U~MC

1881 SORBONNE UNIVERSITES

Multiscale Hydrodynamic Phenomena
M2, Fluid mechanics 2016,/2017

Friday, December 2nd, 2016
Part I. : 90 minutes, NO documents

1. Quick Questions In few words :

1.1 Write incompressible NS equations in 2D, in developed formulation.

1.2 What is ”dominant balance” ?

1.3 What is the usual scale for pressure in incompressible NS equation at small Reynolds ?
1.4 What is the usual scale for pressure in incompressible NS equation at large Reynolds ?
1.5 Write Prandtl equations with no pressure gradient (Blasius problem)

1.6 Show that the self similar solution is n = y/y/z (do not prove f” + ff"” =0)

1.7-8-9 0’Alembert, Laplace, Heat : give the equation and any simple solution of it.

1.10 What is the Biirgers equation ? Which balance is it ?

2. Exercice
Let us look at the following ordinary differential equation : (E;) — +me— +y =0, valid for any

t > 0 with boundary conditions y(0) = 0 and y'(0) = 1. Of course ¢ is a given small parameter.
We want to solve this problem with Multiple Scales.

2.1 Expand up to order ¢ : y = yo(t) 4+ ey1(t), show that there is a problem for long times.

2.2 Introduce two time scales, tg =t and t1 = &t

2.3 Compute 9/0t and 9% /0t?

2.4 Solve the problem.

2.5 Suggest the plot of the solution.

2.6 What is the exact solution for any e, compare.

3. Exercice
Consider the following equation (of course ¢ is a given small parameter)

2

(E:) 52% + Z—Z = 1. with u(0) =0 u(1l) = .

We want to solve this problem with the Matched Asymptotic Expansion method.
3.1 Why is this problem singular ?
3.2 What is the outer problem and what is the possible general form of the outer solution ?
3.3 What is the inner problem of (F.) and what is the inner solution ?
3.4 Suggest the plot of the inner and outer solution.
3.5 Next order solution.
3.6 What is the exact solution for any e.
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Drop Impact

This is a part of ”Drop dynamics after impact on a solid wall : Theory and simulations” Jens Eggers,
Marco A. Fontelos, Christophe Josserand, and Stéphane Zaleski, PoF 22 2010

Here we do not write Navier Stokes equations, we just estimate rough orders of magnitude.

1.1 What is the name of We Fr and Re defined by (1) ? What do they scale or balance ?

1.2 What is their dimension ?

1.3 With the values given in the text give the range of numerical values for them.

1.4 Conclude about the regimes (influence of viscosity large or small, influence of surface tension large or
small, etc) ?

1.5 Write the equation of a sphere moving along z at velocity U downwards (see J. Philippi sketch, page 4)
1.6 Deduce by a first order expansion of the intersection of this sphere with the plane at very small time
that the intersection locus is r;(¢) ~ v/t (small time compared to a time 7 defined with R = D/2 and U).
1.7 From a simple balance of Newton’s law (time variation of momentum is the force, force is the mean
pressure times the surface), deduce the estimate P(t)/(pU?) ~ /7 /t.

Liquid sheet extension.

2.1 Comment the choice of velocity field (2). Is in incompressible ? Rotational ?
2.2 Write Euler equation and deduce the pressure field.

2.3 Prove the formula (3).

2.4 Give a proof to the self similar equation (4).

2.5 Comment the scales for (4) and discuss figure 5.

Boundary Layer. The paper is with dimension, simplifications are more clear without dimension.
3.1 Discuss the equation (6) (7). Which equation is not written ? What will be the result for Op/0z 7.
3.2 Give a proof to (8) (write equations without dimension).

3.3 Check the validity of 0,p = 0.

3.4 Check (9).

3.5 Check (10).

3.6 Check (11) and (12).

3.7 Check (13) and (14).

3.8 Figure 7 is not reproduced, can you imagine it ?

3.9 Comment the last paragraph about stability.

3.10 Final conclusion ?
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We study the impact of a fluid drop onto a planar solid surface at high speed so that at impact,
kinetic energy dominates over surface energy and inertia dominates over viscous effects. As the drop
spreads, it deforms into a thin film, whose thickness is limited by the growth of a viscous boundary
layer near the solid wall. Owing to surface tension, the edge of the film retracts relative to the flow
in the film and fluid collects into a toroidal rim bounding the film. Using mass and momentum
conservation, we construct a model for the radius of the deposit as a function of time. At each stage,
we perform detailed comparisons between theory and numerical simulations of the Navier—Stokes
equation. © 2010 American Institute of Physics. [doi:10.1063/1.3432498]

I. INTRODUCTION

Understanding the impact of fluid drops on a solid wall
is relevant to a large number of industrial and environmental
processes. Examples include printing, cooling of surfaces by
sprays, deposition of pesticides or nutrients on plant leaves,
or natural rain. Of particular interest is the question of

(...)

Thus assuming a spherical drop upon impact, there re-
main three dimensionless parameters which determine the
dynamics
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We , Re=——, Fr=—, (1)
b% v 2gR
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Our focus in this paper is on the regime of large We, Re,
and Fr numbers. For example, for rain, the size and speed
varies between R=0.5 mm and U=4.5 m/s for small drops
and R=2 mm and U=9 m/s for large &oum._o Thus

(...)

In this paper, numerical simulations will be used both as
a guide to the proper modeling of impact and to compare to
theoretical predictions quantitatively. We simulate the
Navier—Stokes equation for the liquid with free surface
boundary conditions at the interface (so that no outer fluid is
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The analytical description of the first stage of impact is
particularly difficult, as the drop undergoes a strong defor-
mation and the flow is redirected from a vertical to a hori-
zontal flow direction. The redirection of the flow is driven by
very strong pressure gradients, as illustrated in Fig. 3. In
agreement with classical impact 900&»8 the high pressure
region occupies a volume with the same radius as the contact
area of the drop with the solid. Using the horizontal momen-
tum balance to such open domain and applying the pressure
impact mﬁ?OwnFN_ we obtain that the amplitude of pressure
field P(¢) in this self-similar region behaves like

pU? t’
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FIG. 3. (Color online) The pressure
field corresponding to the same condi-
tions in Fig. 1 for (a) #/7=0.08, (b)

Calling the resulting maximum dimensionless height €,

we divide the height by € and the radius by V€. The result is ~ os
equivalent to dividing the physical height by its maximum
.Asseenin Fig. 5 o4
(right), the collapse to a self-similar profile is quite satisfac-
tory over a period of very significant drop deformation. In ~ ©°2
both examples, the rescaled profiles for larger times come

hmax and the physical radius by (V/ )"

Il. LIQUID SHEET EXPANSION

We intend to describe the intermediate and long time
dynamics of drop impacts. There, the pressure becomes in-
significant as a driving force for the flow. This suggests the
following hyperbolic flow pattern as the inviscid base flow,
following the first interaction period:

()

We note the obvious fact that time can be replaced by t+1,
here and in all of the following expressions. The physical
significance of #, is the time it takes for the pressure to decay
and the hyperbolic flow to establish itself. According to our
previous arguments, £, is in the order of 7.

The flow (2) is an exact solution of the Euler equations
with the pressure distribution p(z,r,t)/ p=-3z%/1>. The pres-
sure is thus decaying quickly in time, in agreement with the
observation that the flow at intermediate times is no longer
pressure-driven. The equation of motion for the convection
of the free surface h(r,t) by Eq. (2) is

doh

Q\S+5MHF: (3)

This equation has the similarity solution

n(r) =<5, )
12 t
valid for any function H. Note that Eq. (4) permits to imple-
ment any initial condition for the shape of the drop at time
t=0. It is an exact solution to the inviscid flow problem apart
from the pressure boundary condition, which requires
p==3h%(z,1)/1*. As h goes down, this pressure quickly be-
comes insignificant and the boundary condition may be taken
as one of vanishing pressure. This is consistent with the fact
that at intermediate times, inertia dominates over surface ten-
sion, so the physical boundary condition is once more one of
constant pressure.

close to a profile of universal shape, which is well fitted by o 05 1 15 2 25 3 0 02

Hy(x)=1/(1+Cx>°,

5
®) FIG. 5. drop profiles for different times.

Right figures show the same profiles rescaled



Ill. BOUNDARY LAYER

In the Sec. II, we described an inviscid outer solution
(2), which for large Reynolds numbers will develop a thin
boundary layer near the solid surface. If the boundary layer
is thinner than the drop thickness, we can neglect the effect
of the free surface. Remarkably, solutions of this time-
dependent boundary layer equations have been studied more
than 50 years ago and can be found in Ref. 24; we repeat the
axisymmetric version of the analysis here. Moreover, similar
calculations have been proposed recently in the same context
of drop Eﬁmnﬁm.:

The r component of the axisymmetric Navier—Stokes
equation reads”

0, +0,0,0,+V,0,0,
== 3,plp + V(v + v, + 6,1 = v,/1?) (6)

30,4 v, +v,/r=0 (7

is the incompressibility condition. According to the boundary
layer theory of Prandtl,”® a typical length scale in the
z-direction (normal to the solid surface) is smaller by a factor
of 1/\Re than a corresponding scale in the r-direction. Ac-
cording to Eq. (7), on the other hand, v,/v.=O(\Re). As a
result, all terms on the left hand side of Eq. (6) are of the
same order, but of the viscous terms, only the one with the
highest number of z-derivatives survives.
Thus the boundary layer equation becomes

v, +0,0,0,+v.00,=—d,plp+ vmw.c% (8)

As usual, the pressure distribution is that of the inviscid
problem, which does not have any radial gradients, so it
drops out from the equation. To satisfy incompressibility, it is
most convenient to look for the stream function ¢

b B B )

r r

In the inviscid case, y=—r’z/1. Moreover, the typical length
scale for diffusion of vorticity is 8= vt, which suggests the
ansatz

\.m
p=\lv=f =) (10)
Nt \ Yt

For f(§)=-¢, the inviscid result is recovered. Inserting Eq.
(10) into the boundary layer Eq. (8), we find

.\.\+ S\*\\N+\\NIN\,\<\H|\<\\. AH—V
The boundary conditions are
f(®)==1, f(0)=0, f(0)=0. (12)

The numerical solution of Eq. (11), subject to Eq. (12), is
shown in Fig. 6. We are not able to solve the equation ex-
actly but report an empirical function which matches the true
solution closely.

We now compare this boundary layer solution with our
numerical simulations of the impacting drop. The z compo-
nent of the velocity field is given in the boundary layer
theory by

Sl —— (13)

t+1g | vt +10) |

v,=2

so that its derivative becomes

2 z
%NCN = .\‘ W N
t+ty | Nu(t+1)
Since the minimum of f’ is —1 from the asymptotic
matching, we can write for any time

J. Philippi PhD 2015

r+(z— (R
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Impact of a drop on a plane.

Sketch of the intersection of the spherical
drop with the plane. At first order the drop
remains spherical, and the corolla is so
small that it is negligible. The wet radius

Q«Q is then in square root of time.

FIGURE 1.14 — Schéma illustrant le raisonnement géométrique utilisé pour déterminer la position
de lintersection entre la goutte et la couche liquide 7;(t). La goutte de rayon R tombe & vitesse
constante U donc 'équation de la sphére dans le plan (r, z) est donnée par r?+(z—(R—Ut))? = R?
puisqu’aux temps courts la goutte a la forme d’une spheére tronquée. En prenant z = 0 et en

négligeant le terme d’ordre 2 en temps, on obtient r;(t) = vV DUt.
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2u(-M) |’ (1

dv.=(-=M)f
where M is the minimum of dv,. Therefore, rescaling the
numerical velocity derivative profiles by —M and the vertical
coordinate z by \2v(-M), all profiles should collapse onto
the master curve f’. This is true for any time and or any
value of the parameters Re, We.

Figure 7 (left) shows the numerical profiles d,v, for two
different sets of parameter values at different times. On the
right, the profiles which have been rescaled according to Eq.
(14) are compared to the theoretical boundary layer profile.
We find good collapse as well as good agreement with the
predicted similarity profile f'(£). We have also checked the
collapse for Reynolds numbers between 200 and 8000 and
Weber numbers between 400 and 16 000, and found the re-
sults comparable to those shown in the two representative
examples of Fig. 7.

Note that we have assumed the boundary layer to remain
laminar, which we believe to be realistic. Namely, according
to Ref. 27, p. 95, the critical Reynolds number Re s based on
the boundary layer thickness is typically 400. On account of
the smallness of J, Res is much smaller than Re, and well
below the critical value.
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FIG. 6. (Color online) The similarity profile. The dashed line is f'(§)=—1
+exp{-£-£}.
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