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1 We consider viscous incompressible flow. Recall the definition of the
stream function for axisymmetric flow in spherical coordinates.

2 We consider a bubble of radius a rising in incompressible Stokes flow.
The viscosities and densities are y;, p; with § = 1 for the bubble and i = 2 for
the fluid outside. There is no flow at infinity and no surface tension. Write the
conditions on the fluid velocity at the bubble interface.

3 Recall the general solution for the pressure and vorticity in the flow around
a sphere.

4 Using the same arguments as in the course, give the forms of pressure and
vorticity inside the sphere.

5 Explain how the coefficiens for the vorticity and pressure are connected.

6 Find the expression for the stream function inside the sphere, including
l" some unknown coefficients.

N _ T~ The matching conditions at a fluid interface without surface tension are
l@ = u® where the superscript indicates on which side of the interface the
quantity is estimated, and the stress balance condition o'f} )n,« = Jg ) nj where ¢
is the total stress tensor in the fluid (including the pressure) and m; is the unit
normalA Find expressions connecting the unknown coefficients to those for the

stream function outside the sphere using the velocity condition.
8 What other condition on the velocity can one write ?

9 Write two more conditions from the stress balance condition.
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Multiscale Hydrodynamic Phenomena

Heat transfer in natural convection, influence of a large Grashof number
We consider the heat transfer from a vertical plate to a viscous incompressible dilatable fluid in the
Boussinesq approximation. The set of equations are, incompressibility, momentum and heat equation,
notice the dilatable density p = po(1 — a(T — Tp)) which produces an Archimedes force. The dynamic
viscosity p and the heat Fourier coefficient k are supposed constant.
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Fic. 1 — Interferogram showing iso density lines
(photo Van Dyke 82).
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We will consider a steady 2D flow. The x
axis is vertical y is horizontal, the gravity is
G = —g€,. The flat plate is in z > 0 and
has no thickness. By thermal diffusion, the hea-
ted semi infinite flat plate at temperature 7, in-
creases the temperature in the air near the plate.
This heated layer has a smaller density than the
surrounding air, so that a buoyancy force appears
—pog(1—a(T —Tp)) €. The flow is generated by
this buoyancy force, and viscosity slows down the
flow. The flow convects then the temperature.

A steady configuration exists, this is the ”Na-
tural Convection”, see figure 1.

The equations are the same than for the Ray-
leigh Bénard instability, but the configuration is
different. The relevant number is no more the
Rayleigh number but the Grashof number (and
the Prandtl number is Pr = ucy/k) so that

ga(Tp - TO)L3
2

G =

and of course the inverse of this number is small...



1.1 Define a new pressure P as p = —pggx + P and write the boundary conditions for P and the new
momentum equation with P.

1.2 Using a standard approach, considering the flow at position L, where the induced flow is of velocity
Up, we want obtain a non dimensional problem. Why do we take first u = Upti, v = Upv, x = LT, and
y = Ly? Explain why T' = Ty + (1), — Ty)T is a good idea. Define the scale for the excess of pressure
P.

1.3 Which idea guides us to link directly pUZ/L to p , g, o, and (T, — Tp) ?

1.4 Having Write the non dimensional steady 2D system with a Grashof number. What is the link
between the Rayleigh and Grashof numbers?

1.5 We have obtained a system without dimension, with the G number. Conclude that if 1/G is
vanishingly small the problem is singular.

1.6 We have to introduce a thin boundary layer of thickness §, why 7 We keep the same z, why ?

1.7 What is the relation between §/L and G ?

1.8 Write all the equations without dimension in the new stretched coordinates.

1.9 Write all the boundary conditions.

1.10 This system may be solved with selfsimilar variables £ =z, n = gj/a?l/ 4. the stream function
(u = 0yt and v = —0,) prove that they are :

=2 f(n) and T = g(n),
1.11 Show that the final system is
4f///+3ff//_2f/2_|_4g:0; 4g"—|—3P7"fg':O;

what are the boundary conditions ?

1.12 On figure 2 left is the computation with the Navier Stokes solver gerris of u/Uy and T — Ty /(1) —
T) at 4 different locations in z/L as a function of y/L. Identify every curve. Comments ? On figure 2
right the self similar solution (lines) and the same computed fields, what are the axes ? The ordinates ?
Comments ?
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Fi1Ga. 2 — Numerical simulations with gerris of the system.



Exercice
Let us look at the following ordinary differential equation :

d?y

(Be) a2

—y=-1

valid for 0 < z < 1, with boundary conditions y(0) = 0 and y(1) = 1. Of course ¢ is a given small
parameter.

We want to solve this problem with the Matched Asymptotic Expansion method.

1) Why is this problem singular ?

2) What is the outer problem obtained from (E.) and what is the possible general form of the outer
solution ?

3) Discuss the position of the boundary layer (x = 0 or = 1) find the new local scale §(¢) at the
singular point.

4) What is the inner problem of (E.) and what is the inner solution ?

5) Solve the problem at first order (up to power £%).

6) Suggest the plot of the inner and outer solution.

7) What is the exact solution for any e.

8) Construct the composite expansion and draw it for a small €, compare with the exact solution.



