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Multiscale Hydrodynamic Phenomena

Part I. : 60 minutes, NO documents

1. Quick Questions In few words :
1.1 What is "dominant balance” 7
1.2 What is the dimension of the kinematic viscosity 7
1.3 Write Navier Stokes without dimension
1.4 What is the usual scale for pressure in incompressible NS equation ?
1.5 What is the usual scale for pressure in incompressible NS equation at small Reynolds ?
1.6 What is the natural selfsimilar variable for heat equation ?
1.7 In which one of the 3 decks of Triple Deck is flow separation ?
2. Exercice
2.1 What is the name of the following equation
on 3 On 10 B
at 279 T 6043
2.2 Say in few sentences where does it come from (what are the hypothesis)
2.3 Linearise the equation (and question 2.4 is for this linearized equation)
2.4 Suppose that the integral of 1 over the domain is conserved. Show that the self similar variable is tl%

n(a,t) = ()

where f is linked to the Airy function, which solves Ai"(y) = yAi(y)
3. Exercice
Let us look at the following ordinary differential equation :
2

(E:) 5% + 2% =1,
valid for 0 < z < 1, with boundary conditions y(0) = 0 and y(1) = 1. Of course ¢ is a given small parameter.
We want to solve this problem with the Matched Asymptotic Expansion method (if you prefer use Multiple
Scales or WKB, do it if you have time).
3.1) Why is this problem singular ?
3.2) What is the outer problem obtained from (E.) and what is the possible general form of the outer
solution ?
3.3) What is the inner problem of (E.) and what is the inner solution ?
3.4) Solve the problem at first order (up to power ).
3.5) Suggest the plot of the inner and outer solution.
3.6) What is the exact solution for any e.
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Part II.

ircular hydraulic jump

the c

Flow in a kitchen sink

We will try to reobtain all the equations from Higuera’s paper. Read first the first page of Higuera and read

the Watson paper (parts).

0.1 Draw a sketch of the problem with the variables.

Equations from Watson

1.1 Inviscid theory of Watson, reconstruct equation (1) which is simply the integral mass conservation to

obtain (2).

1.2 Equations (8)-(12) are with dimension, write them without dimensions as in (1)-(5) from Higuera

1.3 Follow the developments to obtain f’ of Watson.

1.4 Recompute (23) of Watson.

1.5 Put the good axes and ordinates on figure 1 of Watson.

Equations from Higuera

2.1 Comment the S parameter from question 1.2 which is not in (9) from Watson.

2.2 Comment the boundary conditions

2.3 Verify that the H,, and U, are consistent with Watson.

2.4 Read Higuera up to the end and give a summary of what happens pages 1477-1478
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The radial spread of a liquid jet over a horizontal plane

By E. J. WATSON

Department of Mathematics, University of Manchester
(Received 13 August 1963 and in revised form 6 May 1964)

When a smooth jet of water falls vertically on to a horizontal plane, it spreads
out radially in a thin layer bounded by a circular hydraulic jump, outside which
the depth is much greater. The motion in the layer is studied here by means of
boundary-layer theory, both for laminar and for turbulent flow, and relations
are obtained for the radius of the hydraulic jump. These relations are compared
with experimental results. The analogous problems of two-dimensional flow are

also treated.

1. Introduction

It is a familiar observation that when a smooth jet of water falls vertically
from a tap on to a horizontal plane, such as the bottom of an empty sink, the
water spreads out in a thin layer until a sudden increase of depth occurs. This is
an hydraulic jump, or standing wave, the stationary counterpart of a tidal bore.
The formation of the thin layer and the circular jump was noticed by Rayleigh
(1914), who derived the properties of bores and jumps. Rayleigh’s analysis
refers to flow along a channel of constant breadth, and assumes the speed ahead
of the wave to be uniform. In the present case the flow in the thin layer is radial
and strongly influenced by viscosity, but the principles of momentum and
continuity apply at the jump as in Rayleigh’s theory.

Since the central layer of fluid is thin, it is natural to apply the ideas of
boundary-layer theory in order to discuss the motion. A necessary condition
for this approach to be valid is that the Reynolds number of the impinging jet
shall be large. The depth is observed to be much greater on the outside of the

2. Inviscid theory

When viscosity is ignored, the motion produced by a round jet falling vertically
on to a horizontal plane is one of potential flow with free streamlines. Methods
for the solution of problems of this type are described by Birkhoff & Zarantonello
(1957). When r, the distance from the axis of the jet, is large compared with a, the
radius of the impinging jet, the depth % of the fluid on the plane is small and the
motion is almost radial with speed Uj,, the speed with which the jet strikes the
plane. Hence the volume rate of flow is

¢ -l - T (1
so that h = a?/2r. (2)

The condition to be applied at the jump (due originally to Bélanger 1838) is
that the thrust of the pressure is equal to the rate at which momentum is
destroyed. The depth on the inside of the jymp is given by (2) with » = r,, the



3. Similarity solution of the boundary-layer equations

According to the boundary-layer approximations the flow in the thin layer
satisfies the equations

o(ru)/or + d(rw)[oz = 0, (8)
w(Ou[or) + w(duléz) = v(0%u]02?), (9)
with the conditions u=w=0 at z=0, (10)
uloz=10 at z=h(r), (11)
h(r)
wﬂﬂ,“ udz = Q. (12)
0

Here 7,z are cylindrical co-ordinates, with z measured vertically upwards from

the plate, and u,w are the corresponding velocity components. In equation (9)

the gravitational pressure gradient (-- pgdh/dr) has been ignored. Equation (11)

asserts that the shearing stress falls to zero at the free surface z = h(r), since the

viscosity of air is negligible, and (12) is the condition of constant volume flux.
In this section a similarity solution will be derived by assuming that

u = U(r) f(n), (13)
31-2
484 E.J. Watson
7 = 2/hir) (14
where U(r) is the speed at the free surface. Then from (10) and (11)
foy=0, f(1)=1, f(1)=0, (15)
and from (12) Q = 2mrUh .“M fm)dn. (16)
Hence rUh is constant, and (8) then leads to
w = Uk"pf(n). (17)

The equation of motion (9) now reduces to

vf"(n) = BRU'f*),

from which it follows that A2U’ is constant. Also f”(y) < 0, since the shearing
stress is greatest at the plate, and it is convenient to write

RU' = —3c%, (18)
where ¢ is a number. Then 2f” = — 3¢2f2, which, from (15), may be integrated to
f2=c¥1—f%). Since f' > 0,

oy = .‘4 (1 —a3)-tdz. (19)
The condition f(1) = 1 now gives ’
c= h (1—a%)tde = wﬁﬁlwv@ = 1402 (20)

1 1 T re
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Consequently (16) gives rUh = 3,/36%QJ4n%, (22)

The only conditions on U(r), A(r) necessary for the similarity solution are (18)
and (22). The general solution of these equations is

Utr) ui (29)

27 v(r*+B3)
3B G
where [ is an arbitrary constant length.

In the actual flow this similarity solution can only be expected to hold when
r is sufficiently large for the conditions in the incident jet to have lost their
influence. The value of I, however, depends on these conditions, and must be
found by consideration of the growth of the boundary layer from the point of
impact of the jet. A method for the estimation of ! will be described in § 4.

The velocity profile in the similarity solution is given by (19), which can also
be expressed by means of Jacobian elliptic functions (Neville 1944) as

h(r) (24)

2.3
fn) = Qw+~|§*2wllsww (25)

where the modulus is sin 75°. Hence, in terms of the elliptic integral F(0) with
this modulus,

v(r3 4 By u/Q? = (27¢2/87%) (1 — 4/3 tan? wmv,v (26)

Qrz[v(r3+18) = (2m2/3,/3) {1 - 3~1c-1F(0)}.
0 = 0 corresponds to the free surface and § = cos™1 (2 — 4/3) = 741° to the surface
of the plate. The profile (25) is shown in figure 1.

F1cURE 1. The velocity distribution function.

It is of interest to observe that the analogous problems of the wall jet (Glauert
1956, 1958) and the radial free jet (Squire 1955) also yield similarity solutions in
which the combination (34 3) occurs as in equations (23) and (24). In this
connexion see Riley (1961, 1962).



The circular hydraulic jump

F. J. Higuera
ETS Ingenieros Aerongicos, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain

(Received 24 October 1996; accepted 27 December)1996

An asymptotic order-of-magnitude description is given of the structure of a circular laminar
hydraulic jump for large values of the Reynolds and Froude numbers of the flow entering the jump.
The results are compared with numerical solutions of the boundary layer equations for the flow in
a liquid layer on a horizontal disk and with experimental results existing in the literatured.9%g
American Institute of Physic§S1070-663(97)01405-0

Circular hydraulic jumps are transitions from supercriti- which will be neglected here assuming tlag R/Re*2. In
cal to subcritical flow in radially spreading horizontal liquid addition, the balance of convection and viscous forces in the
layers. Laminar flows displaying this phenomenon occur inmomentum equationué/R: yuc/hﬁ, whereu, and h. are
cooling systems by impinging liquid jets, and can also bethe characteristic liquid velocity and depth of the lgyand
seen in a kitchen sink, while large scale turbulent jumps arghe mass conservation conditioru.h,R=Q/27) yield
common in many hydraulic devices. Strong laminar jumpsu.=(Q/27)?/vR® and h,=vR?/(Q/2). Scaling the hori-
are fairly long structures; despite their relative abruptness zontal and vertical distances wifR and h., and the corre-
in the scale of the whole layer, owing to the need of dispossponding components of the velocity with and uch./R,
ing of a large amount of kinetic energy by viscous dissipa-the non-dimensional continuity and momentum equations
tion only. The circular jumps exhibit differences with their determining the velocity of the fluid and the depth of the
planar counterparts due to the divergence of the flow in theifayer under the action of the gravity are
interior. Thus, treating the jump as a discontinuity, in accor-
dance with the classical theory, Wat§dound discrepancies li(ru)Jr 3_":0 (1)
with some of his own experimental results and showed how r Jr ay
the discrepancies could be decreased by taking into account

2
the length of the jump, while Koloseus and Ahmatérived du_ou dh Ju

. . . —+v—=—-S —+ -, 2
mass and momentum conservation conditions for finite- ar ay dr dy
length jL_Jmps assuming a linear variation of th_e quuiq depthWith the boundary conditions
and their results have been made more precise using corre-
lations valid for turbulent flow. Crailet al! observed that u=v=0 at y=0, 3
the laminar jump contains a long recirculating eddy attached
to the wall, as in the inset of Fig. 1, which shortens whenthe ~ du/dy=0 at y=h(r), (4)
jump is made unstable by increasing the downstream depth
and pushing it toward the origin. Laminar jumps with a roller h=h, at r=1, ®)
at the surface and with a roller and an eddypuble roller 2y/,3 2
jumps have been observed by Liu and Lienhantho also U= U, I, h=H, = for r=0, ®)
found that the jumps are stabilized by the effect of the sur- h
face tension. An asymptotic high Reynolds number analysis rjo udy=1, (7)

of the flow around the upstream eftde) of a laminar jump

in a layer of uniform velocity with a thin viscous sublayer \yhere S=g13R%(Q/2m)5 is the inverse of an overall
was carried out by Gajjar and Snfittsing the interacting  Froude number measuring the effect of the acceleration
boundary layer theory, and their analysis was subsequentlyf the gravity g and h, is the non-dimensional depth of
extended by Bowles and Smitto large Froude number fully e liquid at the edge of the disk, which is taken as data
developed layers. The rest of the structure of a planar jumpere (though in some practical cases the outflow might
in this limit was analyzed in Ref. 7. Here a similar analysis ispe over the edge of the disk or a weir and ought to be treated
presented for the laminar circular ]Ump in the absence OBS a separate pr0b|emse has been made of the hydro-
surface tension effects. static pressure balance in the vertical direction across
Consider the liquid layer formed on a horizontal disk of the |ayer to write(2) and the density and viscosity of the
radiusR by the radial spread of an impinging vertical liquid ajr above the layer have been neglected, as well as the
jet of radiusa. In the asymptotic limit of large Reynolds surface tension. The boundary conditiai®$ state that the
numbers, Re Q/2mvR>1, whereQ is the flux of the jet  flow in the layer takes the self-similar Watson’s férmear
and v is the kinematic viscosity of the liquid, the boundary the centefwith U” +3U2=0, U (0)=0, U’ (H )=0 and
layer approximation can be used to describe the flow in thej,HWu d(v/r? _1W oW Wt' lar H W~0Vé046 d
layer at distances from the center large compared aithn 0 ~w ,Sy r)=1, giving in particularH,~0. an
the absence of gravity this flow would become self-sirflilar #u,,=J,*U2d(y/r?)~2.079]. These boundary conditions

after a distance from the center of ord@ta/R)?® Re',  can be justified noticing that the local effect of the gravity
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Sh?i= O(1). Assuming that the thickness of the jet,

(y—h)=0(r), is by then of the order of the depth of the

whole layer(as seems appropriate for the liquid to recirculate
smoothly; see Ref.)7 this estimation yields

1

S

in the bulk of the bubble. Notice that the effect of the radial
divergence is important to the flow in the bubble because
T>1; the length of the jump is large compared with the
distance from its toe to the center of the disk. A consequence
of this divergence is that the order lofin (8~) for S<1 is not
as large as the downstream depthp(p, /S)"/*~2.0395"
FIG. 1. Maximum depth of the layefupper curvg and position of the  Predicted by the classical theory, which treats the jump as a
maximum(lower curve versusS from the numerical solution oft)—(7) for discontinuity. Notice also that the asymptotic solution for
different values oS andh,. The dashed lines have sloge”. Inset: liquid (r— 1)/S3>1 mentioned in the previous paragraph involves
surface and recirculating eddy f&= 1000 andhy=0.4. reverse flow velocities ,Qf ordéiri which becomeO(§1’3)

for (T—1) of order|=S"*"9M/=3M<1 Forl<(r-1)

<1 the velocity of the recirculating fluid remair@®(S*3)
evaluated with Wats_on’s splution is—Sdhdr)/v-Vu and the depth of the bubble grows is—(1)2’3/§1’3 (from the
=(2H,/3U%)(Sr?), which rapidly tends to zero far—0. balance of the recirculating flux and the flux ingested by the

Very strong hydraulic jumps are characterized byshear layer on top of the bubbl&he effect of the gravity on

large local Froude numbers at their upstream sides, whergs recirculating fluid, measured t’{;ﬁf‘/ﬁﬁzo[((_l)zm],
the oncoming flow is therefore little affected by the gravity js negligible for f—1)<1, while the depth of the layer
and the self-similar Watson’s solution applies to a goodstops growing appreciably for larger valuesrof
approximation. Callinng the IoEation of the toe of the Most of the flux in the separated jet, of order 31,
jump, this condition amounts t&=Sr’<1, and rescaled recirculates in the rear part of the bubble, leaving a flow with
variables appropriate to describe the inner structure of theelocity of order S** downstream of the jumyfrom the
jump areT=r/r, (¥,h)=(y,h)/r?, U=ru and v=r?. condition of conservation of the mass flix¢Udy=1 with
Equations(1)—(4) do not change form when rewritten in h arlg? of order S, In this regionV- Vu/(Sdh/dT)
terms of these variables, except tiSathanges t&. A short  =0(S??)<1 and the balance of hydrostatic pressure and
interaction region exists around the toe of the jdmiere  viscous forces gives a parabolic velocity profile and
T—1=0(S%) and the flow is locally planar and not affected = {h4— (12/'§)|n(r;r')}1’4, where ﬁozholrf. An equation
by the gravity-induced pressure except in a low velocity Vis'determiningrJ for given values ofS andh, is obtained par-

cous sublayer wherg=0(S). The solution in this region i arizing this expression immediately downstream of the
was analyzed by Gajjar and Snfitand Bowles and Smith, ejump whereﬁ=ﬁz=a/§1’3 and?=?2=B/§1’3 say, @ and

who showed that the flow in the viscous sublayer separat being order unity constants that could be determined from

under th_e action of the .""d"efse. sglf-mdgced Pressure gradt yetailed analysis of the inner structure of the jump. Since
ent, leading to an effectively inviscid recirculation region of =

thicknessﬁ(r'—l)/?]m for (r'—l)/?»l, with m=2 S.<<_1 for a strong _ju_mp, the resulting equation can be sim-
X ([7—2)~0.4305, where the velocity of the fluid is of or- plified to h,~ho, giving

der U, =9 (r—1)/S¥]?*~™. This region is bounded above r o312

by a viscous shear layer of thickness<1) at the base of —~

the separated stream, and below by a viscous boundary layer h(l>/2 (5}’6)”2

of thicknessS[ (F—1)/S*]*™"*2) close up to the solid sur- and therefore§=[a4/(8ké)]3, so the condition S<1

face, which is the orﬂy reglg)n affected by the gravity- amounts toS}"é>1 in the present horizontal disk configura-

induced pressure whem £ 1)/S°>1. tion, and the depth of the liquid varies very little downstream
The viscous shear layer grows to cover the whole sepgst the jump. It may be seen that the radius of the disk is

rated flow when{—1)=0(1) and becomes a self-similar i ejevant insofar astg<1, while if this condition is vio-

radially spreading jet for>1 andn=(y—h)/T=0(1)<0, |ated the length of the jump becomes comparable to or larger

riding over a region of slower_recirculating flow. The than the radius of the disk. However, the experimehts

stream function in the jet isy=rf(7), with f(»)  show that the jump always becomes unstable before reaching

=f_.tanhf_..7/4) andf_.=—(6¢y,)"*~—2.319, from that state.

the condition of conservation of the momentum flux of the In order to check the asymptotic resul®, the problem

oncoming Watson’s flow. The velocity in the jet decays as(1)—(7) was numerically solved for different values $fand

1/r and the effect of the gravity finally comes into play when h,. The numerical solutions display jumps with a single eddy

(h7)=0 and T=0(SY3) )

1
0.2

©)
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100 before, still show reasonable agreement with the estimate
h,=a/S"3, though witha~3.2, a value somewhat higher
than the one found before.

Summarizing, an asymptotic structure has been proposed
of the strong circular laminar hydraulic jump consisting of an

4
&‘zsgj"xg interaction region around the toe containing the separation
i, x o@@ point, already analyzed in Refs. 3 and 6, and a recirculation
7 5‘%:;;&% N region of length much larger than the standoff distance from
x &‘%&&% the toe to the center of the spreading layer. Downstream of
o X i? & S the interaction region the depth of the liquid layer is first

101 S proportional to T—1)™, with m~0.4305, and then becomes
proportional to T—1)%3 at a distance from the separation
L L e point estimated in the paragraph bel¢8). This depth is of
o001 Ky 001 the order of the depth of the liquid downstream of the jump
for (r—1)=0(1), atwhich point the fast separated flow in
FIG. 2. Experimental results of Ref. 2. Diamonds: normal water surfacethe upper part of the layer is a jet much thinner than the
tension. Crosses: reduced surface tension. The dashed lge-&.2/S"2, region of slow recirculating flow in the lower part, and it is
not yet affected by the gravity-induced pressure force. Fur-
. ] . . ther downstream the thickness of this jet grows proportion-
on the solid surface; see inset of Fig. 1 for an exanfilbe ly toT without increasing very much the total depth of the

results of Ref. 7 suggest that surface rollers are a feature . [ . .
. . : . Iquid, until its thickness and velocity become comparable to
laminar hydraulic jumps associated with cross-stream press;

sure variations due to the curvature of the streamlines, whic hf (():o;gipondlr;g kr]nagzltudes of the recwczl_atmgd flow, f%r
is a finite Re effect not included ifl)—(7).] The resulting r=0(1/S?), and the adverse pressure gradient due to the

B andt.. defined as the maximum depth of the layer and i,[Sgravity leads to the closure of the recirculation bubble. The
2 2y

position on the disk, respectively, are plotted in Fig. 1 versus"jlsymptOtIC result¢g) obtained from this analysis are in fair

) . .__agreement with numerical solutions of the equations govern-
S=Sr§, WhererJ is taken as the position of the separation g d g

] i . . _'ing the flow in the layer and with experimental results exist-
point. The curves of Fig. 1 contain data obtained Wlthing in the literature.

S=20, 30, 200, 500, 1000, and 2000 and Wit 0.1 to 1.2,
confirming the expected dependence of the scdtide)
variables on the combinatioB K, only. For small values of
S the results agree witli8), and the approximate values This work was partially supported by the Spanish
a~2.5 andB~1.14 can be obtained fitting straight lines of DGICYT through Grant No. PB95-0008.
slopeS™ % to the logarithmic plots.
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these experiments with the present analysis is only partial comparisons with experiments,” J. Fluid Me42, 145 (1992.
because, as was pointed out by Liu and Lienhard, the effectE. J. Watson, “The radial spread of a liquid jet over a horizontal plane,”
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ences, the experlmental results, which Correspond to ValueEF. J. Higuera, “The hydraulic jump in a viscous laminar flow,” J. Fluid
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