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Multiscale Hydrodynamic Phenomena

Part I. : 30 minutes, NO documents
1. Quick Questions
In few words :

1.1 What is ”dominant balance” ?

1.2 What is the dimension of the dynamic viscosity ?

1.3 What is the usual scale for pressure in incompressible NS equation ?
1.4 What is the usual scale for pressure in incompressible NS equation at small Reynolds ?
1.5 Which problem exhibits logarithms ?

1.6 What is "homogenisation”

1.7 What is the Friedrich equation ?

1.8 What is the Biirgers equation ?

1.9 What is the KDV equation ?

1.10 What is the natural selfsimilar variable for heat equation ?

1.11 In which one of the 3 decks of Triple Deck is flow separation ?

2. Exercice
Let us look at the following ordinary differential equation :
2

(E:) 5%—1—1—3;:0,
valid for 0 < z, with boundary conditions y(0) = 0 and y(co) = 1. Of course ¢ is a given small parameter.
We want to solve this problem with the Matched Asymptotic Expansion method (if you prefer use Multiple
Scales or WKB).
2.1) Why is this problem singular ?
2.2) What is the outer problem obtained from (E.) and what is the possible general form of the outer
solution ?
2.3) What is the inner problem of (E.) and what is the inner solution ?
2.4) Solve the problem at first order (up to power £°).
2.5) Suggest the plot of the inner and outer solution.
2.6) What is the exact solution for any e.
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Part II. : 2h30min all documents.
Flow in elastic tubes blood flow in Arteries

The five sections are independent (at first order). They all correspond to the papers given at the end.
Read the Kundu Cohen chapter (KC08) as introduction, the Ling and Atabek (LA72) paper, and the Wo-
mersley (W55) seminal paper.

Starting from Navier Stokes equations we want to obtain the LA72 equations (Question 1) and show that
if integrated across the section (Question 2) and linearized we have the KC08 equations (Question 4), and
that a viscous solution is W55 (Question 3). A long time an distance analysis is in Question 5.

Equations
1.1 What are the hypothesis to write equations (1) (2) and (3) in LA727
1.2 There are two lengths of scale in the problem : the unperturbed radius say Ry, and a long scale, say A
corresponding to the blood pulse wave, we have Ry < A. Find in ”2. Statement of the problem” of LA72 a
clue of this and find in KCO8 the relevant hypothesis. Note that in KC08, Ay = 7R3 and ag = Ry.
1.3 We have another scale which is not always small : the variation of radius R — Ry we define R = RyR. But
we define as well R = 14 Ry This is a ¢ which is not always small. Find in ”2. Statement of the problem”
a clue of this. Find in KCO08 the discussion of the small perturbation of radius.
1.4 Write (3) in LA72 with scale Ry and A for r and z. Introduce the blood flow velocity scale Wj.
What is the relevant scale for Uy ? (note that KCO8 uses u for w).
1.5 We use T the time of the pulse flow as the natural time scale (why not ?). Let us call Py the scale of
pressure (around a given p, pressure KCO08).
Write (1) (2) and (3) from (LA72) with scales T', A Ry and Wj.
1.6 Present the equation (2) from (LAT72) like this :

Ow 0w _Ow op ?w  Ow 0%w

E—FAU)E—FBU% =—E£+C(ﬁ+%+l)@)
identify A B C E and D
1.7 In §2.3, LA72 argue that we can neglect "the term 9?w/022 which is negligible in comparison with the
radial derivatives”, why 7
1.8 A special regime corresponds to the Womersley problem, were the flow is linearized, but viscosity present
and were the pressure gradient is a given harmonic function e, this is equation (1) from W55. Show that
n=2r/T.
1.9 W55 defines what is called now the Womersley’s number : . Write it with T', Ry and v.
1.10 What suggests this linearized study from W55 and linearized analysis from KC08 about the magnitude
of A and B from Quest. 1.5 7 Define an 3 with A and B (value of e according to KC087).
1.11 E should be equal to one. Why ?



1.12 One of the next sentences is ”Because of the small radial velocity and acceleration, the radial variation
of pressure within the artery can also be neglected”, prove it from LAT2 (1).

1.13 Write the final system from (1) (2) and (3) with Ry/\ < 1, t with E = 1, with &3 and with 1/a?. This
system should look like a boundary layer system.

1.14 Is it consistent with LA72 (5)7

1.15 Discuss the boundary conditions (6) (7) and (8) from LAT72.

1.16 From (6), write a relation between Wy and Ry and A and e.

1.17 Write A and B with ¢

1.18 Write Py with ¢

1.19 Up now, we do not have A the longitudinal scale. We turn now the interaction with the wall. In KCO08
(17.55), the wall is supposed to be elastic, in LA72 (4) the tissues are supposed to have some weight. Define
a small parameter relative to the mass m in LA72 (4).

1.20 Write KC08 (17.55) or (17.58) as p — P. = k(R — Ry)

1.21 From this, show that we have a relation between \/T" and k and p and Ry.

1.22 Write the final system with all the boundary conditions and all the scales.

Equations before Integral method

Preparing the integral method, we take the system from LA72, and show that it can be integrated across
the section. This will give an mtegral system.

2.1 Expand (¢ ) and smlphfy T ¢

2.2 From equatlon (3) (7) and (8) of LAT72, show that @ = fOR 2mrwdr the flux of mass is linked to R/ 0t.
2.3 Show that LA72 (2) is

0 0 0 0 2r .0 ,_0
S (70) + £ (= (F0) + o (i) = —T =+ —(-(75-0))

2.4 We define Q9 = fOR 2mrw?dr the flux of momentum. Write 2.3 with Q2 and Q and the value of 7, = %ﬁ)
at the wall. Of course the final integral system is not closed, as we do not know the relation between @) and
(2, and between 7, and @), this is done with Womersley profiles.

Womersley famous solution for pulsatile flow in tubes.

3.1 Show from question 1.X to 2.X that equation (1) of W55 is relevant under some hypothesis, note that
the factor 27/a? that you have maybe, comes from the choice of time scale. Use now Womersley notations.
3.2 Verify that (3) is a solution of (1).

3.3 Suppose that « is small. What does it mean in terms of frequency and viscosity ?

3.4 Suppose a = 0, show that W55 (2) gives Poiseuille flow in this case, is it a regular or singular problem ?
3.5 Suppose that « is large. What does it mean in terms of frequency and viscosity ?

3.6 Suppose 1/a = 0, show that W55 (2) is a singular problem ?

3.7 Introduce a boundary layer near the wall y = 1 — ey, why this form ?

3.8 Show that the inner problem is exponential.

3.9 Plot the solution.

3.10 Expand (3) and show that oo — 0 gives Poiseuille.

3.11 Compute Q)2 and 7, as a function of () in Poiseuille case.

3.11 Expand (3) and show that a~! — 0 gives the previous exponential solution (difficult).



The linear wave solution

Along questions 1.X we established the long wave approximation, in 2.X we established the integral equations.
At this point, we needed some information destroyed by the integration, this information is the shape of the
velocity. A good idea is to say that the velocity profile looks like a Womersley profile that we established in
3.X. In fact we supposed a Poiseuille profile, with this closure one closes the system, so we have (17.53) of
KCO08 in full form :

orR* 0 0 0 (4 Q?
R TR (gﬂm)

= 7rR22p — 8v @

5 e and p — p. = k(R — Ry).

ot 0z
4.1 Show that the previous system is the one we obtained. Deduce that KC08 (17.54) is wrong.

4.2 What hypothesis allow us to write (17.56) and (17.57) ?

4.3 Compute the Moens-Korteweg velocity with k.

4.4 Write a 0’Alembert equation for the pressure.

4.5 General solution of 4.47

4.6 The artery is supposed to be infinite, what does it mean in term of time for a pulse given at the entrance ?
4.7 A pulse is given in z = 0, p = posin(2nt/T) for 0 < ¢t < 1/2, what is the solution in z ¢ ?

4.8 Of course arteries are not infinite, estimate A from KCO08, conclusions ?

Long distance behaviour .

In fact the pressure may be expressed as p = R + f—:v%—? if we suppose a Kelvin Voigt model for the relation
between the pressure and the change of radius.

5.1 Write the constant of the dimensional Kelvin-Voigt law with the previous scales and &,.

5.2 With suitable scales, small perturbations of the flow (neglect non linear terms in the advection) in a
viscoelatic artery are :

OR _ 0Q

ot 0T _
0 _ ok, _9Q
ot o "ox2

is it correct ?
5.3 Show that a multiple scale analysis may be done to obtain the behaviour of a pulse wave going to the
right in the tube. -
5.4 Deduce that in the rigth moving frame, with suitable variables 7 and ¢ :
0 = 1 0%
—Ri=-—=R
or ' 20827
5.5 Show that we can define a selfsimilar solution of 5.4 of constant integral on the domain in § (i.e.
Jo© Ridé =1).
5.6 Plot the propagation of a pulse along an infinite artery.
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XXIV. Oscillatory Motion of a Viscous Liquid in a T'han-w . .

Elastic Tube—I : The Linear Approximation for Long Waves o e a0 FOR THE RiGIb Tuse Lo -
The s ple solution for the oscillatory motion of a vis | s liquid in :
N ey - . . .
rigid tu , under a simple-harmonic pressure gradient, was given by
Em m Phvsi By J. R. éoaammwuﬁ . Lambossy (1952) who gave the formulae for velocity and viscous drag,
wpsiology Degt, Bt Dactbolones s Medieal Gollege* He did not apply his result to the motion of the blood in arteries, being

solely concerned with the effect of the viscous drag on the frequency
[Revised MS. received October 19, 1954] response of pressure recording instruments. The author obtained *..Lrw
same result independently, in a different form, and derived the expression
for the rate of flow. This result has been used to predict rates of flow
from observed pressure-gradient (Womersley, in press). This solution is
Fine problem of determining the motion of a liquid in an elastic tube  repeated here for completeness. Let B be the radius of the tube, w the
when subjected to a pressure-gradient which is a periodic function of the  velocity along the tube, Aei"! the pressure-gradient, u the viscosity of
lime arises in_connection with the flow of blood in the larger arteries the liquid, p the density of the liquid, v=u/p the kinematic viscosity.
(Helps and McDonald 1954, Womersley 1954). Attempts have been made The equation of motion is
in the past to measure the rate of flow in the aorta and femoral artery 2w low low A

§ 1. INTRODUCTION AND SUMMARY

of the dog and rabbit (Shipley, Gregg and Schroeder 1943) and to relate S ae e = = et . . .. . (D)
X " ) ot " ror wot p-

these observations to the varying pressure. In the absence of an adequate ’ : /

mathematical theory, these were not very successful. More recent Let y=r/R and w=ue'" and let the non-dimensional quantity R+/(n/v)

determinations by direct observation of the motion through the trans-  be denoted by «. The equation for u is

lucent arterial wall, using high-speed cinematography (Helps and d®u  ldu . AR? 9

McDonald 1954, Womersley 1954) have been accompanied by measure- T2t o g © @ em v 18

ments, not only of pulse-pressure, but of pressure-gradient. Fair v 3 g

agreement has been shown between the observed rates of flow and a simple £ AR 1 [ Jo( &Y it ... (3

solution for oscillatory motion of a viscous liquid in a tube with rigid e GhiEGtoTe T T P S g0a®7?) .

walls (Womersley, in press).

In this paper the corresponding solution for a thin-walled elastic tube
is given, it being assumed that the effect of the inertia terms in the
cquations of viscous fluid motion can be neglected. An approximate
correction for the effect of the inertia terms will be presented in Part II
of this communication.

It is shown that, when the liquid contained in the tube is viscous,
the pressure-wave cannot be propagated without distortion. Not only
Is the motion damped, but the wave-velocity rises as the frequency
mereagses. For constant frequency, the wave-velocity rises as the
viscosity of the liquid decreases, tending to an asymptotic value equal
to that for a perfect fluid given by Lamb (1898). It is also shown that
the longitudinal oscillation of the walls of the tube (caused by the viscous
drag on its inner surface) is important in determining the rate of flow, !

which may be 109 greater than that in a rigid tube under the same’
pressure-gradient. ‘. :

i

* Communicated by Sir Geoffrey Taylor.
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793 Introduction to Biofluid Mechanics

Pulse Wave Propagation in an Elastic Tube: Inviscid Theory

Consider a homogeneous, incompressible, and inviscid fluid in an infinitely long,
horizontal, cylindrical, thin walled, elastic tube. Let the fluid be initially at rest. The
propagation of a disturbance wave of small amplitude and long wave length compared
to the tube radius is of interest to us. In particular, we wish to calculate the wave speed.
Since the disturbance wave length is much greater than the tube diameter, the time
dependent internal pressure can be taken to be a function only of (x, f).

Before we embark on developing the solution, we need to understand the inviscid
approximation. For flow in large arteries, the Reynolds and Womersley numbers are
large, the wall boundary layers are very thin compared to the radius of the vessel.
The inviscid approximation may be useful in giving us insights in understanding
such flows. Clearly, this will not be the case with arterioles, venules and capillaries.
However, the inviscid analysis is strictly of limited use since it is the viscous stress
that is dominant in determining flow stability in large arteries.

Under the various conditions prescribed, the resulting flow may be treated as one
dimensional.

Let A(x, t) and u(x, t) denote the the cross sectional area of the tube and the
longitudinal velocity component, respectively. The continuity equation is:

dA  9(Au)
- =0, 17.53
at + ax ( )
and, the equation for the conservation of momentum is:
du du d((p—pe)A)
AlZE )= e 17.54
PAar T ox (1759

where (p — p,) is the transmural pressure difference. Since the tube wall is assumed
to be elastic (not viscoelastic), under the further assumption that A depends on the
transmural pressure difference (p — p.) alone, and the material obeys Hooke’s law,
we have from equation (17.41), the pressure—radius relationship (referred to as
“tube law”),

(17.55)

Eh ao Eh Ao\ ?
pope=m (1= = 2 (22

ao a ao A ’
where A = a2, and Ag = ﬁam. The equations (17.53), (17.54), and (17.55) govern
the wave propagation. We may simplify this equation system further by linearizing
it. This is possible if the pressure amplitude (p — p.) compared to po, the induced
fluid speed u, and (A — Ag) compared to Ag, and their derivatives are all small.
If the pulse is moving slowly relative to the speed of sound in the fluid, the wave
amplitude is much smaller than the wave length, and the distension at one cross
section has no effect on the distension elsewhere, the assumptions are reasonable.
As discussed by Pedley (2000), in normal human beings, the mean blood pressure,
relative to atmospheric, at the level of the heart is about 100 mmHg, and there is a
cyclical variation between 80 and 120 mmHg, so the amplitude-to-mean ratio is 0.2,

which is reasonably small. Also, in the ascending aorta, the pulse wave speed, c, is
about 5 m/s, and the maximum value of u is about 1 m/s, and (#/c) is also around
0.2. In that case, the system of equations reduce to

IA u
2 LA o, 17.56
o + 037 ( )
and,
du ap
u_ o 1757
Por T Tox {7.57)
and,
Eh a_ Ay, ana 22— ER (17.58)
—pe=——(A— , and — = —— .
P Pe = 5 0Ao 0 9A  2a0Ao

Differentiating equation (17.56) with respect to ¢ and equation (17.57) with respect
to x, and subtracting the resulting equations, we get,

92A Ao d3p
—— = (17.59)
912 o 0x2
and with equation (17.58), we obtain,
92 Eh 9%A  dp Ag d?
ap_ _=h oA 9P AP (17.60)
ot? 2a9Aq 012 dA p 3x2
Combining equations (17.59) and (17.60), we produce,
8%p 19%p 3%p 2 3%p
R A , — = c“(Ag)—=, 17.61
02~ @gn O ga < Adg (17.61)

2 _ Eh _ Adp
— 2pap — pdA”

where, ¢ Equation (17.61) is the wave equation, and the quantity,

Eh A dp
C = =

2pap

; 17.62
b dA ( )
is the speed of propagation of the pressure pulse. This is known as the
Moens-Korteweg wave speed. If the thin wall assumption is not made, following Fung
(1997), by evaluating the strain on the midwall of the tube,

Eh (17.63)
c= [———, .
2p (ao +h/2)
Next, similar to equation (17.61), we can develop,
2u 1 8%u
= (17.64)

axz 2 a2’
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A nonlinear analysis of pulsatile flow in arteries

By S. C. LING AND H. B. ATABEK

Department of Aerospace and Atmospheric Sciences, The Catholic
University of America, Washington, D.C.

r\ ' U N (Received 1 March 1972)

An approximate numerical method for calculating flow profiles in arteries is
developed. The theory takes into account the nonlinear terms of the Navier—
Stokes equations as well as the nonlinear behaviour and large deformations of
the arterial wall. Through the locally measured values of the pressure, pressure
gradient and pressure-radius function the velocity distribution and wall shear
at a given location along the artery can be determined. The computed results
agree well with the corresponding experimental data.

1. Introduction

The study of blood flow in arteries has occupied the attention of the researchers
for over 150 years. Like most of the problems of life sciences, it is a complex one
and has defied all attempts at a completely satisfactory solution. Mathematical
treatment of the problem has been subjected to constant changes and modifica-
tions to account for new evidence uncovered through improved experimental
measurements. One can trace the history and development of the problem from
numerous review articles. The most consistent treatment of the problem was
given by Womersley (1957). Later, his analysis was extended by others to
include the effect of initial stresses, perivascular tethering and orthotropic and
viscoelastic behaviour of the arterial wall. A detailed comparison of this group
of articles is given by Cox (1969).

Womersley’s theory and its extensions are based on the linearized Navier—
Stokes equations and small elastic deformations. Although they are shown to
be satisfactory in describing certain aspects of the flow in small arteries, they
fail to give an adequate representation of the flow field, especially in large
arteries, see Fry, Griggs & Greenfield (1964) and Ling, Atabek & Carmody (1969).
Because of the large dynamic storage effect of these arteries, the nonlinear con-
vective acceleration terms of the Navier-Stokes equations are no longer negligible.
Moreover, the walls of arteries undergo large deformations. As a result of this,
both the geometric and elastic nonlinear effects come into play, see Ling (1970).

To take these factors into account an approximate numerical method is de-
veloped. The method, assuming axially symmetric flow, predicts the velocity
distribution and wall shear at a given location in terms of locally measured
values of the pressure, pressure gradient and pressure-radius relation. The results
of computations show good agreement with the corresponding experimental
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data. The simplicity of the method may make it useful in circulatory research,
where detailed flow characteristics are required under a wide range of arterial
pressures and heart rates.

2. Statement of the problem

Pulse propagation phenomena in arteries are caused by the interaction of
blood with the elastic arterial wall. Therefore, the mathematical statement of
the problem should include equations which govern the motion of blood and the
motion of the arterial wall, and also the relations (boundary conditions) which
connect these two motions with each other. This set of equations and conditions
make a formidable boundary-value problem. However, the problem can be
greatly simplified through the following three experimental observations.

(i) The radial motion of the arterial wall is primarily dictated by the pressure
wave.

(ii) The perivascular tethering has a strong dampening effect on the longitudinal
motion of the arterial wall, hence this motion may be neglected, see Patel,
Greenfield & Fry (1964).

(iil) To a large extent velocity profiles are developed locally as the pressure
wave propagates along the artery, hence they do not carry a significant amount
of momentum history from far upstream. This somewhat unusual behaviour of
the flow can be explained in terms of the combined effects of fast propagation
of the pressure wave and large dictensibility and taper of the arterial wall. For
example, during systole, the heart of a medium-sized dog ejects approximately
25 ml of blood into the ascending aorta. Assuming that the cross-sectional area
of the root of the aorta during systole to be 4-5 cm?, the corresponding displace-
ment of the blood along the aorta will be only 5-5 cm. During this time a fast-
rising pressure-gradient wave front, approximately 12 cm in width, accelerates
blood locally as it sweeps along the aorta with a speed of ~ 400 cm/s. As a result,
in most parts of the aorta, the momentum boundary layer is developed locally
with a minor contribution from the preceding cardiac cycles. This momentum
layer is significantly reduced by the local convective accelerations which are
generated through both the natural taper of the vessel and taper due to the wave
front. In addition, the radial velocity of the flow near the expanding wall will
generate a similar effect. These two latter effects will be discussed in detail in
§4.3. After closure of the aortic valve, blood in the root of aorta is essentially
at rest. At distal locations, the overall passive contraction of the arterial wall
will create a basic flow which will be increasing with distance owing to the in-
tegration of wall flux. The magnitude of this diastolic flow is small and, as before,
the momentum boundary layer is developed locally and is reduced by the local
convective acceleration due to arterial taper. Thus, within a cardiac cycle, the
mean momentum defect produced by the mean wall shear is effectively absorbed
by the mean positive convective accelerations. For this reason, little information
about the flow is convected far downstream, and the entrance effect is essentially
confined to a displacement distance corresponding to one heart beat. The asym-
metrical velocity profiles created by an arterial branch are found to be confined
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to a distance of 10 diameters, which is again approximately equal to the dis-
placement length of blood for one heart beat, see Ling, Atabek & Carmody
(1969). Similarly, asymmetrical velocity profiles and secondary flows developed
by the aortic arch and arterial branches are found to be localized and are not
convected into the descending aorta.

The first two of the above observations will permit one to decouple the motion
of the arterial wall from the motion of the blood, while the third observation will
allow one to simplify the equations governing the motion of blood.

2.1. Equations governing the motion of blood

For this problem blood can be taken as an incompressible Newtonian fluid. We
shall use the cylindrical co-ordinates r, 6 and z, with z along the axis of the vessel.
Since our aim is to use locally measured quantities to predict the local flow
characteristics, the choice of the origin of 2 is immaterial.

The motion of blood is governed by the Navier-Stokes equations and the
equation of continuity. We shall assume that the flow is axially symmetric and
body forces are absent. Under these assumptions the governing equations have
the following form:

ou du  ou 1op Am»: 1ou 0% gv

W e

(1)

ot or 2  pé ort ror 822) (2)
ou u ow
m|ﬁ+*4+.mﬂlo. (3)

Here t denotes time, » and w denote the components of the fluid velocity in the »
and z directions, respectively, p is the pressure, p is the density and v is the
kinematic viscosity of blood.

2.2. Motion of the arterial wall

Asisindicated above, the longitudinal motion of the arterial wall is significantly
arrested by the perivascular tethering. Here we shall neglect this component of
the arterial motion and seek a simple relation connecting local values of the
radial pressure force, mass and elastic response of the arterial wall. Let R = R(z, t)
denote the inner radius of the artery. We assume that the variation of R with
pressure is known (determined experimentally). Let us denote this functional
relation by p = P(R). Although the effect of arterial taper (both the natural
taper and the generated taper due to the wave front) on the motion of blood is
important because of convective acceleration, its effect on the radial motion of
artery is negligible. Therefore the equation of motion for the arterial wall can
be written as m R

b (z,t)— P(R). (4)
Here m denotes the effective mass of the artery per unit length in its natural state.
Equation (4) is valid only locally (for a fixed z) and to emphasize this point we
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use the partial derivative with respect to time. With p known as a function of
time and the local elastic response of an artery, starting with homogeneous
initial conditions, one can integrate this equation numerically to determine R as
a function of time.

2.3. Simplification of the equation of motion

Equation (2) may be simplified by dropping the term &%w/022, which is negligible
in comparison with the radial derivatives. Because of the small radial velocity
and acceleration, the radial variation of pressure within the artery can also be
neglected. Therefore the longitudinal pressure gradient dp/dz may be considered
as a function of z and ¢ only. Let us take —p~1(dp[éz) = F(z,t). Hereafter, we
shall assume that F(z, ) is an experimentally determined, known function. Then
(2) may be written as

ow ow ow

—tU—FW— = EANLIL\AI.TII

ot or oz (5)

As a result of the replacement of 9p/dz with a known function, (5) now contains
only two unknown dependent variables, » and w. Equation (3) also contains
only these dependent variables. Therefore, these two equations together are
sufficient to determine both % and w. Of course we have to supplement them with
proper boundary and initial conditions. In the radial direction the boundary
conditions are

ﬁ%\.. 2, S_Tl.w@é = mm\mmu Amv
w(r,2,1)]rmre,n = 0, (7)
[0w(r,2,8)[0r],—g = 0. (8)

Boundary conditions in the z direction reflect the effect of upstream and down-
stream flows on the local flow. Since the aim is to determine the local flow from
the locally measured flow properties, it is necessary to find a way to eliminate the
need for boundary conditions on z. This will be accomplished, later, by eliminating
all explicit z dependence from the equations.
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1.4 continuity Wo/)\ = U()/Ro so Uy = RoWo/)\
1.6 It is straightforward that A = B = TWy /A and E = PyT/(pAWy) C = vT/R% and D = R3/)\°.
1.10 A= B = &5.

1.16 LA72 (6) boundary condition for the transverse velocity Uy = eRy/T continuity Wo/A = Uy/Rp so
W() =cA / T

117 A= B =WyT/Aso A= B = ¢ hence g3 = ¢.

1.18 Py = pAWy/T so that Py = ep\?/T?



