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1 What is a Model ?

A usual definition of ”model” is a representation of a thing typically
on a smaller scale than the original. One speaks of ”physical model”.
In hydrodynamics or aerodynamics, it is clear that the flow around
the model of a boat or around a model of a plane will give valuable
informations on the flow around the real boat or the real plane.

The world comes from italian modello XVIth century, as a repre-
sentation in small of something build (with the meaning of ”modèle
réduit” in french, or even ”maquette” in french)
wikipedia https://fr.wiktionary.org/wiki/mod%C3%A8le

By extension it is used as ”a representation of a system. It consists
of concepts used to help people know, understand, or simulate a sub-
ject the model represents. It is also a set of concepts. In contrast,
physical models are physical objects, such as a toy model that may be
assembled and made to work like the object it represents.”
Wikipedia https://en.wikipedia.org/wiki/Conceptual_model.

Figure 1 – The good model for Mickey is not the openGL one, top,
but bottom, the cylinder or the sphere...

1.1 The Mickey Effect

A first sensible way to present this notion of model is to invoke
Mickey mouse himself.

This is a way to understand the limit of a model : what I call
”Mickey’s effect”. Suppose you want to do a ”model” of Mickey
Mouse. This is an hard job, as Mickey is 2D, you have to do it in 3D.
And there are many details, the thickness of the tail, of the ears, the
fact that Mickey has height fingers not ten....

Many people will spend too much time and numerical ressources
to do a nice ”model” of the mice. But depending of your application,
maybe the best model is just a sphere or a cylinder...

It’s up to you to decide the good level of precision with the
pertinent details of your model for the use you need. This is the
interesting job of modelling : extracting the pertinent informations.

Let us look to an other example to fix the ideas.
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Figure 2 – Models of boats : top left, a ”real” ship : ”L’Étoile Molène”,
dundee thonier constructed in 1954 (PYL), top right, ”L’Étoile du
Roy” a full size replica of a Sixth-rate ship (20 canons) form XVIIIth
century constructed in 1996 (PYL), bottom left a balsa model sai-
ling on Luxembourg pound circa 1995 (boat and photo PYL), bottom
right, model ship to display ”La Licorne” in Tintin (1943), D.R. Hergé
(a sketch or a drawing is a model it self). Polar curves of an Oceanis
31. A paper boat, and finally” une coquille de Noix (Marine) (Sens
figuré) (Familier) Petit bateau peu susceptible de voguer.”

1.2 A floating-model and a model ship in a display
case

Hence the question is : A model for which use ?

We will make a differentiation between different models depending
on what we want to observe. Let us look now at a boat (this another
visual application of Mickey’s effect, but on boats). For example, a
model boat that is placed on a chimney (or on a table, a sideboard...)
is not a model of boat that sails on a pound. In both cases it is however
a model. In the first case one seeks pure representative realism (a nice
object), in the other case one wants to make the ship float and move
forward (to extrapolate to the real boat). In English / American they
also use the word ”mockup”, or ”mock-up” but in this case it is more
of a 1 :1 scale prototype, ”mok-up” is a deformation of ”maquette”
pronounced by an englishman.
Wikipedia https://fr.wiktionary.org/wiki/mockup

1.3 Digital Twins

This is a rather new word (2014) https://books.google.com/

ngrams/graph?content=digital+twins&year_start=1800&year_

end=2019&corpus=en-2019&smoothing=3.

”A digital twin is a virtual representation of a real-world
physical system or product that serves as the indistinguishable
digital counterpart of it for practical purposes, such as system
simulation, integration, testing, monitoring, and maintenance.”
https://en.wikipedia.org/wiki/Digital_twin].

OK, so, please do not say ”digital twins”, just say ”Model”.
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1.4 Never forget reality

A feedback with experiment is important as noted by Madame du
Châtelet (1706- 1749) (https://fr.wikipedia.org/wiki/Emilie_
du_Chatelet). ∂’Alembert was her friend. Voltaire was her boyfriend.

She translated in french the ”principia” of Newton. She wrote
the first book or textbook in Physics (in fact in point mechanics)
”Institutions de Physique 1740” https://gallica.bnf.fr/ark:

/12148/bpt6k75646k. She was one of the very first to understand the
difference between mv and mv2/2. In this book (written for her son),
she insists on the importance of observation and experience before
settling theory :

”Souvenez-vous, mon fils, dans toutes vos Études, que l’Expérience
est le bâton que la Nature a donné à nous autres aveugles, pour nous
conduire dans nos recherches ; nous ne laissons pas avec son secours
de faire bien du chemin, mais nous ne pouvons manquer de tomber
si nous cessons de nous en servir ; c’est à l’Expérience à nous faire
connâıtre les qualités Physiques, & c’est à notre raison à en faire
usage & à en tirer de nouvelles connaissances & de nouvelles lumières”.

Figure 3 – ”Institutions de Physique 1740” , Voltaire et Emilie du

Châtelet.
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2 Model equations

The game is as follows : looking at a phenomena, one can distinguish
some pertinent parameters. They are used to make the problem non
dimensional. Then some numbers without dimension appear. By do-
minant balance, some terms are removed as some numbers without
dimension are small. The remaining problem is solved with scales
different in the various directions. A hierarchy of problems may be
constructed, all without dimensions.

Some of the final most classical problems obtained in fluid dyna-
mics are in the next section..... They are combinations of all partial
derivatives ∂tu, ∂xu at various powers ∂2

t u, ∂2
xu ∂

3
xu up to ∂4

xu, down
to
∫
udx and combinations of u, u2 up to u3....

3 Feynman unwordliness equation

Feynman (Nobel 1965), the total unwordliness of the world, the
great ”law of nature” :

U = 0

”Equation of the Universe”.

4 Simple Model Equations

4.1 ODE

4.1.1 Linear

The most simple model

∂u

∂t
= Lu

solution in exponential (if L is a matrix eL =
∑

k∈N
1
k!
Lk)

4.1.2 Non Linear

The non linear differential equation

∂u

∂t
= Lu2

admits singular solutions...

4.1.3 Transcritical bifurcation

Change of type of solution depending on the value of the control
parameter L

∂u

∂t
= Lu− u2

4.1.4 Pitchfork bifurcation

Change of type of solution depending on the value of the control
parameter L

∂u

∂t
= Lu− u3

4.1.5 Verhulst, logistic growth

Self-limiting process when a population becomes too large (logistic
map)

dN

dt
= rN(1−N/K)

4.1.6 Lotka-Volterra

Lapin & Renards, predator-prey equations :
dL(t)
dt

= L(t)
(
α− βR(t)

)
dR(t)

dt
= R(t)

(
δL(t)− γ

)
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4.1.7 SIR

Covid and deases model : SIR Sain, Infected, Recovered
dS(t)
dt

= −r S I
dI(t)

dt
= rSI − aI,

dR(t)
dt

= a I,

where r > 0 is the infection rate and a > 0 the removal rate of
infectives.

4.1.8 Lorentz attractor

Famous attractor, the simpliest model of meteo
dx(t)

dt
= σ

(
y(t)− x(t)

)
dy(t)

dt
= ρ (x(t)− z(t))− y(t)

dz(t)
dt

= x(t) y(t)− β z(t)
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4.2 Oscillators/ second order equations/ ODE

4.2.1 Harmonic Oscillators

the ubiquitous oscillator

y′′ = −y

with given y(0) and y′(0).

4.2.2 Damped harmonic oscillator

The same with linear dissipation in velocity

d2ȳ

dt̄2
+ ε

dȳ

dt̄
+ ȳ = 0

ȳ(0) = 0, and
dȳ

dt̄
(0) = 1.

4.2.3 Forced harmonic oscillator

The same with a forcing source term

d2ȳ

dt̄2
+ ε

dȳ

dt̄
+ ȳ = cosωt

4.2.4 Friedrich problem,

Used for singular perturbation as a simplification of Blasius model

εy′′ + y′ =
1

2
, y(x = 0) = 0 y(x = 1) = 1,

4.2.5 Carrier’s problem, Carrier-Pearson problem

Introduced by Carrier 1970 as an ad hoc equation. See Bender Ors-
zag p 464

εy′′ + y2 = 1, y(x = ±1) = 0 − 1 ≤ x ≤ 1,

See Hinch page 108

(x+ εy)y′ + y = 1, y(x = 1) = 2 0 ≤ x ≤ 1,

4.2.6 Lagerstrom problem

Model problem for the Navier-Stokes equation with small Reynolds
numbers around a sphere

y′′ + 2
y′

r
+ εyy′ = 0, y(r = 0) = 0 y(r =∞) = 1

4.2.7 Lagerstrom worse problem

Model problem for the Navier-Stokes equation with small Reynolds
numbers around a cylinder

y′′ +
y′

r
+ εyy′ = 0, y(r = 0) = 0 y(r =∞) = 1,

4.2.8 Lagerstrom terrible problem

Another model problem for the Navier-Stokes equation with small
Reynolds numbers around a cylinder (unusually difficult, see Hinch p
77)

y′′ +
y′

r
+ (y′)2 + εyy′ = 0, y(r = 0) = 0 y(r =∞) = 1,

4.2.9 Cole oscillator

An harmonic damped oscillator with a small mass, with a given
impulse

εy′′ + y′ + y = 0, y(0) = 0, εy′(0) = 1

4.2.10 Van der Pol Oscillator

An oscillator with a damping depending of the amplitude, so that
it is unstable at small amplitude

y′′ − ε(1− y2)y′ + y = 0, y(0) = y0, y
′(0) = 0
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4.2.11 Canard cycle Oscillator Van der Pol

A relaxation oscillator like Van der Pol with very fast transition
(slow fast system)

εẏ = z − y3/3 + y

ż = a− y

4.2.12 Rayleigh Oscillator

An oscillator with a damping depending of the velocity y′, so that
it is unstable at small velocity

y′′ − ε(1− (y′)2)y′ + y = 0, y(0) = y0, y
′(0) = 0

4.2.13 Duffing Oscillator

An oscillator with a non linear elastic force

y′′ + y − εy3 = 0, y(0) = 0, y′(0) = 1.

4.2.14 Mathieu Oscillator

An oscillator with a coefficient function periodical of time

y′′ + (1 + ε cos(t))y = 0, y(0) = 0, y′(0) = 1.

4.2.15 Heat in a fin

Steady heat equation averaged across the section

T ′′(x) =
h

ka
(T (x)− T0)

The heat equation for a thin body at small Biot number.

4.2.16 Schrödinger, eigen state

A particule in a potential V of a given energy E

− ~2

2m
Ψ′′ + V (x)Ψ = EΨ
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4.3 PDE

4.3.1 Diffusion

Diffusion equation
∂c

∂t
=
∂2c

∂x2

4.3.2 Reaction Diffusion

Diffusion equation with source term

∂c

∂t
=
∂2c

∂x2
+ f(c)

4.3.3 Advection linéaire

Transport in at constant velocity, i

∂u

∂t
+
∂u

∂x
= 0

4.3.4 Advection

A given u transports another field c

∂c

∂t
+ u

∂c

∂x
= 0

4.3.5 Advection Diffusion

Mix of previous ones

∂c

∂t
+ u

∂u

∂x
=
∂2c

∂x2
+ f(c)

4.3.6 Bürgers

Advection with diffusion

∂u

∂t
+ u

∂u

∂x
=
∂2u

∂x2

4.3.7 Inviscid Bügers

Advection in its own velocity field

∂u

∂t
+ u

∂u

∂x
= 0

4.3.8 Ginzburg Landau

Remember Landau or Stuart Landau (Pitchfork bifurcation)

∂A

∂t
= σA− λA|A|2

Ginzburg Landau is :

∂A

∂t
=
∂2A

∂x2
+ εA− g|A2|A

4.3.9 Kuramoto-Sivashinsky

A model for the diffusive-thermal instabilities in a laminar flame
front, used for front propagation

∂A

∂t
+ A

∂A

∂x
+
∂2A

∂x2
+
∂4A

∂x4
= 0

4.3.10 Korteveg de Vries

Solitary wave equation

∂A

∂t
+ A

∂A

∂x
+
∂3A

∂x3
= 0

4.3.11 Black Scholes

A heat equation with a negative coefficient, price of an option in
financial market

∂V

∂t
+
σ2S2

2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0
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4.3.12 LWR

Tra�c ow : the Lighthill-Whitham-Richards model, in Whitham
book

@�
@t

+
@

@x
(�u (� )) = 0 u(� ) = 1 � �

http://www.clawpack.org/riemann_book/html/Traffic_flow.
html

4.3.13 KPZ

Equation of surface growth

@h
@t

=
@2

@x2
h + � (

@
@x

h)2

classic model for the evolution of the pro�le of a growing interface
is the Kardar-Parisi-Zhang (KPZ) equation (Parisi Nobel 2021), here
without the stochastic source. nor constant feeding, nor an extra slope
e�ect. http://basilisk.fr/sandbox/M1EMN/BASIC/kpz.c

4.3.14 Swift-Hohenberg

Model for pattern-forming behaviour (see Manneville)

@u
@t

= ru � (1 +
@2

@x2
)2u

4.3.15 Cahn Hilliard

Model for phase separation

@f
@t

= f (1 � f ) +
@2f
@x2

4.3.16 Benney

Model of falling liquid �lms (see Kalliadasis Ruyer-Quil Scheid &
Velarde)

@h
@t

+ h2 @h
@x

+
@

@x

�
(Ah6 � Bh3)

@h
@x

+ Ch3 @3h
@x3

�
= 0

4.3.17 First problem of Huppert, viscous dam

Spreading of a thin viscous column of uids on a horizontal plate

@h
@t

�
@

@x
(h3 @h

@x
) = 0

4.3.18 Second problem of Huppert, collapse on a slope

Spreading of a thin viscous column of uids over a slope

@h
@t

� h2 @h
@x

= 0

4.3.19 Flow in aquifere : Barenblatt

Non linear di�usion in an aquifer (Barenblatt's self similar problem
of second type) in 2D ans axi

@h
@t

�
@2

@x2
h2 = 0

@h
@t

�
1
r

r
@
@r

r
@
@r

h2 = 0

4.3.20 Keller Segel model

Chimiotaxy of microorganisms

@n
@t

=
@

@x
(k1

@
@x

n � k2
@

@x
c);

@c
@t

= D
@2

@x2
c + f (c; n);

n density of organismsc concentration of the chimioattractant.

4.3.21 Non Linear Schr•odinger

i
@A
@t

= �
@2A
@x2

+ jA2jA
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