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Abstract

This first chapter introduces on the heat entry problem in a channel
flow the techniques that will be used thereafter for the flow near the
wall in the ”Lower Deck”. Some asymptotic principles are presented on
the so called Lévêque and Graetz heat problems. Next the same ideas
are presented for the flow: first, the Couette flow with a small accident
(a bump) is presented following the previous analysis. Second, the flow
in a channel (or a in a pipe) with a small accident is presented. There
are two ”Lower Deck” layers (at the top and the bottom wall) which
interact through the ”Main Deck” consisting in the basic Poiseuille
flow. The different scales arising are presented, some numerical exper-
iments show the skin friction and pressure distributions. The upstream
influence is then discussed.

Part I

Heat Flow in a Channel

1 Introduction the Lévêque/ Graetz problem

1.1 Introducing the problem of asymptotic expansions

The problem that we will tackle is depending of a small parameter (in fact
the inverse of a large parameter). Even though now a lot of problems may
be solved numerically, it is interesting to observe which terms are important
in the equations. That is the aim of the method of Matched Asymptotic
Expansion. It is a tool to analyze and understand the flow structure. One of
the basic text book is Van Dyke one’s [?], he introduced there the technique
and the notations. A less centered of hydrodynamics text book is the Hinch
one’s [?]. It presents a large panel of the techniques on model equations.
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channel flow

More recently, Cousteix & Mauss [?] present a global survey of asymptotic
techniques and compare them.

We will here use those theories to explain with very few mathematical
details the ideas of the Triple Deck and Interactive Boundary Layer Theories.
To start we introduce a very classical example which in fact contains most
of the features.

1.2 Unit Step response of temperature in a Poiseuille steady
flow

As an introduction let us consider the steady laminar incompressible flow
between two parallel plates (in y = 0 and y = h). The flow solution is clearly
the Poiseuille one:

u = U0(y/h)(1− y/h), v = 0. (1)

Let say that for x < 0 the temperature at the wall is T0 and after T = Tw
(see figure 1 and 2 left for a sketch). We wish to compute the steady tem-
perature profile with asymptotic analysis bearing in mind that convective
effects are stronger than diffusive ones in this chosen case.

The first step is to adimensionalize the equations, this step is not so
trivial. A first good guess is to use the channel height as scale x = hx̄ and
y = hȳ. For the temperature, let write T = T0 + (Tw − T0)T̄ (other choices
are possible, this one is more simple to solve). The steady heat equation
(for constant conductivity k, density ρ and specific heat capacity cp and
neglecting dissipation by viscosity) will be called H(1/Pe) it reads:

H(1/Pe) ȳ(1− ȳ)
∂T̄

∂x̄
=

1

Pe
(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
) (2)

Figure 1: The Poiseuille flow in a pipe at temperature T0 in x < 0 is expe-
riencing a temperature discontinuity in x > 0 to Tw. Iso temperatures are
presented. This example contains several distinct scales near the disconti-
nuity, near the walls, etc.
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Figure 2: Left, the flow at temperature T0 in x < 0 and experiencing
a temperature discontinuity in x > 0 to Tw. Right, the numerically com-
puted temperature profile T̄ (x̄, ȳ) in the lower half of the flow, arrow in the
direction of increasing x.

where Pe = U0h
k/(ρcp) is the Péclet number (ratio of convective effects by

diffusive effects). This number is not small. This is an elliptic equation and
to solve it one has to impose boundary conditions. Those are:

T̄ (x̄→ −∞, ȳ) = 0 and T̄ (x̄, ȳ = ±1) = 0 and T̄ (x̄→∞, ȳ) = 1.

The problem may be solved numerically (here with FreeFem++ [?]). On
figure 2 right the numerically computed temperature profile T̄ (x̄, ȳ) is drawn
near the lower wall for various values of x̄. The more x̄ increases, the more
the flow is heated as it is indicated by the arrow in the direction of increasing
x̄. On figure 3 the iso temperature are plotted for several values of Pe
showing that for increasing Pe there is a thin layer near the wall where the
temperature increases abruptly.

In the sequel, the Péclet number Pe is assumed to be large.

1.3 the Lévêque (1928) problem

1.3.1 Singular problems

The PDE (2) as an heat equation problem is well posed and we guess that
the solution is smooth enough except in the vicinity of x̄ = 0. For any fixed
Pe even large, the solution is certainly continuous at fixed x̄ when ȳ goes to
0+ or 1−.

The inverse of the Péclet (1/Pe) is assumed to be small, so the first
problem consists to put (1/Pe) = 0 in the PDE (2). Let us call θ̄ the
solution of this problem (H0) which reads:

H0 ȳ(1− ȳ)
∂θ̄

∂x̄
= 0,

which solution is θ̄ = 0 for 0 < ȳ < 1. This is called the outer solution.
The temperature is discontinuous at the wall where we should have θ(x̄ >

- I . 3-



channel flow
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

!

"
T

Figure 2: Left, the numerical solution written with the selfsimilar variable η = ŷ/x̂1/3

compared to the selfsimilar solution labelled Γ and the slope at origin: 1 + g′(0)η. Right
the numerical solution of the mid channel value T̄ (x̄, 1/2) for several values of Pe with
x̄/Pe in abscissa, the curves collapse on the Graetz solution.

1.4.2 Fourier solution

One other useful tool is the Fourier transform that we will use extensively in numerical
studies. One may try to find solutions of problem (4) in term of Fourier series, looking for
solutions in e−ikx:

(−ik)ỹTF [θ̃] =
∂2TF [θ̃]

∂ỹ2
,

so that we see that TF [θ̃] is solution of the Airy equation (Ai′′(ξ) − ξAi(ξ) = 0 with
Ai(+∞) = 0, ξ = y(−ik)1/3 and Ai(0) = 1

32/3Γ( 2
3)

and Ai′(0) = − 1
3√3Γ( 1

3)
see Abramowitz

& Stegun p 446 [1] for details). Then, as the unit step function has i
k
√

2π
+ δ(k)

√
π
2 as

Fourier transform, we can evaluate:

TF [θ̃] = (
i

k
√

2π
+ δ(k)

√
π

2
)
Ai(y(−ik)1/3)

Ai(0)

and we then obtain the flux at the wall as: TF [θ̃′0] = (−ik)1/3( i
k
√

2π
+ δ(k)

√
π
2 )Ai′(0)

Ai(0) going
back in Real space, we reobtain the selfsimilar result:

θ̃′0 = −
3
√

3
Γ

(
1
3

)((x))−1/3 if x > 0, else θ̃′0 = 0

Remark All those Fourier transform are not so trivial to compute, and there is some
magick that Mathematica handles well. To be convinced, we have to evaluate

ϕ(x) =
∫

kne−ikxdk here, we have n = −2/3

5

Figure 3: Left, iso temperatures of the numerical solution for various values
of Pe. Right the numerical solution of the mid channel value T̄ (x̄, 1/2) for
several values of Pe with x̄ in abscissa.

0, ȳ = 0, 1) = 0. The highest derivative has disappeared, we can not fix
the boundary conditions. The problem is said to be singular, the solution
of the problem where (1/Pe) is put to 0, is not the limit when (1/Pe)
becomes infinitely small to the full solution of the problem. The two limits
are different:

lim
(1/Pe)→0

(
Sol[H(1/Pe)]

)
6= Sol[ lim

(1/Pe)→0

(
H(1/Pe)

)
] (3)

One clue of the problem is that one as to look near the wall at small values
of ȳ (the same for the upper wall, that we will no more consider).
To solve the problem we follow Van Dyke [?] page 86, ”The guiding princi-
ples are that the inner problem shall have the least possible degeneracy, that
it must include in the first approximation any essential elements omitted in
the first outer solution, and that the inner and outer solutions shall match.”

i) The first step is the Choice of inner variables, this is done following
Van Dyke first part of the sentence and more specifically the ”least possible
degeneracy”. We write ỹ = ȳ/ε meaning that we strech the variable. And
take θ̃ the temperature so that (2) is now:

εỹ(1− εỹ)
∂θ̃

∂x̄
=

1

Pe
(
∂2θ̃

∂x̄2
+

∂2θ̃

ε2∂ỹ2
) (4)

the leading order of the left hand side is εỹ
∂θ̃

∂x̄
, whereas the leading order

of the right hand side is
1

Peε2
(
∂2θ̃

∂ỹ2
). Using Van Dyke Principle, the best
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choice for the streching is ε = Pe−1/3, with this choice, we have:

ỹ
∂θ̃

∂x̄
=
∂2θ̃

∂ỹ2
. (5)

We study the so called inner region which is near the wall where the effect
of diffusion are strong enough to permit to ensure the boundary condition.
In fact we see, that putting (1/Pe) = 0 in the problem (2) is not relevant
as, in doing this we suppose that variations according to ȳ are not fast, or
are always at scale 1. This is not true near the wall where the derivatives
are very large (of order Pe2/3).

ii) The second important ingredient is the Matching principle: which
is the last part of the Van Dyke sentence ”the inner and outer solutions
shall match.”, he writes it as:

inner representation of (outer representation)

=

outer representationof (inner representation)

this gives the boundary condition that was missing in the preceeding prob-
lem. This reads

lim
ȳ→0

θ̄ = lim
ỹ→∞

θ̃ (6)

In the bulk, the outer solution (of problem H0) was always 0. So, far away
from the wall, the inner solution θ̃ matches to this value.

1.3.2 Selfsimilar solution of Lévêque problem

Now, this problem (5) may be solved using the ”self similar technique”. This
technique is based on the observation that lot of problems admit solutions
with a shape which looks like always the same.

We have the numerical solution, it is plotted on the figure 2 right. This
figure clearly shows that all the temperature profiles have nearly the same
”shape” (a curve decreasing from 1 to 0) with increasing thickness in x̄ say
∆(x̄). So we guess that maybe there is a unique temperature profile function
of ỹ divided by this thickness such as θ̃(x̄, ỹ) = g(ỹ/∆(x̄)) where g decreases
from 1 to 0) .

The technique helps to find this dependance. We test whether the prob-
lem (5) is invariant trough stretching of the coordinates. It is the ”method
of invariance through a streching group”, Bluman & Kumei [?]. Writing:

x̄ = Xx̂, ỹ = Y ŷ and θ̃ = Θθ̂
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we wish to obtain a PDE problem invariant under the rescaling X,Y,Θ.
Clearly, we have Θ = 1 to full fit the invariance of the boundary condition
θ̃(x̄ > 0, 0) = 1 or θ̂(x̂ > 0, 0) = 1. Starting form the original PDE we want
it to be invariant after streching:

ỹ
∂θ̃

∂x̄
=
∂2θ̃

∂ỹ2
becomes after changing the scale: (

Y 3

X
)ŷ
∂θ̂

∂x̂
=
∂2θ̂

∂ŷ2
. (7)

so that Y 3 = X allows the invariance of the PDE, it means that if we stretch
with any Y > 0 the variables:

x̄ = Y 3x̂, ỹ = Y ŷ and θ̃ = θ̂

ỹ
∂θ̃

∂x̄
=
∂2θ̃

∂ỹ2
, θ̃(x̄ > 0, 0) = 1 is after streching: ŷ

∂θ̂

∂x̂
=
∂2θ̂

∂ŷ2
, θ̂(x̂ > 0, 0) = 1.

The next step is to take advantage of this invariance. If we have a solution
f for the temperature dependance in x̄ and ỹ then say θ̃(x̄, ỹ) = f(x̄, ỹ)
we may write it in an implicit way rather than in a usual explicit one:
θ̃ − f(x̄, ỹ) = F (x̄, ỹ, θ̃) so that

F (x̄, ỹ, θ̃) = 0, with the invariance F (Y 3x̂, Y ŷ, θ̂) = 0

this is true for any Y > 0, so we may imagine to change the function F , and
introduce another one, where we just changed

F (x̄, ỹ, θ̃) = 0, changed into G(Y 3x̂, ŷ/x̂1/3, θ̂) = 0

as this is valid for any Y , we guess that the first slot is empty, so that
θ̂ = g(η) with η = ŷ/x̂1/3, this reduced variable is called the selfsimilar
variable and by definition η = ŷ/x̂1/3 = ỹ/x̄1/3. Looking to a self similar so-

lution θ̃(x̄, ỹ) = g(η), the transformed problem is ηx̄1/3 g
′(η)η
−3x̄ = g′′(η)x̄−2/3 so

−η
2

3
=
g′′

g′
with g(0) = 1, g(∞) = 0.

The solution is written as:

g(η) = 1−
∫ η

0 exp(−ξ
3/9)dξ∫∞

0 exp(−ξ3/9)dξ

where we recognise the incomplete gamma function Γ(a, z) =
∫∞
z ta−1e−tdt.

So that

g(η) = θ̃(x̄, ỹ) = Γ(
1

3
,
ỹ3

9x̄
)/Γ(

1

3
).

The flux at the wall will then be θ̃′(x̄, 0) = −31/3/Γ(1/3)x̄−1/3 = −0.538366x̄−1/3
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Figure 4: Left, the numerical solution T̄ written with the selfsimilar variable
η = ỹ/x̄1/3 collapsing on the selfsimilar solution labelled Γ and the slope at
origin: 1 + g′(0)η. Right the numerical solution of the mid channel value
T̄ (x̄, 1/2) for several values of Pe with x̄/Pe in abscissa, the curves collapse
on the Graetz solution.

Note
To be convinced on an example for the F to G:
Suppose f(x, y, z) = (x2 + y2)sin(z)
We may write it f(x, y, z) = x2(1 + (y/x)2)sin(x(z/x))
So that f(x, y, z) = g(x, y/x, z/x)
with g the function g(ξ, η, ζ) = ξ2(1 + η2)sin(ξζ).
or g(x, y, z) = x2(1 + y2)sin(xz).

1.3.3 Fourier solution of Lévêque problem

One other useful tool is the Fourier transform that we will use extensively
in numerical studies. One may try to find solutions of problem (5) in term
of Fourier series:

TF [φ](k) =
1√
2π

∫
φ(x)eikxdx,

looking for each mode in e−ikx:

(−ik)ỹTF [θ̃] =
∂2TF [θ̃]

∂ỹ2
,

so that we see that TF [θ̃] is solution of the Airy equation defined by

Ai′′(ξ)− ξAi(ξ) = 0

with Ai(+∞) = 0, after changing the variable in ξ = y(−ik)1/3 and by
definition Ai(0) = 1

32/3Γ( 2
3)

and Ai′(0) = − 1
3√3Γ( 1

3)
, there is another solu-

tion of this equation the Bi(ξ) function which is not bounded in ∞, see
Abramowitz & Stegun p 446 [?] for details). Then, as the unit step function
has i

k
√

2π
+ δ(k)

√
π
2 as Fourier transform, we can evaluate:

TF [θ̃] = (
i

k
√

2π
+ δ(k)

√
π

2
)
Ai(y(−ik)1/3)

Ai(0)
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and we then obtain the flux at the wall as:

TF [θ̃′0] = (−ik)1/3(
i

k
√

2π
+ δ(k)

√
π

2
)
Ai′(0)

Ai(0)

going back in Real space, we reobtain the selfsimilar result:

θ̃′0 = −
3
√

3

Γ
(

1
3

)x−1/3 if x > 0, else θ̃′0 = 0

Remark All those Fourier transform are not so trivial to compute, and
there is some magick that Mathematica [?] handles well. To be convinced,
we have to evaluate

ϕ(x) =

∫
kne−ikxdk here, we have n = −2/3

so changing the variable k = λk′ gives ϕ(x) = λn+1
∫
k′ne−ik

′λxdk′ taking
λ = 1/x we have the expected power dependence (here, we have −(n+ 1) =
−1/3) so

ϕ(x) = x−(n+1)

∫
k′ne−ik

′
dk′.

Fowler [?] proposes to look at Gradshteyn and Ryzhik 1980 to compute
those integrals and remarks that we recover a Γ function:∫ ∞

0
k′neik

′
dk′ = Γ(n+ 1)eiπ(n+1)/2.

1.4 The Graetz problem

Now, let us look at what happens for x̄ large. On figure 3 we saw that at
fixed value Pe, there is always a position where the two thermal boundary
layers meet ultimately. So we study what happens for very large value of x̄,
let define x̌ a long variable (of scale say 1/ε, it is here a new ε) so that:

εx̄ = x̌

Now at this large scale, the temperature changes all across the flow so we
do not change the transverse scale ȳ. The temperature with the new scale
x̌ is denoted as Ť and the heat equation is now:

ȳ(1− ȳ)
∂Ť

ε−1∂x̌
=

1

Pe
(
∂2Ť

ε−2∂x̄2
+
∂2Ť

∂ȳ2
) (8)

the left hand side is εȳ(1− ȳ)
∂Ť

∂x̌
and the dominant right hand side is

1

Pe
(
∂2Ť

∂ȳ2
), so the the least possible degeneracy choice is ε = Pe−1.

ȳ(1− ȳ)
∂Ť

∂x̌
=
∂2Ť

∂ȳ2
(9)
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This problem has been solved by Nuβelt and is solved using separation of
variables as a infinite sum of terms like:

Ť =
N
Σ
n=0

ψn(y̌)exp(−λ2
nx̌),

each of the modes n verifies the eigen value equation:

−λ2
n(1− r̄2)ψn(y̌) = ψn(y̌)′′, ψn(0̌) = ψn(1) = 0.

We do not here solve this problem (a master piece of heat transfer theory
text Book), but on figure ?? right, we plot the numerical resolution of the
full problem 2 for various values of Pe with the x̌ variable. We observe that
as Pe increases the solution goes on the same master curve corresponding
to the solution of the Graetz problem.

1.5 Local scaling near the discontinuity

Up to now, we always neglect the longitudinal variation in the temperature,
it should come back somewhere. We did not study what happens just at
the point where the temperature changes, at this place x = 0, y = 0 there
is a huge longitudinal variation in the temperature. This place is a good
candidate to reintroduce the always removed second order derivative.

Then following the ”least possible degeneracy”. We write x̃ = x̄/ε, ỹ =
ȳ/ε meaning that we strech the variable with same scale. And take θ̃ the
temperature so that (2) is now:

εỹ(1− εỹ)
∂θ̃

ε∂x̄
=

1

Pe
(
∂2θ̃

ε2∂x̄2
+

∂2θ̃

ε2∂ỹ2
) (10)

the leading order of the left hand side is ỹ
∂θ̃

∂x̄
, whereas the right hand side

is the complete Laplacian.
1

Peε2
(
∂2θ̃

∂x̃2
+
∂2θ̃

∂ỹ2
). The local scale is then:

ε = Pe−1/2.

This is the convenient scale to study a local accident, with this scale we have
the exact equilibrium between the convection and diffusion.

In Pedley [?] one may find that this solution matches with the Lévêque
one at infinity.

It very important to notice here that at this scale, there is some up-
stream influence. It means that at a given point before x̃ = 0, the flow
”feels” the heat produced in x̃ > 0. That what we see at local scale on
figure ??. In the tilde variable, the Laplacian gives informations against the
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voisinage du point de changement de température, et on pose T = T0+(Tp−T0)θ̃.
Pour ε = Pe−1/2, on garde des termes de dérivées seconde :

ξ̃
∂θ̃

∂ξ̃
=

∂2θ̃

∂ξ̃2
+

∂2θ̃

∂ζ̃2

θ̃(ξ̃ < 0, 0) = 0, θ̃(ξ̃ > 0, 0) = 1, θ̃(ξ̃,∞)− > 0,
La résolution numérique nous montre des lignes iso température ayant la

forme suivante :

Fig. 10 – au voisinage de x = 0, à l’échelle de la longueur visqueuse.

On observe donc bien la remontée de l’information en avant de la disconti-
nuté. Pour mémoire, sachons que l’on peut résoudre ce problème par transfor-
mation de Fourier (eikξ̃). La solution (après beaucoup de calculs) se développe,
pour ξ̃ → 0 (ie. k grand) en :

∂θ̃(ξ̃, 0)
∂ξ̃

∼ 31/3Γ(2/3)/Γ(1/3)3/4(πξ̃)−1/2,

et pour ξ̃ →∞ (i.e. k petit) en :

∂θ̃(ξ̃, 0)
∂ξ̃

∼ (35/6)Γ(2/3)(2πξ̃)−1/3.

On retrouve la solution de Lévêque loin de la discontinuité de température que
nous développons au point suivant et que nous avons déjà vue en PC !

• Dans le problème sans dimension à résoudre :

(1− r̄2)
∂T̄

∂x̄
=

1
Pe

(
∂2T̄

∂x̄2
+

∂r̄T̄

r̄∂r̄
).

si Pe tend vers l’infini, il ne reste que :

(1− r̄2)
∂T̄

∂x̄
= 0.

La température reste constante le long d’une ligne de courant : elle reste nulle.
Il faut donc introduire une couche limite. Posons r̃ = (1 − r̄)/ε. Après choix
deε = (2Pe)−1/3 par moindre dégénérescence et réduction on a :

r̃
∂T̃

∂x̄
= (

∂2T̄

∂x̄2
+

∂2T̃

∂r̃2
).
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x̄ = 0
x̃ = 0

Figure 5: The iso temperature near the point where the flow is heated. Note
that the flow is heated upstream at scale Pe−1/2.

flow, the problem is ”elliptic”, the downstream influences the upstream.
At all the other scales the convection is too strong at a given point before
x̃ = 0, the flow does not ”feel” the heat produced in x̃ > 0. The equation is
”parabolic”. The downstream no more influences the upstream.

We may note that in this case the smaller interesting scale is

hPe−1/2 = h(U0h/κ)−1/2 = ((U0/h)/κ)−1/2

it means that when we are near the lower wall and near the temperature
discontinuity, only matter the shear of the velocity say U ′0 = (U0/h). The
scale which is then natural is √

κ

U ′0

it is the sole scale that we can construct in a shear viscous flow.

Of course, if we scale the flow at a scale which is smaller, the convective
term becomes negligible. We have only a Laplacian to solve:

∂2θ̃

∂x̄2
+
∂2θ̃

∂ỹ2
= 0. (11)

with θ̃(x̃ < 0) = 0 and θ̃(x̃ > 0) = 1. Note that this problem is not simple
to solve and that it implies a logarithmic term, but that is another story...
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Graetz Problem

Lévêque Problem x̄ ȳ(
Pe

x̄
)1/3

x̄

Pe ȳlocal Problemx̄Pe1/2

ȳP e1/2

Figure 6: The final scales in the thermal pipe flow which allow in each case
a peculiar convective diffusive equilibrium. First, the entrance where the
two scales are the same x̄Pe1/2, ȳP e1/2. Second the thin thermal boundary
layer where we have x̄ , and a thin ȳ(Pe/x̄)1/3. Third the long longitudinal
final scale x̄/Pe and ȳ where the boundary layers have merged.

1.6 Conclusion

•This simple example allows us to introduce the salient ingredients of the
asymptotics:
- non dimensional equations with small parameters,
- the least degeneracy principle,
- matching principle.

• We introduced some techniques and remarks that we will see again:
- variety of scales which can be intricated
- self similar/ Fourier solutions
- parabolic equations/ upstream influence
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