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1. Quick Questions In few words :
1.1 What is ”dominant balance” ?
1.2 What is the dimension of the kinematic viscosity ?
1.3 Write Navier Stokes without dimension
1.4 What is the usual scale for pressure in incompressible NS equation ?
1.5 What is the usual scale for pressure in incompressible NS equation at small Reynolds ?
1.6 What is the natural selfsimilar variable for heat equation ?
1.7 In which one of the 3 decks of Triple Deck is flow separation ?
2. Exercice
2.1 What is the name of the following equation

∂η

∂t
+

3

2
η
∂η

∂x
+

1

6

∂3η

∂x3
= 0.

2.2 Say in few sentences where does it come from (what are the hypothesis)
2.3 Linearise the equation (and question 2.4 is for this linearized equation)
2.4 Suppose that the integral of η over the domain is conserved. Show that the self similar variable is x

t1/3

η(x, t) = t−1/3f(
x

t1/3
)

where f is linked to the Airy function, which solves Ai′′(y) = yAi(y)
3. Exercice
Let us look at the following ordinary differential equation :

(Eε) ε
d2y

dx2
+ 2

dy

dx
= 1,

valid for 0 ≤ x ≤ 1, with boundary conditions y(0) = 0 and y(1) = 1. Of course ε is a given small parameter.
We want to solve this problem with the Matched Asymptotic Expansion method (if you prefer use Multiple
Scales or WKB, do it if you have time).
3.1) Why is this problem singular ?
3.2) What is the outer problem obtained from (Eε) and what is the possible general form of the outer
solution ?
3.3) What is the inner problem of (Eε) and what is the inner solution ?
3.4) Solve the problem at first order (up to power ε0).
3.5) Suggest the plot of the inner and outer solution.
3.6) What is the exact solution for any ε.
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W
hen a sm

ooth jet of w
ater falls vertically on to

 a horizontal plane, it spreads 
out radially in a thin layer bounded by a circular hydraulic jum

p, outside w
hich 

the depth is m
uch greater. T

he m
otion in the layer is studied here by m

eans of 
boundary-layer theory, both for lam

inar and for turbulent flow
, and relations 

are obtained for the radius of the hydraulic jum
p. T

hese relations are com
pared 

w
ith experim

ental results. T
he analogous problem

s of tw
o-dim

ensional flow
 are 

also treated. 

1. Introduction 
It is a fam

iliar observation that w
hen a sm

ooth jet of w
ater falls vertically 

from
 a tap on to a horizontal plane, such as the bottom

 of an em
pty sink, the 

w
ater spreads out in a thin layer until a sudden increase of depth occurs. T

his is 
an hydraulic jum

p, or standing w
ave, the stationary counterpart of a tidal bore. 

T
he form

ation of the thin layer and the circular jum
p w

as noticed by R
ayleigh 

(1914), w
ho derived the properties of bores and jum

ps. 
R

ayleigh’s analysis 
refers to flow

 along a channel of constant breadth, and assum
es the speed ahead 

of the w
ave to

 be uniform
. In

 the present case the flow
 in the thin layer is radial 

and strongly influenced by viscosity, but the principles of m
om

entum
 and 

continuity apply at the jum
p as in R

ayleigh’s theory. 
Since the central layer of fluid is thin, it is natural to

 apply the ideas of 
boundary-layer theory in order to

 discuss the m
otion. A

 necessary condition 
for this approach to be valid is that the R

eynolds num
ber of the im

pinging jet 
shall be large. T

he depth is observed to be m
uch greater on the outside of the 

jum
p than on the inside, and hence the condition at the jum

p m
ay be sim

plified. 
T

his observation is equivalent to
 the statem

ent that the Froude num
ber for the 

flow
 outside the jum

p is sm
all. It w

ill further be assum
ed that the radius of the 

standing w
ave is m

uch greater than that of the incident jet. 
N

o account is 
taken of the structure of the hydraulic jum

p, or surface tension effects. 
T

he first problem
, treated in 0 2, is the sim

ple case in w
hich viscosity is com

- 
pletely ignored. It is m

ore realistic, how
ever, to assum

e that a boundary layer 
w

ill grow
 on the plane from

 the central stagnation point, and that this boundary 
layer w

ill gradually absorb the w
hole of the flow

 until the w
hole layer is a 

boundary layer. T
hus, for large values of the radial distance r, a sim

ilarity 
solution of the lam

inar boundary-layer equations m
ay be sought, and this is 

obtained in $3. T
his sim

ilarity solution is found to
 involve the com

bination 
(r3 + Z3), 

w
here I is an arbitrary constant length. In

 $
4
 the value of 23 appropriate 
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 and 
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 apply the ideas of 
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he depth is observed to be m

uch greater on the outside of the 
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p than on the inside, and hence the condition at the jum
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ay be sim
plified. 
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his observation is equivalent to

 the statem
ent that the Froude num

ber for the 
flow

 outside the jum
p is sm

all. It w
ill further be assum

ed that the radius of the 
standing w

ave is m
uch greater than that of the incident jet. 

N
o account is 

taken of the structure of the hydraulic jum
p, or surface tension effects. 

T
he first problem

, treated in 0 2, is the sim
ple case in w

hich viscosity is com
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pletely ignored. It is m
ore realistic, how

ever, to assum
e that a boundary layer 

w
ill grow

 on the plane from
 the central stagnation point, and that this boundary 

layer w
ill gradually absorb the w

hole of the flow
 until the w

hole layer is a 
boundary layer. T

hus, for large values of the radial distance r, a sim
ilarity 

solution of the lam
inar boundary-layer equations m

ay be sought, and this is 
obtained in $3. T

his sim
ilarity solution is found to

 involve the com
bination 

(r3 + Z3), 
w

here I is an arbitrary constant length. In
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 the value of 23 appropriate 
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to the flow
 considered is estim

ated from
 an approxim

ate solution of 
the 

Pohlhausen type for the grow
th of the boundary layer. 

In
 Q 5 the principle of m

om
entum

 is applied at the hydraulic jum
p (neglecting 

its radial w
idth), and a relation is derived for rl, the radius of the jum

p. T
his 

relation involves the depth d of the w
ater outside the w

ave, and d is regarded as 
prescribed by the conditions of outflow

 at a great distance. T
he other physical 

quantities appearing are Q (volum
e rate of flow

), a (radius of the jet), v (kine- 
m

atic viscosity) and g (gravitational acceleration). 
From

 these 6 quantities 
4 dim

ensionless param
eters can be form

ed. It is assum
ed that R =

 Q
/va (jet 

R
eynolds num

ber) is large and that Q
2/r:gd3 (proportional to the Froude num

ber 
outside the w

ave) appears only in a sm
all correction. W

hen this correction is 
ignored the relation connects rld2ga2/Q

2 with (rJa) R-4. In
 addition, the radial 

w
idth of the jum

p m
ust be sm

all com
pared w

ith rl, and since the w
idth m

ay be 
of the order of 5d this requires that d/rl shall be sm

all. 
In

 this application of boundary-layer theory the gravitational pressure 
gradient, due to the variation in height of the free surface, is neglected. A

n 
earlier theory, due to K

urihara (1946) and T
ani (1948), regards the hydraulic 

jum
p as a separation of the flow

, induced by the gravitational pressure gradient. 
C

onsequently som
e investigations are m

ade in $ 6 of the conditions in w
hich this 

neglect of gravity m
ay be justified. T

hese conditions are adequately fulfilled in 
the experim

ents described in Q 8. 
T

he treatm
ent so far described applies only to lam

inar flow
. To deal w

ith 
turbulent flow

 use has been m
ade of the hypothesis, introduced by G

lauert (1956), 
of an eddy viscosity w

hich varies across the boundary layer like u
s, w

here u is 
the radial velocity. A

 solution analogous to that of $0 3-5 
is given in $7. 

E
xperim

ents w
ere m

ade in an attem
pt to verify the theoretical predictions, 

and are described in Q 8. A
lthough the results show

 a w
ide scatter, they appear 

to be consistent w
ith the assum

ptions of the theory. 
Finally, a brief treatm

ent is given in $
9

 of the analogous problem
s of tw

o- 
dim

ensional flow
. 

2. 
Inviscid theory 

W
hen viscosity is ignored, the m

otion produced by a round jet falling vertically 
on to a horizontal plane is one of potential flow

 w
ith free stream

lines. M
ethods 

for the solution of problem
s of this type are described by B

irkhoff &
 Z

arantonello 
(1957). W

hen T
, the distance from

 the axis of the jet, is large com
pared w

ith a, the 
radius of the im

pinging jet, the depth h of the fluid on the plane is sm
all and the 

m
otion is alm

ost radial w
ith speed U,, the speed w

ith w
hich the jet strikes the 

plane. H
ence the volum

e rate of flow
 is 

Q
 =

 na2U
o =

 2nrhU
o, 

(1) 

so that 
h =

 a2/2r. 
(2) 

T
he condition to be applied at the jum

p (due originally to B
B

langer 1838) is 
that the thrust of the pressure is equal to the rate at w

hich m
om

entum
 is 

destroyed. T
he depth on the inside of the jum

p is given by (2) w
ith T =

 rl, the 

(...)
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Flow in a kitchen sink : the circular hydraulic jump
We will try to reobtain all the equations from Higuera’s paper. Read first the first page of Higuera and read
the Watson paper (parts).
0.1 Draw a sketch of the problem with the variables.

Equations from Watson
1.1 Inviscid theory of Watson, reconstruct equation (1) which is simply the integral mass conservation to
obtain (2).
1.2 Equations (8)-(12) are with dimension, write them without dimensions as in (1)-(5) from Higuera
1.3 Follow the developments to obtain f � of Watson.
1.4 Recompute (23) of Watson.
1.5 Put the good axes and ordinates on figure 1 of Watson.

Equations from Higuera
2.1 Comment the S parameter from question 1.2 which is not in (9) from Watson.
2.2 Comment the boundary conditions
2.3 Verify that the Hw and Uw are consistent with Watson.
2.4 Read Higuera up to the end and give a summary of what happens pages 1477-1478
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p =
 M

T
)

,
 

(14) 

f(0) =
 0, 

f(1) =
 1, 

f’(1) =
 0, 

(15) 

(16) 

w
here U

(r) is the speed at the free surface. T
hen from

 (10) and (11) 

and from
 (12) 

Q =
 2nr U

h IO1 f(y) dy. 
H

ence r U
h is constant, and (8) then leads to 

w =
 U

h‘rf(q). 
(17) 

T
he equation of m

otion (9) now
 reduces to 

vf”(y) =
 h2uY(r), 

from
 w

hich it follow
s that h2U

‘ is constant. A
lso f”(y) < 0

, since the shearing 
stress is greatest at the plate, and it is convenient to w

rite 
h2U

’ =
 -
3
 

2 

w
here c is a num

ber. T
hen 2f “=

 -
 3

~
7

2
, 

w
hich, from

 (15), m
ay be integrated to 

f’2 =
 c2(1 -f3). 

Sincef’ 2 0, 

(18) 
2c v, 

n
f 

cp =
 J ’ (1 -

 x3)-+dx. 
0 

T
he conditionf(1) =

 1 now
 gives 

rU
h =

 31/3~~&
/47~2~. 

C
onsequently (16) gives 

T
he only conditions on U

(r), h(r) necessary for the sim
ilarity solution are (18) 

and (22). T
he general solution of these equations is 

27c2 
Q

2 
8774 v(r3 + P

) ’ 
U

(r) =
 -
 

2+ 
v(r3+Z3) 

343 
Q

r 
’ 

h(r) =
 

~ 
_

_
_

 

(23) 

w
here I is an arbitrary constant length. 
In

 the actual flow
 this sim

ilarity solution can only be expected to hold w
hen 

r is sufficiently large for the conditions in the incident jet to have lost their 
influence. T

he value of I, how
ever, depends on these conditions, and m

ust be 
found by consideration of the grow

th of the boundary layer from
 the point of 

im
pact of the jet. A

 m
ethod for the estim

ation of I w
ill be described in 5 4. 

T
he velocity profile in the sim

ilarity solution is given by (19), w
hich can also 

be expressed by m
eans of Jacobian elliptic functions (N

eville 1944) as 
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w
here the m

odulus is sin 75'. 
H

ence, in term
s of the elliptic integral F

(0) w
ith 

this m
odulus, 

v(r3 + Z3) u
/Q

2
 = (27c2/8n4) (1 -

 4
3

 tan2 48), 
(26) 

I 
~

rz/v(r3+
 

13) =
 (w

/3
4

3
) (1 -

 3-aC
-1qe)). 

8 =
 0 corresponds to the free surface and 8 =

 cos-l(2 - 43) c
 744" to the surface 

of the plate. The profile (25) is show
n in figure 1. 

T 
F

IG
U

R
E

 1. 
T
h
e
 velocity distribution function. 

It is of interest to observe that the analogous problem
s of the w

all jet (G
lauert 

1956, 1958) and the radial free jet (Squire 1955) also yield sim
ilarity solutions in 

w
hich the com

bination 
(r3

+
Z

3
) occurs as in equations (23) and (24). In this 

connexion see R
iley (1961, 1962). 

4. 
G

eneral approxim
ate solution 

A
s already rem

arked in $
1

, the boundary layer grow
s from

 the stagnation 
point on the axis of the jet until it absorbs the w

hole of the flow
. In fact, four 

regions of flow
 m

ay be distinguished, though they pass continuously into one 
another. 

(i) W
hen r =

 O
(a), the speed outside the boundary layer rises rapidly from

 0 
at the stagnation point to U,, and the boundary-layer thickness is O

(va/U
o)* 

(H
om

ann 1936). 
(ii) For greater values of r the speed outside the boundary layer rem

ains 
alm

ost constant, equal to U,, 
as the fluid here is unaffected by the viscous 

stresses. T
he boundary-layer flow

 in this region is therefore given by equations 
(8) and (9) w

ith the conditions 

u.=w
=O

 
at 

x=O
, 

u+U, 
as 

x-sm
. 

(27) 
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radius of the standing w
ave. If d is the depth outside, the thrust of the pressure 

per unit length of w
ave is *pg(d2-h2), w

here p is the density. T
he speed of flow

 
is V, inside the jum

p, and'outside it is 

U, =
 Q

/2m
,d. 

(3) 

T
he rate of destruction of m

om
entum

 per unit length of w
ave is therefore 

W
hen h < d, this reduces to 

that is 

A
 better approxim

ation is to neglect only (h/d)2 in (4), so that the pressure thrust 
inside the w

ave is ignored but the m
om

entum
 outside is included. T

his gives 

r,d2ga2 
a2 

1 
+

--- 
Q

2 
2m

2r,d -
 n2' 

The ratio of the second term
 of (6) to the first is 2lJ:/gd so that, if the correction 

term
 is to be sm

all, the Froude num
ber of the outer flow

 m
ust be sm

all. 
E

quation (4) can be solved exactly, to give 

(7) 
r,d2ga2 

1 
gda4 

Q2 
n-2 

2Q
z' 

H
ow

ever, in the solutions considered later, the equations corresponding to (4) 
cannot be treated so sim

ply, and therefore results analogous to (6) w
ill be 

derived by neglecting (h/d)2. -_
_
 

=
 -
-
 _

_
 

3. 
Sim

ilarity solution of the boundary-layer equations 

satisfies the equations 
A

ccording to the boundary-layer approxim
ations the flow

 in the thin layer 

(8) 

(9) 

a(ru)/ar + a(rw
)/az =

 0, 

u(au/ar) + w
(aujaz) =

 v(aZu/az2), 
w

ith the conditions 
u

=
w

=
O

 
at 

z=
O

, 

8ula.z =
 0 

at 
x =

 h(r), 

H
ere r, x are cylindrical co-ordinates, w

ith z m
easured vertically upw

ards from
 

the plate, and u
, w

 are the corresponding velocity com
ponents. In

 equation (9) 
the gravitational pressure gradient ( - pgdh/dr) has been ignored. E

quation (1 1) 
asserts that the shearing stress falls to zero at the free surface z =

 h(r), since the 
viscosity of air is negligible, and (12) is the condition of constant volum

e flux. 
In

 this section a sim
ilarity solution w

ill be derived by assum
ing that 

(13) 
31-2 



The circular hydraulic jump
F. J. Higuera
ETS Ingenieros Aerona´uticos, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain

~Received 24 October 1996; accepted 27 December 1996!

An asymptotic order-of-magnitude description is given of the structure of a circular laminar
hydraulic jump for large values of the Reynolds and Froude numbers of the flow entering the jump.
The results are compared with numerical solutions of the boundary layer equations for the flow in
a liquid layer on a horizontal disk and with experimental results existing in the literature. ©1997
American Institute of Physics.@S1070-6631~97!01405-0#

Circular hydraulic jumps are transitions from supercriti-
cal to subcritical flow in radially spreading horizontal liquid
layers. Laminar flows displaying this phenomenon occur in
cooling systems by impinging liquid jets, and can also be
seen in a kitchen sink, while large scale turbulent jumps are
common in many hydraulic devices. Strong laminar jumps
are fairly long structures,1–3 despite their relative abruptness
in the scale of the whole layer, owing to the need of dispos-
ing of a large amount of kinetic energy by viscous dissipa-
tion only. The circular jumps exhibit differences with their
planar counterparts due to the divergence of the flow in their
interior. Thus, treating the jump as a discontinuity, in accor-
dance with the classical theory, Watson4 found discrepancies
with some of his own experimental results and showed how
the discrepancies could be decreased by taking into account
the length of the jump, while Koloseus and Ahmad5 derived
mass and momentum conservation conditions for finite-
length jumps assuming a linear variation of the liquid depth,
and their results have been made more precise using corre-
lations valid for turbulent flow. Craiket al.1 observed that
the laminar jump contains a long recirculating eddy attached
to the wall, as in the inset of Fig. 1, which shortens when the
jump is made unstable by increasing the downstream depth
and pushing it toward the origin. Laminar jumps with a roller
at the surface and with a roller and an eddy~double roller
jumps! have been observed by Liu and Lienhard,2 who also
found that the jumps are stabilized by the effect of the sur-
face tension. An asymptotic high Reynolds number analysis
of the flow around the upstream end~toe! of a laminar jump
in a layer of uniform velocity with a thin viscous sublayer
was carried out by Gajjar and Smith6 using the interacting
boundary layer theory, and their analysis was subsequently
extended by Bowles and Smith3 to large Froude number fully
developed layers. The rest of the structure of a planar jump
in this limit was analyzed in Ref. 7. Here a similar analysis is
presented for the laminar circular jump in the absence of
surface tension effects.

Consider the liquid layer formed on a horizontal disk of
radiusR by the radial spread of an impinging vertical liquid
jet of radiusa. In the asymptotic limit of large Reynolds
numbers, Re5Q/2pnR@1, whereQ is the flux of the jet
andn is the kinematic viscosity of the liquid, the boundary
layer approximation can be used to describe the flow in the
layer at distances from the center large compared witha. In
the absence of gravity this flow would become self-similar4

after a distance from the center of orderR(a/R)2/3 Re1/3,

which will be neglected here assuming thata!R/Re1/2. In
addition, the balance of convection and viscous forces in the
momentum equation (uc

2/R5nuc /hc
2 , whereuc and hc are

the characteristic liquid velocity and depth of the layer! and
the mass conservation condition (uchcR5Q/2p) yield
uc5(Q/2p)2/nR3 and hc5nR2/(Q/2p). Scaling the hori-
zontal and vertical distances withR andhc , and the corre-
sponding components of the velocity withuc and uchc /R,
the non-dimensional continuity and momentum equations
determining the velocity of the fluid and the depth of the
layer under the action of the gravity are

1

r

]

]r
~ru !1

]v
]y

50, ~1!

u
]u

]r
1v

]u

]y
52S

dh

dr
1

]2u

]y2
, ~2!

with the boundary conditions

u5v50 at y50, ~3!

]u/]y50 at y5h~r !, ~4!

h5h0 at r51, ~5!

u→U
W
~y/r 2!/r 3, h→H

W
r 2 for r→0, ~6!

r E
0

h

udy51, ~7!

where S5gn3R8/(Q/2p)5 is the inverse of an overall
Froude number measuring the effect of the acceleration
of the gravity g and h0 is the non-dimensional depth of
the liquid at the edge of the disk, which is taken as data
here ~though in some practical cases the outflow might
be over the edge of the disk or a weir and ought to be treated
as a separate problem!. Use has been made of the hydro-
static pressure balance in the vertical direction across
the layer to write~2! and the density and viscosity of the
air above the layer have been neglected, as well as the
surface tension. The boundary conditions~6! state that the
flow in the layer takes the self-similar Watson’s form4 near
the center@with U

W
9 13U

W

250, U
W
(0)50, U

W
8 (H

W
)50 and

*
0

H
WU

W
d(y/r 2)51, giving in particularH

W
'0.6046 and

fMW
5*

0

H
WU

W

2d(y/r 2)'2.079]. These boundary conditions
can be justified noticing that the local effect of the gravity
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evaluated with Watson’s solution is (2Sdh/dr)/v•¹u
5(2H

W
/3U

W

2 )(Sr8), which rapidly tends to zero forr→0.
Very strong hydraulic jumps are characterized by

large local Froude numbers at their upstream sides, where
the oncoming flow is therefore little affected by the gravity
and the self-similar Watson’s solution applies to a good
approximation. Callingr

J
the location of the toe of the

jump, this condition amounts toS̃5Sr
J

8!1, and rescaled
variables appropriate to describe the inner structure of the
jump are r̃5r /r

J
, (ỹ,h̃)5(y,h)/r

J

2, ũ5r
J

3u and ṽ5r
J

2v.
Equations~1!–~4! do not change form when rewritten in
terms of these variables, except thatS changes toS̃. A short
interaction region exists around the toe of the jump3 where
r̃215O(S̃3) and the flow is locally planar and not affected
by the gravity-induced pressure except in a low velocity vis-
cous sublayer whereỹ5O(S̃). The solution in this region
was analyzed by Gajjar and Smith6 and Bowles and Smith,3

who showed that the flow in the viscous sublayer separates
under the action of the adverse self-induced pressure gradi-
ent, leading to an effectively inviscid recirculation region of
thickness S̃@( r̃21)/S̃3#m for ( r̃21)/S̃3@1, with m5 2

3

3 (A722)'0.4305, where the velocity of the fluid is of or-
der ũri5S̃@( r̃21)/S̃3#2/32m. This region is bounded above
by a viscous shear layer of thickness (r̃21)1/3 at the base of
the separated stream, and below by a viscous boundary layer
of thicknessS̃@( r̃21)/S̃3#3m/(3m12) close up to the solid sur-
face, which is the only region affected by the gravity-
induced pressure when (r̃21)/S̃3@1.

The viscous shear layer grows to cover the whole sepa-
rated flow when (r̃21)5O(1) and becomes a self-similar
radially spreading jet forr̃@1 andh5( ỹ2h̃)/ r̃5O(1),0,
riding over a region of slower recirculating flow. The
stream function in the jet isc̃5r̃ f (h), with f (h)
5 f2`tanh(f2`h/4) and f2`52(6fMW

)1/3'22.319, from
the condition of conservation of the momentum flux of the
oncoming Watson’s flow. The velocity in the jet decays as
1/r̃ and the effect of the gravity finally comes into play when

S̃h̃r̃ 25O(1). Assuming that the thickness of the jet,
( ỹ2h̃)5O( r̃ ), is by then of the order of the depth of the
whole layer~as seems appropriate for the liquid to recirculate
smoothly; see Ref. 7!, this estimation yields

~ h̃, r̃ !5OS 1

S̃1/3
D and ũ5O~S̃1/3! ~8!

in the bulk of the bubble. Notice that the effect of the radial
divergence is important to the flow in the bubble because
r̃@1; the length of the jump is large compared with the
distance from its toe to the center of the disk. A consequence
of this divergence is that the order ofh̃ in ~8! for S̃!1 is not
as large as the downstream depth (2fMW

/S̃)1/2'2.039/S̃1/2

predicted by the classical theory, which treats the jump as a
discontinuity. Notice also that the asymptotic solution for
( r̃21)/S̃3@1 mentioned in the previous paragraph involves
reverse flow velocities of orderũri which becomeO(S̃1/3)
for ( r̃21) of order l5S̃(429m)/(223m)!1. For l!( r̃21)
;!1 the velocity of the recirculating fluid remainsO(S̃1/3)
and the depth of the bubble grows as (r̃21)2/3/S̃1/3 ~from the
balance of the recirculating flux and the flux ingested by the
shear layer on top of the bubble!. The effect of the gravity on
this recirculating fluid, measured byS̃h̃/ũri

2 5O@( r̃21)2/3#,
is negligible for (r̃21)!1, while the depth of the layer
stops growing appreciably for larger values ofr̃ .

Most of the flux in the separated jet, of orderS̃21/3@1,
recirculates in the rear part of the bubble, leaving a flow with
velocity of order S̃2/3 downstream of the jump~from the

condition of conservation of the mass fluxr̃*0
h̃ũdỹ51 with

h̃ and r̃ of order S̃21/3). In this region ṽ•¹ũ/(S̃dh̃/dr̃ )
5O(S̃2/3)!1 and the balance of hydrostatic pressure and
viscous forces gives a parabolic velocity profile and
h̃5$h̃0

42(12/S̃)ln(r
J
r̃ )%1/4, where h̃05h0 /r J

2. An equation
determiningr

J
for given values ofS andh0 is obtained par-

ticularizing this expression immediately downstream of the
jump, whereh̃5h̃25a/S̃1/3 and r̃5 r̃ 25b/S̃1/3, say,a and
b being order unity constants that could be determined from
a detailed analysis of the inner structure of the jump. Since
S̃!1 for a strong jump, the resulting equation can be sim-
plified to h̃2'h̃0, giving

r
J

h0
1/2

'
a3/2

~Sh0
4!1/2

~9!

and therefore S̃5@a4/(Sh0
4)] 3, so the condition S̃!1

amounts toSh0
4@1 in the present horizontal disk configura-

tion, and the depth of the liquid varies very little downstream
of the jump. It may be seen that the radius of the disk is
irrelevant insofar asSh0

5!1, while if this condition is vio-
lated the length of the jump becomes comparable to or larger
than the radius of the disk. However, the experiments1,2

show that the jump always becomes unstable before reaching
that state.

In order to check the asymptotic results~8!, the problem
~1!–~7! was numerically solved for different values ofS and
h0. The numerical solutions display jumps with a single eddy

FIG. 1. Maximum depth of the layer~upper curve! and position of the
maximum~lower curve! versusS̃ from the numerical solution of~1!–~7! for
different values ofS andh0. The dashed lines have slopeS̃

21/3. Inset: liquid
surface and recirculating eddy forS51000 andh050.4.
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on the solid surface; see inset of Fig. 1 for an example.@The
results of Ref. 7 suggest that surface rollers are a feature of
laminar hydraulic jumps associated with cross-stream pres-
sure variations due to the curvature of the streamlines, which
is a finite Re effect not included in~1!–~7!.# The resulting
h̃2 andr̃ 2, defined as the maximum depth of the layer and its
position on the disk, respectively, are plotted in Fig. 1 versus
S̃5SrJ

8, wherer
J
is taken as the position of the separation

point. The curves of Fig. 1 contain data obtained with
S520, 30, 200, 500, 1000, and 2000 and withh050.1 to 1.2,
confirming the expected dependence of the scaled~tilde!
variables on the combinationSh0

4 only. For small values of
S̃ the results agree with~8!, and the approximate values
a'2.5 andb'1.14 can be obtained fitting straight lines of
slopeS̃21/3 to the logarithmic plots.

In Fig. 2 the experimental results of Liu and Lienhard2

are represented in aS̃–h̃2 graph, using the assumption that
Watson’s solution holds up to the toe of the jump to compute
S̃ and h̃2 from the data given in Ref. 2. The connection of
these experiments with the present analysis is only partial
because, as was pointed out by Liu and Lienhard, the effect
of the surface tension is important in the conditions of their
experiments and, in addition, cross-stream pressure varia-
tions are probably also important,7 while both effects have
been left out of the analysis. Despite these important differ-
ences, the experimental results, which correspond to values
of S̃ much smaller than the numerical solutions presented

before, still show reasonable agreement with the estimate
h̃25a/S̃1/3, though witha'3.2, a value somewhat higher
than the one found before.

Summarizing, an asymptotic structure has been proposed
of the strong circular laminar hydraulic jump consisting of an
interaction region around the toe containing the separation
point, already analyzed in Refs. 3 and 6, and a recirculation
region of length much larger than the standoff distance from
the toe to the center of the spreading layer. Downstream of
the interaction region the depth of the liquid layer is first
proportional to (r̃21)m, with m'0.4305, and then becomes
proportional to (r̃21)2/3 at a distance from the separation
point estimated in the paragraph below~8!. This depth is of
the order of the depth of the liquid downstream of the jump
for ( r̃21)5O(1), atwhich point the fast separated flow in
the upper part of the layer is a jet much thinner than the
region of slow recirculating flow in the lower part, and it is
not yet affected by the gravity-induced pressure force. Fur-
ther downstream the thickness of this jet grows proportion-
ally to r̃ without increasing very much the total depth of the
liquid, until its thickness and velocity become comparable to
the corresponding magnitudes of the recirculating flow, for
r̃5O(1/S̃1/3), and the adverse pressure gradient due to the
gravity leads to the closure of the recirculation bubble. The
asymptotic results~8! obtained from this analysis are in fair
agreement with numerical solutions of the equations govern-
ing the flow in the layer and with experimental results exist-
ing in the literature.
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