inverse:

LJmH—_(k)ikx*

0"‘()c"‘,0)=—2 K(k)e dk, forx*>0. (A.61)
mJ_o —

Properties of H_(k)
From (A.60) we deduce that
eikl 12/3 GZO (lkl)n }'

©+ik)*? " ZeT(n+d)

The second term of this is an entire function, and when divided by
K, it will become an upper function. Thus only the first term, with
the branch point at k =0, contributes to H_, which can be defined
by the following Cauchy integral:

—_—E‘[CO eizl dZ
2mi oo Ko(2)O0+iz)*(z ~ k)

G-(k) =0

H_(k)=

Imk<0;

the integral is taken along the real axis, indented below the origin. If
the contour is deformed to run along the two sides of the branch cut
on the positive imaginary z-axis, this integral becomes

H_(k)

\/ o —rl
D 3J’ e " dr (A.62)
0

T 27 by KGR +ik)
where
K.(ir)~e™8p¥ 1+ B1r+O(*)] asr-0

from (A.55b). To obtain the small-k expansion of H_, we follow
Springer (1974) and split (A.62) into two parts:

H_:

P43 8 “oo (1-Byr) e—rtdr J‘°° N@rye™ ] o

2m r3(r +ik) b P2(r+ik)
where
N)= p_3/4 e K. (ir)—1 —-Bir= O@?) asr—0.
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A.5 DEPARTURES FROM BOUNDARY LAYER THEORY 415

The first integral has the small-k expansion

T [G+8)+ (e F)aw-oun]
271_ k!

T(0+ 0 [1+Biik +O(K?),

while the second has the expansion

So(l)—iks:1()+ O(k?),
where

N@re™
s=[ N0 ar,

both 8, and &; exist because N = O(r?) as r - 0. Thus, finally,

H_(k)~p'* e7"®go—ikgi+ O(k?)
+[e™/(0+ik)*?1+ Brik + OKD} as|k|->0, (A.63)

where
_Jsao(z) 73 B,
go(l) = r()( + ) (A.64)
_~/351(1) P9 3
8=~ (10" 21 )
Results

The large-x* expansion for 6*(x*, 0) is obtained by substituting
(A.63) and (A.55a) into (A.61), and inverting term by term. The
resulting series is

6*(x*, 0)~~1~[go/TGIx**+O(x*"*7).

Hence, using (A.16), we deduce that the dimensionless heat trans-
fer from the film, Q, is given by

Q = —pgo(l). (A.65)
For large values of /, this yields the boundary layer result (A.12a),
Q =13"2¢,1*”, but (A.64) shows that there is an error of O(I""3).

Springer (1974) computed Q, as given by (A.65), for various values
of l. They are compared with the boundary layer values in table A.3
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Table A.3. Comparison of calculated
heat transfer with the boundary layer

predictions
! Qu Q
1 0.80755 1.11688
2 1.28190 1.54488
3 1.67977 1.91632
4 2.03490 2.25340
5 2.36129 2.56631
6 2.66647 2.86085
7 2.95507 3.14075
8 3.23020 3.40856
9 3.49406 3.66615
10 3.74831 3.91493
11 3.99421 4.15599
12 4.23275 4.39022
13 4.46476 4.61834
14 4.69088 4.84093
15 491168 5.05851
16 5.12762 5.27143
17 5.33910 5.48023
18 5.54648 5.68507
19 5.75005 5.88627
20 5.95007 6.08409

and with experiment in fig. A.17. The table shows that the error in
using the boundary layer approximation everywhere on the plate is
about 2% when [ =20, about 8% when [ = 5 and about 20% when
1 =2, if the present results are accurate for such a small value.

To assess the accuracy of the present results, it is necessary to
consider the heat-transfer function — 6% (x*, 0) for x* < 0. Springer
(1974) did not perform an exact numerical inversion of the function
6'. (k, 0), obtained by setting the right-hand side of (A.59a) equal to
zero. We can, however, use an argument similar to that at the end of
§ A.5.1, to suggest that 9* tends to zero like " as x* > —c0, where
1, is the first pole of K. (k), i.e. the first zero of Ai(so);/;=1.891.0On
the assumption that e~ is negligibly small, then, we predict that the
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A.5 DEPARTURES FROM BOUNDARY LAYER THEORY 417

perturbation to the boundary layer heat-transfer function will be
negligible for x*=<2.64. Together with the results for the leading
edge, this suggests that the boundary layer solution is valid some-
where on the hot-film, and so the results of table A.3 are accurate, if
[ =4 or the Péclet number /> = 16.

Springer (1974) did calculate the first few terms of an expansion
of —0F (x*, 0) in powers of x*, for x* <0. They show that in the
neighbourhood of the trailing edge, as well as in that of the leading
edge, the heat-transfer function g(x) is increased above its boun-
dary layer value. This is to be expected because of the influence of
longitudinal diffusion, so that (A.40) increasingly resembles
Laplace’s equation as either edge is approached. The consequence
is that the heat transfer becomes less and less dependent on the
flow-rate as [ is decreased (cf. fig. A.17). Such a result is also likely
to be true in unsteady flow, and has the implication that the shorter a
hot-film is, the less responsive its heat transfer will be to fluctuations
in the local wall shear. This suggests that the amplitude of the
heat-transfer fluctuation would be less than for a longer film, if
the behaviour is quasi-steady. However, the shorter a hot-film is,
the more likely it is to behave quasi-steadily according to boundary
layer theory (§ A.3), so it is not obvious how the shortness of the
hot-film could account for the observed phase lag between heat
transfer and fluid velocity.

A.6 Steady heat transfer from a very short hot-film

To complete the picture, we now outline Ackerberg et al.’s (1978)
analysis of the caszs of very small Péclet number, / « 1. In this case
boundary layer theory cannot be accurate anywhere over the film,
and the first approximation to the temperature field near the film
might be expected to be a purely diffusive solution, with the
influence of the shear flow being more important far away. A
matched asymptotic expansion, such as that developed by Proud-
man & Pearson (1957) for slow flow past a circular cylinder, is
clearly called for. We shall limit ourselves to presenting merely the
leading terms of the inner and outer expansions (as it were the
Stokes and Oseen approximations), since they are enough to
compute the heat transfer with satisfactory accuracy.
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We follow Ackerberg et al. in choosing a new origin at the
mid-point of the film and non-dimensionalising £ and § with respect
to 31 so that (x', y')=(2/0)(%, ). The governing equation for the
dimensionless temperature field 8(x’, y') is

Eylex' = Ox’x’+ oy'y’a (A66)
where ¢ = §I%. The boundary conditions are:
6=1 forlx'|<1, (A.67a)
ony' = 0{
6,=0 for|x'|>1; (A.67b)
as (x’2+y’2)—>oo, 6-0. (A.67¢)

First-order inner solution. The coordinates x' and y' are clearly
suitable inner variables, and if we set ¢ = 0in (A.66), we see that any
function of the form

0=1+g(e)bo(x’, y"), (A.68)

where g(e) is arbitrary, V?6,=0 and 6o(x’,0)=0 for lx'| <1,
satisfies both the equation and the first boundary condition
(A.67a). However, no such solution can be found that satisfies the
other boundary conditions, and the last of them, (A.67¢), must be
abandoned. There is then a unique solution that both satisfies
(A.67b) and does not lead to non-integrable singularities in
8,(x', 0) at the ends of the strip (cf. the constraint (A.42)). This is

8o(x', ') =Re log [z + (z* - 1)"/?), (A.69)

where z = x'+iy’, and (z%~ NY?is analytic in the z-plane that has

been cut along the strip y' =0, |x’|< 1. The principal value of the
logarithm is to be taken. For matching purposes we shall need the
expansion of (A.69) as r' =|z| > 0; it is

6o~log2r'+O(r'?) asr -oo. (A.70)

First-order outer solution. At large distances the hot-film will
resemble a point source of heat on the wall, and advection will
balance diffusion in determining the temperature field. Appropriate
outer variables are then

(xy)=¢"2(x', y",

which are exactly the same as the (x, y) of (A.6) and of the last
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section. In terms of these, (A.66) is the full equation (A.40), while
the boundary condition on the wall becomes

0,(x,0)=—Q'()8(x)

for some constant Q’'(¢), which is to be determined by matching,
and which we expect to be equal to the dimensionless heat transfer
from the film. The solution of this problem, obtained as usual by
means of Fourier transforms, is

b @ J‘” Ail(0+ik)"*(y —ik)]
T 27 ) (0+ik)PAi'(s0)
where s is defined by (A.46).
For positive x, the contour of integration can be deformed to pass
along both sides of the branch cut on the positive imaginary k -axis,
and (A.71) becomes

) © 4 ir im/3,1/3 —im/3 _—x
Aile™"t +1
O(x,y)= Q Im J’ il - i-n'/3(¢;v/3 e 1/3e

™ AiTe™7t"7] t

e** dk, (A.71)

de. (A.72)

We may note that for large positive values of x, and y =0, the Airy
functions may be expanded in powers of ¢, to give

8(x, 0) =%§J S+ 0 ds
where p is given by (A.54). Hence
0(x, 0)~ Q'V3T()/2mpx*">,
and comparison with (A.16) shows that Q'= Q, confirming the
above expectation.

0

Matching. The determination of Q requires that the solution (A.71)
be expanded for small values of r = (x*>+y?)"? and matched to
(A.68) and (A.70). To this end we rewrite (A.72) as

1 _—in/3 .
T e Ai(s) _,

— ,y)=1 {I — dt
Q 6(x y)=Im o 1A (s0)

oo —im/3 4 . : .
e Ai(s) i —ity( i )] —x
Le— 1+— d:
+L [1”3Ai'(s0) :© 4] €

® i i —t(x+iy) }
+| ~{1+—= drg,
L t(1 412)e
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where s =e"™?t"/*(y +1), so = ¢"™+*/>. This re-arrangement means
that all integrals except the last are convergent at x = y = 0, and can
be expanded in powers of x and y; the last integral is the sum of

exponential integrals. We deduce that, as r >0,
8(x, y)=—(Q/m)[log r+ao+ O(r)], (A.73)

a0=y+§{[)‘ Ai(s) ds +J‘1°°[Ai(s) 1 +1] ds}

all, Ais) s Ai'(s) s s
=-1.0559

(Ackerberg et al, 1978), and y is Euler’s constant. To match the
inner solution with this we rewrite it in terms of r by setting
r'=&""/?r, so that (A.68), (A.70) and (A.73) give

where

—(Q/m)(logr+ao)=1+g(e) log(2e "?r).

This requires both that g(¢) = —Q/ s (for the log 7 terms to agree)
and that g(e)=—[log (26 Y*)—ao]™" (for the constant terms to
agree). These expressions provide the leading term of the small-¢
expansion for Q; rewritten in terms of /, the square root of the
Péclet number, it is

Q=n(log (4/)—ao] . (A.74)

By taking further terms in the inner and outer expansions for 6,
Ackerberg ef al. showed that the next correction to Q is O[eg*(e)].
However their numerical results suggest that the leading term alone
is a better approximation than the two-term expansion for /=1,
while the two are virtually indistinguishable for / < 1, so there is no
need to go further here.

Results. In addition to their theory, Ackerberg et al. (1978) per-
formed a very careful experiment to measure the electrochemical
mass transfer from effectively two-dimensional electrodes, in
known shear flows, at small values of /. Their results are shown in fig.
A.17, on a log-log plot. The experimental points agree very well
with (A.74) for / <2, and with the results of table A.3 (Springer,
1974) for [ > 6; the Lévéque boundary layer solution (A.12a) can
also be seen to be accurate for /> 20, as indicated by Springer’s
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Fig. A.17. Dimensionless heat transfer Q plotted against /, the square root
of the Péclet number (logarithmic scales). Continuous curves, present
theory (one- and two-term expansions) and Lévéque’s boundary layer
solution; dot-dash curve, Springer (1974); broken curve, Newman’s (1973)
results. The circles are experimental points. (After Ackerberg et al., 1978.)

work. The broken curve, which agrees well with the experiments for
all /> 0.5, was constructed from a numerical solution of Newman
(1973). It is clear that the behaviour of two-dimensional hot-films in
steady shear flow has been accurately analysed for virtually all
values of /, and is an area of fluid mechanics in which theory and
experiment agree to a satisfying extent.

It cannot, however, be said that the unsteady fluid mechanics of
hot-film anemometers is completely understood. The approximate
boundary layer analysis of § A.4 should clearly be improved in
order both to explain the troublesome phase difference between
experiment and theory (fig. A.13) and to establish it on a more
‘rational’ basis. Then unsteady analysis should be performed for
shorter hot-films; Springer (1973) began to extend his work to the
case of fluctuating film temperature in steady flow, but did not
complete the solution. Perhaps an unsteady version of the theory of
this section would also be possible. Finally, there are three-
dimensional effects, which must be important for the blood velocity
probes. Again, the analysis of this section may perhaps be extended
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to cover very small films of finite width. Alternatively, edge effects
for longer films of finite width can be analysed if we suppose the film
to be long enough in the flow direction for longitudinal diffusion (in
the x-direction) to be negligible over most of it, while near the edge
z=0 lateral diffusion (in the z-direction) is not negligible.
However, we suppose the film to be long enough in the z-direction
for the boundary layer solution to be applicable as z > +00. The
problem is therefore to solve:
y ex = 0yy + azz
with
6=1 forz>0,
ony= O{
6,=0 forz<0;
as y->00, §->0.
The expected validity of boundary layer theory as z -» 00 suggests we
rewrite the equation in terms of similarity variables,
n=yO9x)"7, =209
to obtain
01,.,, + 31"20" + 0{( = O.

The solution will be sought by taking Fourier transforms in the
{-direction, and using the Wiener—-Hopf technique (cf. § A.5), but
before significant progress can be made it will be necessary to
investigate the analytical properties of the transformed equation

b, +310°0,—k*6=0,

where
bl m=| e mdr.

This equation is not of any standard form.
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