
M2, Fluid mechanics 2010/2011
Friday, December 3th, 2010

Multiscale Hydrodynamic Phenomena

Heat transfer in a Pipe, influence of a large Péclet number
We consider the heat transfer to a viscous incompressible fluid flowing steadily in a circular pipe of
radius R. For laminar flow, the velocity distribution in the pipe (u(r), with u(0) = U0) is parabolic in
r. The equation for the temperature distribution is :

ρcu(r)
∂T

∂x
= k(

∂2T

∂x2
+
∂2T

∂r2
+

1
r

∂T

∂r
) (1)

where ρ is the fluid density, c the fluid specific heat, k the thermal conductivity, all supposed constants.
Let the temperature be raised at the wall from the constant value T0 for x < 0 to T1 for x > 0) see
figure. Far enough upstream x = 0 the temperature of the fluid is T0.

We will see that various scales appear in this problem depending on the large value of the Péclet
number (defined by Pe = U0R/(k/(ρc))). The parts are independant.

Part 1 Lévêque Problem
1.1. Show that the steady, invariant in x, and by rotation, solution of the flow in a pipe is parabolic
in r. What is the value of the constant pressure gradient associated (as function of U0 the value on
the axis x in r = 0).
1.2. Write the heat equation (Eq. 1) without dimension using U0, R and defining T = T0 +(T1 −T0)T̄
(put overbars for non dimensional variables). Identify the Péclet number.
1.3. Write all the boundary conditions. This final non dimensional problem is called H(1/Pe), it may
be solved with FreeFem++. This is done and iso temperatures are plotted on figure 2 left, and the
temperature T̄ (x̄, 0) is plotted right for increasing values of Pe. Deduce from those graphs that there
may be a problem for large Pe.
1.4. Show that the problem H(1/Pe) is singular.

Fig. 1 – The flow at temperature T0 in x < 0, there is a temperature discontinuity in x = 0 to T1,
image from Cole J.D. Perturbation Methods in Applied Mathematics 1968. The four first sentences of
this exam are from this book.
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1.5. Define the external problem H0, solve it for T̄ .
1.6. We now look at the internal problem, justify that we have to introduce a new variable so that
r̄ = 1 − εr̃ and x̃ = x̄.
1.7. Find ε as a function of the given parameters. Be careful with the velocity.
1.8. Write the internal problem with all its boundary conditions.
1.9. Show that η = r̃x̃−1/3 is the similarity variable.
1.10. Find the exact selfsimilar expression of the temperature for the inner problem (you can recognize
the incomplete gamma function Γ(a, z) =

∫∞
z ta−1e−tdt for a = 1/3).

1.11. Write the composite approximation.
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Figure 2: Left, the numerical solution written with the selfsimilar variable η = ŷ/x̂1/3

compared to the selfsimilar solution labelled Γ and the slope at origin: 1 + g�(0)η. Right

the numerical solution of the mid channel value T̄ (x̄, 1/2) for several values of Pe with

x̄/Pe in abscissa, the curves collapse on the Graetz solution.

1.4.2 Fourier solution

One other useful tool is the Fourier transform that we will use extensively in numerical

studies. One may try to find solutions of problem (4) in term of Fourier series, looking for

solutions in e−ikx:

(−ik)ỹTF [θ̃] =
∂2TF [θ̃]

∂ỹ2
,

so that we see that TF [θ̃] is solution of the Airy equation (Ai��(ξ) − ξAi(ξ) = 0 with

Ai(+∞) = 0, ξ = y(−ik)1/3 and Ai(0) =
1

32/3Γ(
2
3)

and Ai�(0) = − 1
3√3Γ(

1
3)

see Abramowitz

& Stegun p 446 [1] for details). Then, as the unit step function has
i

k
√

2π
+ δ(k)

�
π
2 as

Fourier transform, we can evaluate:

TF [θ̃] = (
i

k
√

2π
+ δ(k)

�
π

2
)
Ai(y(−ik)1/3)

Ai(0)

and we then obtain the flux at the wall as: TF [θ̃�0] = (−ik)1/3(
i

k
√

2π
+ δ(k)

�
π
2 )

Ai�(0)
Ai(0) going

back in Real space, we reobtain the selfsimilar result:

θ̃�0 = −
3
√

3

Γ
�

1
3

�((x))
−1/3

if x > 0, else θ̃�0 = 0

Remark All those Fourier transform are not so trivial to compute, and there is some

magick that Mathematica handles well. To be convinced, we have to evaluate

ϕ(x) =

�
kne−ikxdk here, we have n = −2/3
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Fig. 2 – Left, iso temperatures of the numerical solution for various values of Pe (increasing from 10
to 1000) from top to bottom). Right the numerical solution of the mid channel value T̄ (x̄, 0) for several
values of Pe with x̄ in abscissa (large values of Pe are on the right/ bottom, small on the left/top.

Part 2 Graetz Problem.
Looking at the numerical solution, one sees that far from x = 0 the thermal boundary layer merge
at the center. This part is devoted to this merging which occurs for x >> R when Pe >> 1, so we
introduce a new large scale R/ε.
2.1. Explain why we change the scales so that r̂ = r̄ and εx̄ = x̂ in H(1/Pe).
2.2. Find ε as a function of the given parameters. Obtain the Graetz problem :

(1 − r̂2)
∂T̂

∂x̂
=
∂2T̂

∂r̂2
+

1
r̂

∂T̂

∂r̂

what are the boundary conditions ? (it may be possible to define T = T1 + (T0 − T1)T̂ ).
2.3. Show that one can construct the general solution as an infinite sum of elementary functions of
separated variables : T̂ = Σn=∞

n=0 ψn(r̂)Φn(x̂). Find the ODEs for ψn(r̂) and Φn(x̂).
2.4. Show that Φn(x̂) is an exponential. The ODE for ψn(r̂) must be solved numerically. Can you guess
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the shape of ψn(r̂) for increasing n and draw them ?

Part 3 Local Problem.
Part 1 was devoted to x̄ = O(1), part 2 to x̄ >> 1, now in part 3 we turn to |x̄| << 1. We observe
what happens in the vicinity of the position of the change of temperature.
3.1. We have to cross the abrupt change in x̄ = 0, r̄ = 1. As this region is of small extent, it is natural
to take the same scale : longitudinal and transversal x̄ = εξ̃ and r̄ = 1 − εζ̃. Write H(1/Pe) for large
Pe and find ε.
3.2. Show the following equation and write the associated boundary conditions :

ζ̃
∂θ̃

∂ξ̃
=
∂2θ̃

∂ξ̃2
+
∂2θ̃

∂ζ̃2

3.3. Discuss the local solution computed by FreeFem++ and plotted on figure 3. 3.4. Pedley T.J. (in the

Fig. 3 – Iso temperature near the discontinuity x = 0.

Annex of ”The Fluid Mechanics of Large Blood Vessels” Cambridge University Press 1980) after lot
of computations showed that for large ξ̃ the temperature behaves as ξ̃−1/3. Is it consistent with part 1 ?

Part 4 Conclusion.
Draw a long tube and put all the scales from the previous part and draw some typical temperature
profiles.
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Fig. 4 – Left, the numerical solution T̄ written with the selfsimilar variable η = ỹ/x̄1/3 collapsing on
the selfsimilar solution labelled Γ and the slope at origin : 1 + g′(0)η. Right the numerical solution of
the mid channel value T̂ (x̂, 0) for several values of Pe with x̂/Pe in abscissa, the curves collapse on
the Graetz solution.
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Master SdI mention MFE

Hydrodynamics
Test

December 3, 2010

2 hour – all documentation is authorized

1 We consider incompressible potential flow. Recall the definition of the

potential and the stream function for axisymmetric flow in spherical coordinates.

2 Recall the form of the streamfunction and potential for uniform flow ov

velocity U.

3 For a point source of strength Q (m3/s) the velocity is ur = Q/(4πr2).

Find the corresponding velocity potential.

4 For the same point source find the corresponding stream function.

5 Consider the limiting case of a source-sink pair of large strength separated

by a small distance. Show that the doublet solution

φ =
m

r2
cos θ ψ = −

m

r
sin2 θ (1)

where m is the limiting value of Qδs/4π with Q the source strength and δs the

separation.

6 By adding a uniform flow to the previous doublet solution, obtain the

potential flow around a sphere. What is the radius of the sphere ?

7 Find the potential and the stream function for a source and a sink of

strength Q separated by a given distance a to which the uniform flow is added.

8 Show that one obtains the equation of the flow around an object of

spheroidal shape.

9 (Hard question, don’t waste too much time on it.) Give the equation of

the object in the simplest possible form.


