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Friday, December 2nd, 2016

Multiscale Hydrodynamic Phenomena

Part I. : 90 minutes, NO documents

1. Quick Questions In few words :
1.1 Write incompressible NS equations in 2D, in developed formulation.
1.2 What is ”dominant balance” ?
1.3 What is the usual scale for pressure in incompressible NS equation at small Reynolds ?
1.4 What is the usual scale for pressure in incompressible NS equation at large Reynolds ?
1.5 Write Prandtl equations with no pressure gradient (Blasius problem)
1.6 Show that the self similar solution is η = y/

√
x (do not prove f ′′′ + ff ′′ = 0)

1.7-8-9 ∂’Alembert, Laplace, Heat : give the equation and any simple solution of it.
1.10 What is the Bürgers equation ? Which balance is it ?

2. Exercice

Let us look at the following ordinary differential equation : (Eε)
d2y

dt2
+ πε

dy

dt
+ y = 0, valid for any

t > 0 with boundary conditions y(0) = 0 and y′(0) = 1. Of course ε is a given small parameter.
We want to solve this problem with Multiple Scales.
2.1 Expand up to order ε : y = y0(t) + εy1(t), show that there is a problem for long times.
2.2 Introduce two time scales, t0 = t and t1 = εt
2.3 Compute ∂/∂t and ∂2/∂t2

2.4 Solve the problem.
2.5 Suggest the plot of the solution.
2.6 What is the exact solution for any ε, compare.

3. Exercice
Consider the following equation (of course ε is a given small parameter)

(Eε) ε2
d2u

dx2
+
du

dx
= 1. with u(0) = 0 u(1) = π.

We want to solve this problem with the Matched Asymptotic Expansion method.
3.1 Why is this problem singular ?
3.2 What is the outer problem and what is the possible general form of the outer solution ?
3.3 What is the inner problem of (Eε) and what is the inner solution ?
3.4 Suggest the plot of the inner and outer solution.
3.5 Next order solution.
3.6 What is the exact solution for any ε.
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M2, Fluid mechanics 2014/2015
Friday, December 5th, 2014

Multiscale Hydrodynamic Phenomena

Part II. : 1h 15 min all documents.

Drop Impact

This is a part of ”Drop dynamics after impact on a solid wall : Theory and simulations” Jens Eggers,
Marco A. Fontelos, Christophe Josserand, and Stéphane Zaleski, PoF 22 2010

Here we do not write Navier Stokes equations, we just estimate rough orders of magnitude.
1.1 What is the name of We Fr and Re defined by (1) ? What do they scale or balance ?
1.2 What is their dimension ?
1.3 With the values given in the text give the range of numerical values for them.
1.4 Conclude about the regimes (influence of viscosity large or small, influence of surface tension large or
small, etc) ?
1.5 Write the equation of a sphere moving along z at velocity U downwards (see J. Philippi sketch, page 4)
1.6 Deduce by a first order expansion of the intersection of this sphere with the plane at very small time
that the intersection locus is rj(t) '

√
t (small time compared to a time τ defined with R = D/2 and U).

1.7 From a simple balance of Newton’s law (time variation of momentum is the force, force is the mean
pressure times the surface), deduce the estimate P (t)/(ρU2) ∼

√
τ/t.

Liquid sheet extension.
2.1 Comment the choice of velocity field (2). Is in incompressible ? Rotational ?
2.2 Write Euler equation and deduce the pressure field.
2.3 Prove the formula (3).
2.4 Give a proof to the self similar equation (4).
2.5 Comment the scales for (4) and discuss figure 5.

Boundary Layer. The paper is with dimension, simplifications are more clear without dimension.
3.1 Discuss the equation (6) (7). Which equation is not written ? What will be the result for ∂p/∂z ?.
3.2 Give a proof to (8) (write equations without dimension).
3.3 Check the validity of ∂rp = 0.
3.4 Check (9).
3.5 Check (10).
3.6 Check (11) and (12).
3.7 Check (13) and (14).
3.8 Figure 7 is not reproduced, can you imagine it ?
3.9 Comment the last paragraph about stability.
3.10 Final conclusion ?
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particularly
likely

on
w

ater-repellent
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such
as

plant
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pact

of
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onto
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planar
solid

surface
at

high
speed

so
that

at
im

pact,
kinetic

energy
dom

inates
oversurface

energy
and

inertia
dom

inates
overviscous

effects.A
s

the
drop

spreads,itdeform
s

into
a

thin
film
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hose

thickness
is

lim
ited

by
the

grow
th

of
a

viscous
boundary

layer
near

the
solid

w
all.O

w
ing
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surface

tension,the
edge
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film
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the
flow
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film
and
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U
nderstanding

the
im

pact
of

fluid
drops

on
a

solid
w

all
is

relevantto
a

large
num

ber
of

industrialand
environm

ental
processes.E

xam
ples

include
printing,cooling

of
surfaces

by
sprays,

deposition
of

pesticides
or

nutrients
on

plant
leaves,

or
natural

rain.
O

f
particular

interest
is

the
question

of
w

hether
the

drop
w

ill
be

deposited
on

the
solid

surface
or

w
hether

it
w

ill
rebound

eventually.T
he

latter
is

particularly
likely

on
w

ater-repellent
surfaces,

such
as

plant
leaves. 1

To
address

this
question,

an
understanding

of
the

entire
im

pact
process

is
necessary,

as
w

ell
as

to
calculate

the
rem

aining
kinetic

energy
available

for
rebound.A

large
num

ber
of

the-
oretical

and
applied

papers
are

testam
ent

to
the

scientific
interest

of
the

problem
!see,for

exam
ple,R

efs.1–10".
U

pon
im

pact,
the

drop
begins

to
spread

on
the

solid
surface

and
the

kinetic
energy

of
the

drop
is

converted
into

surface
energy.A

t
the

sam
e

tim
e,

fluid
viscosity

com
es

into
play,in

particular
near

the
solid

surface,w
here

w
e

assum
e

a
no-slip

boundary
condition.

In
this

paper,
w

e
w

ill
consider

the
case

that
the

fluid
is

repelled
perfectly

by
the

solid,as
it

is
true

to
a

very
good

approxim
ation

for
w

ater
on

plant
leaves.

T
his

m
eans

that
the

contact
angle

betw
een

the
drop

and
the

solid
is

180°
and

w
etting

properties
do

not
enter

the
description. 11

T
hus

assum
ing

a
spherical

drop
upon

im
pact,

there
re-

m
ain

three
dim

ensionless
param

eters
w

hich
determ

ine
the

dynam
ics

W
e

=
2!R

U
2

"
,

R
e

=
2R

U#
,

Fr=
U

2

2gR
,

!1"

w
hich

are
called

the
W

eber
num

ber,
R

eynolds
num

ber,
and

Froude
num

ber,
respectively.

H
ere,

R
is

the
drop

radius
!D

=
2R

is
the

diam
eter",

!
is

the
fluid

density,
#

is
the

kine-
m

atic
viscosity,and

g
is

the
acceleration

of
gravity.For

high
W

e,
the

surrounding
gas

atm
osphere

provokes
instability

of
the

rim
of

the
spreading

drop,w
hich

renders
the

m
otion

un-
steady

and
breaks

the
cylindrical

sym
m

etry.
T

his
instability

can
be

avoided
by

reducing
the

am
bient

gas
pressure

by

abouta
factor

of
5

!R
ef.12"

below
the

atm
ospheric

pressure.
A

dditionally,a
sm

all
air

bubble
can

be
entrapped

below
the

drop
at

im
pact,

ow
ing

to
the

air
layer

below
the

drop. 13–15

H
ow

ever,
in

the
follow

ing,
w

e
w

ill
ignore

the
effect

of
rim

instabilities
and

the
influence

of
the

surrounding
gas.

O
ur

focus
in

this
paper

is
on

the
regim

e
of

large
W

e,R
e,

and
Fr

num
bers.

For
exam

ple,
for

rain,
the

size
and

speed
varies

betw
een

R
=

0.5
m

m
and

U
=

4.5
m

/s
for

sm
all

drops
and

R
=

2
m

m
and

U
=

9
m

/s
for

large
drops. 16

T
hus

!R
e,W

e"=
!4500

,280"
and

!36
000,4500",

respectively,
w

hile
Fr=

2025
in

both
cases.T

he
Froude

num
ber

m
easures

the
relative

im
portance

of
kinetic

and
gravitationalenergy

on
the

scale
of

the
drop

size.T
hus,as

long
as

the
drop

rem
ains

on
the

plate,gravity
can

be
neglected,as

w
e

w
illdo

through-
out

this
paper.

H
ow

ever,
sim

ilar
argum

ents
do

not
apply

to
the

R
eynolds

and
W

eber
num

bers.T
he

W
eber

num
ber

m
ea-

sures
the

relative
im

portance
of

kinetic
and

surface
energy

of
the

drop.A
large

W
e

num
ber

m
eans

that
the

drop
spreads

to
a

m
axim

um
radius

m
uch

greater
than

its
initial

value,
thus

acquiring
a

large
surface

area.A
large

R
eynolds

num
ber,on

the
other

hand,
m

eans
that

viscous
effects

are
confined

to
a

thin
boundary

layer
close

to
the

solid
surface.

Previous
m

odeling
efforts

largely
ignore

the
sm

all-scale
structure

that
results

from
the

fact
that

both
W

e
and

R
e

are
large.For

exam
ple,in

R
efs.2

and
7,the

spreading
drop

after
im

pact
is

m
odeled

as
a

pancake
of

constant
thickness,

as
opposed

to
a

thin
film

actually
observed

in
the

high-speed
regim

e. 5
In

addition,the
boundary

layer
structure

is
ignored

as
w

ell,
except

for
a

recent
paper 17

in
w

hich
som

e
of

the
solutions

w
e

used
w

ere
em

ployed
independently.B

oth
ingre-

dients
are

necessary
to

m
odel

high-speed
im

pacts
correctly.

In
this

paper,num
ericalsim

ulations
w

illbe
used

both
as

a
guide

to
the

proper
m

odeling
of

im
pact

and
to

com
pare

to
theoretical

predictions
quantitatively.

W
e

sim
ulate

the
N

avier–Stokes
equation

for
the

liquid
w

ith
free

surface
boundary

conditions
atthe

interface
!so

thatno
outer

fluid
is

considered"
using

a
m

ethod
described

in
detailin

R
ef.18.To

assure
an
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description

of
the

interface,
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use

a
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speed

so
that
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kinetic

energy
dom

inates
oversurface

energy
and

inertia
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overviscous

effects.A
s

the
drop
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into
a

thin
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hose

thickness
is
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ited

by
the

grow
th

of
a

viscous
boundary

layer
near

the
solid

w
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w
ing
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surface

tension,the
edge

of
the
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retracts

relative
to

the
flow

in
the
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and
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into
a
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bounding
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U
nderstanding

the
im

pact
of

fluid
drops

on
a

solid
w

all
is

relevantto
a

large
num

ber
of

industrialand
environm

ental
processes.E

xam
ples

include
printing,cooling

of
surfaces

by
sprays,

deposition
of

pesticides
or

nutrients
on

plant
leaves,

or
natural

rain.
O

f
particular

interest
is

the
question

of
w

hether
the

drop
w

ill
be

deposited
on

the
solid

surface
or

w
hether

it
w

ill
rebound

eventually.T
he

latter
is

particularly
likely

on
w

ater-repellent
surfaces,

such
as

plant
leaves. 1

To
address

this
question,

an
understanding

of
the

entire
im

pact
process

is
necessary,

as
w

ell
as

to
calculate

the
rem

aining
kinetic

energy
available

for
rebound.A

large
num

ber
of

the-
oretical

and
applied

papers
are

testam
ent

to
the

scientific
interest

of
the

problem
!see,for

exam
ple,R

efs.1–10".
U

pon
im

pact,
the

drop
begins

to
spread

on
the

solid
surface

and
the

kinetic
energy

of
the

drop
is

converted
into

surface
energy.A

t
the

sam
e

tim
e,

fluid
viscosity

com
es

into
play,in

particular
near

the
solid

surface,w
here

w
e

assum
e

a
no-slip

boundary
condition.

In
this

paper,
w

e
w

ill
consider

the
case

that
the

fluid
is

repelled
perfectly

by
the

solid,as
it

is
true

to
a

very
good

approxim
ation

for
w

ater
on

plant
leaves.

T
his

m
eans

that
the

contact
angle

betw
een

the
drop

and
the

solid
is

180°
and

w
etting

properties
do

not
enter

the
description. 11

T
hus

assum
ing

a
spherical

drop
upon

im
pact,

there
re-

m
ain

three
dim

ensionless
param

eters
w

hich
determ

ine
the

dynam
ics

W
e

=
2!R

U
2

"
,

R
e

=
2R

U#
,

Fr=
U

2

2gR
,

!1"

w
hich

are
called

the
W

eber
num

ber,
R

eynolds
num

ber,
and

Froude
num

ber,
respectively.

H
ere,

R
is

the
drop

radius
!D

=
2R

is
the

diam
eter",

!
is

the
fluid

density,
#

is
the

kine-
m

atic
viscosity,and

g
is

the
acceleration

of
gravity.For

high
W

e,
the

surrounding
gas

atm
osphere

provokes
instability

of
the

rim
of

the
spreading

drop,w
hich

renders
the

m
otion

un-
steady

and
breaks

the
cylindrical

sym
m

etry.
T

his
instability

can
be

avoided
by

reducing
the

am
bient

gas
pressure

by

abouta
factor

of
5

!R
ef.12"

below
the

atm
ospheric

pressure.
A

dditionally,a
sm

all
air

bubble
can

be
entrapped

below
the

drop
at

im
pact,

ow
ing

to
the

air
layer

below
the

drop. 13–15

H
ow

ever,
in

the
follow

ing,
w

e
w

ill
ignore

the
effect

of
rim

instabilities
and

the
influence

of
the

surrounding
gas.

O
ur

focus
in

this
paper

is
on

the
regim

e
of

large
W

e,R
e,

and
Fr

num
bers.

For
exam

ple,
for

rain,
the

size
and

speed
varies

betw
een

R
=

0.5
m

m
and

U
=

4.5
m

/s
for

sm
all

drops
and

R
=

2
m

m
and

U
=

9
m

/s
for

large
drops. 16

T
hus

!R
e,W

e"=
!4500

,280"
and

!36
000,4500",

respectively,
w

hile
Fr=

2025
in

both
cases.T

he
Froude

num
ber

m
easures

the
relative

im
portance

of
kinetic

and
gravitationalenergy

on
the

scale
of

the
drop

size.T
hus,as

long
as

the
drop

rem
ains

on
the

plate,gravity
can

be
neglected,as

w
e

w
illdo

through-
out

this
paper.

H
ow

ever,
sim

ilar
argum

ents
do

not
apply

to
the

R
eynolds

and
W

eber
num

bers.T
he

W
eber

num
ber

m
ea-

sures
the

relative
im

portance
of

kinetic
and

surface
energy

of
the

drop.A
large

W
e

num
ber

m
eans

that
the

drop
spreads

to
a

m
axim

um
radius

m
uch

greater
than

its
initial

value,
thus

acquiring
a

large
surface

area.A
large

R
eynolds

num
ber,on
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other

hand,
m

eans
that

viscous
effects

are
confined

to
a

thin
boundary

layer
close

to
the

solid
surface.

Previous
m

odeling
efforts

largely
ignore

the
sm

all-scale
structure

that
results

from
the

fact
that

both
W

e
and

R
e

are
large.For

exam
ple,in

R
efs.2

and
7,the

spreading
drop

after
im

pact
is

m
odeled

as
a

pancake
of

constant
thickness,

as
opposed

to
a

thin
film

actually
observed

in
the

high-speed
regim

e. 5
In

addition,the
boundary

layer
structure

is
ignored

as
w

ell,
except

for
a

recent
paper 17

in
w

hich
som

e
of

the
solutions

w
e

used
w
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em
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oth
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dients
are

necessary
to

m
odel

high-speed
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correctly.

In
this
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ulations
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both
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to
the
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of
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and
to

com
pare

to
theoretical

predictions
quantitatively.
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sim
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equation

for
the

liquid
w

ith
free

surface
boundary
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of
tim

e.A
teach

stage,
w

e
perform

detailed
com

parisons
betw

een
theory

and
num

erical
sim

ulations
of

the
N

avier–Stokes
equation.
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U
nderstanding

the
im

pact
of

fluid
drops

on
a

solid
w

all
is

relevantto
a

large
num

ber
of

industrialand
environm

ental
processes.E

xam
ples

include
printing,cooling

of
surfaces

by
sprays,

deposition
of

pesticides
or

nutrients
on

plant
leaves,

or
natural

rain.
O

f
particular

interest
is

the
question

of
w

hether
the

drop
w

ill
be

deposited
on

the
solid

surface
or

w
hether

it
w

ill
rebound

eventually.T
he

latter
is

particularly
likely

on
w

ater-repellent
surfaces,

such
as

plant
leaves. 1

To
address

this
question,

an
understanding

of
the

entire
im

pact
process

is
necessary,

as
w

ell
as

to
calculate

the
rem

aining
kinetic

energy
available

for
rebound.A

large
num

ber
of

the-
oretical

and
applied

papers
are

testam
ent

to
the

scientific
interest

of
the

problem
!see,for

exam
ple,R

efs.1–10".
U

pon
im

pact,
the

drop
begins

to
spread

on
the

solid
surface

and
the

kinetic
energy

of
the

drop
is

converted
into

surface
energy.A

t
the

sam
e

tim
e,

fluid
viscosity

com
es

into
play,in

particular
near

the
solid

surface,w
here

w
e

assum
e

a
no-slip

boundary
condition.

In
this

paper,
w

e
w

ill
consider

the
case

that
the

fluid
is

repelled
perfectly

by
the

solid,as
it

is
true

to
a

very
good

approxim
ation

for
w

ater
on

plant
leaves.

T
his

m
eans

that
the

contact
angle

betw
een

the
drop

and
the

solid
is

180°
and

w
etting

properties
do

not
enter

the
description. 11

T
hus

assum
ing

a
spherical

drop
upon

im
pact,

there
re-

m
ain

three
dim

ensionless
param

eters
w

hich
determ

ine
the

dynam
ics

W
e

=
2!R

U
2

"
,

R
e

=
2R

U#
,

Fr=
U

2

2gR
,

!1"

w
hich

are
called

the
W

eber
num

ber,
R

eynolds
num

ber,
and

Froude
num

ber,
respectively.

H
ere,

R
is

the
drop

radius
!D

=
2R

is
the

diam
eter",

!
is

the
fluid

density,
#

is
the

kine-
m

atic
viscosity,and

g
is

the
acceleration

of
gravity.For

high
W

e,
the

surrounding
gas

atm
osphere

provokes
instability

of
the

rim
of

the
spreading

drop,w
hich

renders
the

m
otion

un-
steady

and
breaks

the
cylindrical

sym
m

etry.
T

his
instability

can
be

avoided
by

reducing
the

am
bient

gas
pressure

by

abouta
factor

of
5

!R
ef.12"

below
the

atm
ospheric

pressure.
A

dditionally,a
sm

all
air

bubble
can

be
entrapped

below
the

drop
at

im
pact,

ow
ing

to
the

air
layer

below
the

drop. 13–15

H
ow

ever,
in

the
follow

ing,
w

e
w

ill
ignore

the
effect

of
rim

instabilities
and

the
influence

of
the

surrounding
gas.

O
ur

focus
in

this
paper

is
on

the
regim

e
of

large
W

e,R
e,

and
Fr

num
bers.

For
exam

ple,
for

rain,
the

size
and

speed
varies

betw
een

R
=

0.5
m

m
and

U
=

4.5
m

/s
for

sm
all

drops
and

R
=

2
m

m
and

U
=

9
m

/s
for

large
drops. 16

T
hus

!R
e,W

e"=
!4500

,280"
and

!36
000,4500",

respectively,
w

hile
Fr=

2025
in

both
cases.T

he
Froude

num
ber

m
easures

the
relative

im
portance

of
kinetic

and
gravitationalenergy

on
the

scale
of

the
drop

size.T
hus,as

long
as

the
drop

rem
ains

on
the

plate,gravity
can

be
neglected,as

w
e

w
illdo

through-
out

this
paper.

H
ow

ever,
sim

ilar
argum

ents
do

not
apply

to
the

R
eynolds

and
W

eber
num

bers.T
he

W
eber

num
ber

m
ea-

sures
the

relative
im

portance
of

kinetic
and

surface
energy

of
the

drop.A
large

W
e

num
ber

m
eans

that
the

drop
spreads

to
a

m
axim

um
radius

m
uch

greater
than

its
initial

value,
thus

acquiring
a

large
surface

area.A
large

R
eynolds

num
ber,on

the
other

hand,
m

eans
that

viscous
effects

are
confined

to
a

thin
boundary

layer
close

to
the

solid
surface.

Previous
m

odeling
efforts

largely
ignore

the
sm

all-scale
structure

that
results

from
the

fact
that

both
W

e
and

R
e

are
large.For

exam
ple,in

R
efs.2

and
7,the

spreading
drop

after
im

pact
is

m
odeled

as
a

pancake
of

constant
thickness,

as
opposed

to
a

thin
film

actually
observed

in
the

high-speed
regim

e. 5
In

addition,the
boundary

layer
structure

is
ignored

as
w

ell,
except

for
a

recent
paper 17

in
w

hich
som

e
of

the
solutions

w
e

used
w

ere
em

ployed
independently.B

oth
ingre-

dients
are

necessary
to

m
odel

high-speed
im

pacts
correctly.

In
this

paper,num
ericalsim

ulations
w

illbe
used

both
as

a
guide

to
the

proper
m

odeling
of

im
pact

and
to

com
pare

to
theoretical

predictions
quantitatively.

W
e

sim
ulate

the
N

avier–Stokes
equation

for
the

liquid
w

ith
free

surface
boundary

conditions
atthe

interface
!so

thatno
outer

fluid
is

considered"
using

a
m

ethod
described

in
detailin

R
ef.18.To

assure
an

accurate
description

of
the

interface,
w

e
use

a

PH
Y

SIC
S

O
F

FL
U

ID
S

22,062101
!2010"

1070-6631/2010/22!6"/062101/13/$30.00
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m
arker

m
ethod

w
hich

im
poses

a
hydrophobic

!180°
contact

angle"
boundary

condition
at

the
contact

line
betw

een
the

drop
and

the
plate.T

his
also

has
the

advantage
thatthe

usual
viscous

singularity
at

a
m

oving
contact

line
is

avoided, 19
so

the
contact

angle
condition

can
be

enforced
on

the
scale

of
the

m
esh.T

he
drop

dynam
ics

w
illbe

described
in

cylindrical
coordinates

r
and

z,the
z-axis

being
defined

by
the

sym
m

etry
axis

of
the

problem
,

w
ith

z=
0

at
the

w
all.

T
he

drop
is

as-
sum

ed
to

rem
ain

spherical
before

it
touches

the
w

all
at

t=
0.

In
the

sim
ulations,

w
e

have
been

able
to

vary
the

R
eynolds

num
berfrom

400
to

8000
and

the
W

ebernum
berfrom

400
to

16
000,w

hile
stillbeing

able
to

resolve
allthe

relevantflow
features.

A
typical

series
of

snapshots
of

the
drop

im
pact

dynam
-

ics
is

show
n

in
Fig.

1
for

R
e=

400
and

W
e=

800.W
e

report
tim

es
in

units
of

the
typicalim

pacttim
e

!=
R

/U
and

lengths
are

given
in

units
of

R
.

In
the

first
line

of
Fig.

1,
the

first
stage

of
im

pact
is

show
n,

during
w

hich
the

drop
is

strongly
deform

ed
near

the
bottom

,
w

hile
its

upper
part

retains
its

original
shape.In

Figs.1!d"
and

1!e",the
drop

starts
to

flat-
ten

and
deform

s
into

a
film

m
uch

thinner
than

R
.In

Fig.1!f",
the

film
has

reached
its

final
and

rem
arkably

uniform
thick-

ness.A
tthe

sam
e

tim
e,the

end
has

begun
to

retractand
fluid

collects
into

a
rim

.
Subsequently,

retraction
continues

and
fluid

collects
into

the
rim

w
hich

thickens,
w

hile
the

film
thickness

rem
ains

the
sam

e,
as

seen
in

fram
e

!g".
In

Fig.
1!h",the

radius
of

the
film

has
shrunk

to
zero

and
in

the
last

fram
e

#Fig.
1!i"$,

the
drop

is
seen

to
have

left
the

substrate
and

to
hit

the
upper

boundary
of

the
com

putational
dom

ain.
T

he
tim

e
evolutions

of
tw

o
key

quantities
derived

from
the

im
pact

dynam
ics

of
Fig.

1
are

show
n

in
Fig.

2.T
he

contact
radius

of
the

drop
on

the
solid

substrate
illustrates

the
spreading

and
subsequent

retraction
and

the
height

at
the

center
of

the
drop

show
s

the
form

ation
of

a
thin

film
,w

hose
thickness

rem
ains

constant
during

the
retraction

phase.
T

he
analytical

description
of

the
first

stage
of

im
pact

is
particularly

difficult,
as

the
drop

undergoes
a

strong
defor-

m
ation

and
the

flow
is

redirected
from

a
vertical

to
a

hori-
zontalflow

direction.T
he

redirection
of

the
flow

is
driven

by
very

strong
pressure

gradients,
as

illustrated
in

Fig.
3.

In
agreem

ent
w

ith
classical

im
pact

theory, 20
the

high
pressure

region
occupies

a
volum

e
w

ith
the

sam
e

radius
as

the
contact

area
of

the
drop

w
ith

the
solid.U

sing
the

horizontalm
om

en-
tum

balance
to

such
open

dom
ain

and
applying

the
pressure

im
pact

approach, 21
w

e
obtain

that
the

am
plitude

of
pressure

field
P!t"

in
this

self-sim
ilar

region
behaves

like

0
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FIG
.1.

Snapshots
of

a
drop

im
pacting

on
a

solid
surface

obtained
num

erically
using

the
m

arkers
m

ethod
for

R
e=

400
and

W
e=

800.Tim
es

of
the

different
snapshot

correspond
to

t/!=
0,0.22,0.43,1.3,2.5,5.7,15.8,21.2,and

60
from

left
to

right
and

top
to

bottom
,respectively.
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(…
)

P!t"
!U

2
# $

"t ,

sim
ilar

to
the

scaling
obtained

for
the

drop
im

pact
on

a
thin

liquid
film

. 22
T

hus,
after

tim
e

"=
R

/U
,

the
high

pressure
re-

gion
has

spread
over

the
w

hole
drop

and
the

stopping
of

the
original

vertical
flow

is
com

plete.
T

his
m

eans
that

shortly
after

this
tim

e,
the

m
axim

um
pressure

in
the

flow
decreases

very
quickly,as

show
n

in
Fig.4,and

the
flow

in
the

drop
is

no
longer

pressure-driven.
Instead,

it
is

described
to

a
good

approxim
ation

by
a

sim
ple

hyperbolic
flow

w
ith

a
rapidly

decaying
pressure,

as
suggested

in
R

ef.
23

and
described

in
Sec.

II
below

.
T

his
observation

perm
its

a
universal

descrip-
tion

of
drop

im
pact

at
high

speeds.
In

this
paper,w

e
w

ill
concentrate

on
tim

es
t#

",during
w

hich
the

drop
spreads

dynam
ically

and
subsequently

re-
tracts.W

e
use

the
abovem

entioned
hyperbolic

flow
solution

as
an

outer
solution

of
the

E
uler

equation
w

ith
a

free
surface,

and
show

thatitleads
to

a
sim

ilarity
solution

of
drop

dynam
-

ics;
this

w
ill

be
done

in
Sec.III.T

here,w
e

w
ill

describe
the

grow
th

of
a

viscous
boundary

layer
and

com
pare

the
result-

ing
velocity

profile
to

num
erical

sim
ulations.

T
he

asym
ptotic

film
thickness

in
the

interior
of

the
drop

is
reached

w
hen

the
free

surface
m

eets
the

viscous
boundary

layer.
Section

IV
describes

the
dynam

ics
of

spreading
and

retraction
by

considering
the

coupled
dynam

ics
of

the
film

and
its

rim
.T

he
rim

grow
s

in
m

ass
atthe

expense
of

the
film

as
the

edge
of

the
film

retracts
relative

to
the

flow
speed

in
the

film
.T

he
dynam

ics
R!t"

of
the

total
drop

radius
is

once
m

ore
com

pared
to

our
num

erical
sim

ulations,
using

a
m

ini-
m

alsetof
adjustable

param
eters.Finally

in
Sec.V

,w
e

com
-

pare
to

the
results

of
earlier

theories.

II.LIQ
U

ID
S

H
E

E
T

E
X

PA
N

S
IO

N

W
e

intend
to

describe
the

interm
ediate

and
long

tim
e

dynam
ics

of
drop

im
pacts.

T
here,

the
pressure

becom
es

in-
significant

as
a

driving
force

for
the

flow
.T

his
suggests

the
follow

ing
hyperbolic

flow
pattern

as
the

inviscid
base

flow
,

follow
ing

the
first

interaction
period:

v
r =

rt ,
v

z =
−

2zt
.

!2"

W
e

note
the

obvious
fact

that
tim

e
can

be
replaced

by
t+

t0
here

and
in

all
of

the
follow

ing
expressions.

T
he

physical
significance

of
t0

is
the

tim
e

ittakes
for

the
pressure

to
decay

and
the

hyperbolic
flow

to
establish

itself.A
ccording

to
our

previous
argum

ents,
t0

is
in

the
order

of
".

T
he

flow
!2"

is
an

exact
solution

of
the

E
uler

equations
w

ith
the

pressure
distribution

p!z,r,t"/ !
=

−3z 2/t 2.T
he

pres-
sure

is
thus

decaying
quickly

in
tim

e,in
agreem

ent
w

ith
the

observation
that

the
flow

at
interm

ediate
tim

es
is

no
longer

pressure-driven.
T

he
equation

of
m

otion
for

the
convection

of
the

free
surface

h!r,t"
by

E
q.!2"

is

!
t h

+
v

r !h!r
=

v
z .

!3"

T
his

equation
has

the
sim

ilarity
solution

h!r,t"=
1t 2 H%

rt &
,

!4"

valid
for

any
function

H
.N

ote
thatE

q.!4"
perm

its
to

im
ple-

m
ent

any
initial

condition
for

the
shape

of
the

drop
at

tim
e

t=
0.Itis

an
exactsolution

to
the

inviscid
flow

problem
apart

from
the

pressure
boundary

condition,
w

hich
requires

p
=

−3h
2!z,t"/t 2.A

s
h

goes
dow

n,
this

pressure
quickly

be-
com

es
insignificantand

the
boundary

condition
m

ay
be

taken
as

one
of

vanishing
pressure.T

his
is

consistentw
ith

the
fact

thatatinterm
ediate

tim
es,inertia

dom
inates

over
surface

ten-
sion,so

the
physicalboundary

condition
is

once
m

ore
one

of
constant

pressure.
To

putthe
sim

ilarity
solution

!4"
to

the
test,w

e
com

pare
it

to
our

num
erical

sim
ulations.

In
Fig.

5
!left",

w
e

plot
a

series
of

drop
profiles

for
different

tim
es

in
the

interm
ediate

regim
e

of
drop

spreading.
W

e
consider

tw
o

very
different

W
eber

num
bers

W
e=

800
and

W
e=

16
000

for
the

R
eynolds

num
ber

R
e=

800.
T

he
profiles

are
first

m
ade

dim
ensionless

by
rescaling

w
ith

the
length

V
1/3,

w
here

V
is

the
drop

vol-
um

e.C
alling

the
resulting

m
axim

um
dim

ensionless
height

!,

(a)

(b)

FIG
.2.

Tim
e

evolution
of!a"the

radius
ofthe

contactarea
betw

een
the

drop
and

the
substrate

and
of!b"

the
heightof

the
interface

on
the

sym
m

etry
axis.

T
he

radius
and

the
height

are
rescaled

by
the

drop
radius

R
and

tim
e

is
show

n
in

units
of

".
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P!t"
!U

2
# $

"t ,

sim
ilar

to
the

scaling
obtained

for
the

drop
im

pact
on

a
thin

liquid
film

. 22
T

hus,
after

tim
e

"=
R

/U
,

the
high

pressure
re-

gion
has

spread
over

the
w

hole
drop

and
the

stopping
of

the
original

vertical
flow

is
com

plete.
T

his
m

eans
that

shortly
after

this
tim

e,
the

m
axim

um
pressure

in
the

flow
decreases

very
quickly,as

show
n

in
Fig.4,and

the
flow

in
the

drop
is

no
longer

pressure-driven.
Instead,

it
is

described
to

a
good

approxim
ation

by
a

sim
ple

hyperbolic
flow

w
ith

a
rapidly

decaying
pressure,

as
suggested

in
R

ef.
23

and
described

in
Sec.

II
below

.
T

his
observation

perm
its

a
universal

descrip-
tion

of
drop

im
pact

at
high

speeds.
In

this
paper,w

e
w

ill
concentrate

on
tim

es
t#

",during
w

hich
the

drop
spreads

dynam
ically

and
subsequently

re-
tracts.W

e
use

the
abovem

entioned
hyperbolic

flow
solution

as
an

outer
solution

of
the

E
uler

equation
w

ith
a

free
surface,

and
show

thatitleads
to

a
sim

ilarity
solution

of
drop

dynam
-

ics;
this

w
ill

be
done

in
Sec.III.T

here,w
e

w
ill

describe
the

grow
th

of
a

viscous
boundary

layer
and

com
pare

the
result-

ing
velocity

profile
to

num
erical

sim
ulations.

T
he

asym
ptotic

film
thickness

in
the

interior
of

the
drop

is
reached

w
hen

the
free

surface
m

eets
the

viscous
boundary

layer.
Section

IV
describes

the
dynam

ics
of

spreading
and

retraction
by

considering
the

coupled
dynam

ics
of

the
film

and
its

rim
.T

he
rim

grow
s

in
m

ass
atthe

expense
of

the
film

as
the

edge
of

the
film

retracts
relative

to
the

flow
speed

in
the

film
.T

he
dynam

ics
R!t"

of
the

total
drop

radius
is

once
m

ore
com

pared
to

our
num

erical
sim

ulations,
using

a
m

ini-
m

alsetof
adjustable

param
eters.Finally

in
Sec.V

,w
e

com
-

pare
to

the
results

of
earlier

theories.
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W
e

intend
to

describe
the

interm
ediate

and
long

tim
e

dynam
ics

of
drop

im
pacts.

T
here,

the
pressure

becom
es

in-
significant

as
a

driving
force

for
the

flow
.T

his
suggests

the
follow

ing
hyperbolic

flow
pattern

as
the

inviscid
base

flow
,

follow
ing

the
first

interaction
period:

v
r =

rt ,
v

z =
−

2zt
.

!2"

W
e

note
the

obvious
fact

that
tim

e
can

be
replaced

by
t+

t0
here

and
in

all
of

the
follow

ing
expressions.

T
he

physical
significance

of
t0

is
the

tim
e

ittakes
for

the
pressure

to
decay

and
the

hyperbolic
flow

to
establish

itself.A
ccording

to
our

previous
argum

ents,
t0

is
in

the
order

of
".

T
he

flow
!2"

is
an

exact
solution

of
the

E
uler

equations
w

ith
the

pressure
distribution

p!z,r,t"/ !
=

−3z 2/t 2.T
he

pres-
sure

is
thus

decaying
quickly

in
tim

e,in
agreem

ent
w

ith
the

observation
that

the
flow

at
interm

ediate
tim

es
is

no
longer

pressure-driven.
T

he
equation

of
m

otion
for

the
convection

of
the

free
surface

h!r,t"
by

E
q.!2"

is

!
t h

+
v

r !h!r
=

v
z .

!3"

T
his

equation
has

the
sim

ilarity
solution

h!r,t"=
1t 2 H%

rt &
,

!4"

valid
for

any
function

H
.N

ote
thatE

q.!4"
perm

its
to

im
ple-

m
ent

any
initial

condition
for

the
shape

of
the

drop
at

tim
e

t=
0.Itis

an
exactsolution

to
the

inviscid
flow

problem
apart

from
the

pressure
boundary

condition,
w

hich
requires

p
=

−3h
2!z,t"/t 2.A

s
h

goes
dow

n,
this

pressure
quickly

be-
com

es
insignificantand

the
boundary

condition
m

ay
be

taken
as

one
of

vanishing
pressure.T

his
is

consistentw
ith

the
fact

thatatinterm
ediate

tim
es,inertia

dom
inates

over
surface

ten-
sion,so

the
physicalboundary

condition
is

once
m

ore
one

of
constant

pressure.
To

putthe
sim

ilarity
solution

!4"
to

the
test,w

e
com

pare
it

to
our

num
erical

sim
ulations.

In
Fig.

5
!left",

w
e

plot
a

series
of

drop
profiles

for
different

tim
es

in
the

interm
ediate

regim
e

of
drop

spreading.
W

e
consider

tw
o

very
different

W
eber

num
bers

W
e=

800
and

W
e=

16
000

for
the

R
eynolds

num
ber

R
e=

800.
T

he
profiles

are
first

m
ade

dim
ensionless

by
rescaling

w
ith

the
length

V
1/3,

w
here

V
is

the
drop

vol-
um

e.C
alling

the
resulting

m
axim

um
dim

ensionless
height

!,

(a)

(b)

FIG
.2.

Tim
e

evolution
of!a"the

radius
ofthe

contactarea
betw

een
the

drop
and

the
substrate

and
of!b"

the
heightof

the
interface

on
the

sym
m

etry
axis.

T
he

radius
and

the
height

are
rescaled

by
the

drop
radius

R
and

tim
e

is
show

n
in

units
of

".
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w
e

divide
the

heightby
!

and
the

radius
by !

!.T
he

resultis
equivalent

to
dividing

the
physical

height
by

its
m

axim
um

h
m

ax
and

the
physicalradius

by
"V

/h
m

ax # 1/2.A
s

seen
in

Fig.5
"right#,the

collapse
to

a
self-sim

ilar
profile

is
quite

satisfac-
tory

over
a

period
of

very
significant

drop
deform

ation.
In

both
exam

ples,
the

rescaled
profiles

for
larger

tim
es

com
e

close
to

a
profile

of
universal

shape,w
hich

is
w

ell
fitted

by

H
s "x#=

1/"1
+

C
x

2# 6,
"5#

w
ith

the
constant

C
=

0.625.A
s

w
e

vary
the

W
eber

num
ber

from
800

to
16

000,w
e

see
no

difference
in

the
self-sim

ilar
profile,

w
hile

there
is

a
m

ild
dependence

of
C

on
R

eynolds
num

ber.
W

ith
this

adjustm
ent,

R
eynolds

num
bers

from
200

to
8000

can
be

described
equally

w
ell.

T
his

confirm
s

our
assertion

thatthe
initial"pressure-driven#

im
pactdynam

ics
is

forgotten
after

a
tim

e
!

and
the

subsequent
evolution

is
de-

scribed
by

the
flow

"2#.
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.
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pressure
field
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to

the
sam

e
condi-

tions
in

Fig.
1

for
"a#

t/ !=
0.08,

"b#
0.12,"c#

0.2,
and

"d#
0.29.
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he

shade
scale

goes
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light
to

dark
for

in-
creasing

values
of
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pressure.
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different
R

eynolds
and

W
eber

num
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ranging
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400
to

8000
and

from
160

to
80

000,respectively
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0 =
"U
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he

behavior
predicted

by
the

sm
all

tim
e

im
pact

theory
is

the
dashed

line.
For

t#
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notice
that

the
pressure

drops
dram

atically.

062101-4
E

ggers
et

al.
P

hys.
F

luids
22,

062101
!2010"

A
uthor com

plim
entary copy. R

edistribution subject to A
IP license or copyright, see http://phf.aip.org/phf/copyright.jsp

P!t"
!U

2
# $

"t ,

sim
ilar

to
the

scaling
obtained

for
the

drop
im

pact
on

a
thin

liquid
film

. 22
T

hus,
after

tim
e

"=
R

/U
,

the
high

pressure
re-

gion
has

spread
over

the
w

hole
drop

and
the

stopping
of

the
original

vertical
flow

is
com

plete.
T

his
m

eans
that

shortly
after

this
tim

e,
the

m
axim

um
pressure

in
the

flow
decreases

very
quickly,as

show
n

in
Fig.4,and

the
flow

in
the

drop
is

no
longer

pressure-driven.
Instead,

it
is

described
to

a
good

approxim
ation

by
a

sim
ple

hyperbolic
flow

w
ith

a
rapidly

decaying
pressure,

as
suggested

in
R

ef.
23

and
described

in
Sec.

II
below

.
T

his
observation

perm
its

a
universal

descrip-
tion

of
drop

im
pact

at
high

speeds.
In

this
paper,w

e
w

ill
concentrate

on
tim

es
t#

",during
w

hich
the

drop
spreads

dynam
ically

and
subsequently

re-
tracts.W

e
use

the
abovem

entioned
hyperbolic

flow
solution

as
an

outer
solution

of
the

E
uler

equation
w

ith
a

free
surface,

and
show

thatitleads
to

a
sim

ilarity
solution

of
drop

dynam
-

ics;
this

w
ill

be
done

in
Sec.III.T

here,w
e

w
ill

describe
the

grow
th

of
a

viscous
boundary

layer
and

com
pare

the
result-

ing
velocity

profile
to

num
erical

sim
ulations.

T
he

asym
ptotic

film
thickness

in
the

interior
of

the
drop

is
reached

w
hen

the
free

surface
m

eets
the

viscous
boundary

layer.
Section

IV
describes

the
dynam

ics
of

spreading
and

retraction
by

considering
the

coupled
dynam

ics
of

the
film

and
its

rim
.T

he
rim

grow
s

in
m

ass
atthe

expense
of

the
film

as
the

edge
of

the
film

retracts
relative

to
the

flow
speed

in
the

film
.T

he
dynam

ics
R!t"

of
the

total
drop

radius
is

once
m

ore
com

pared
to

our
num

erical
sim

ulations,
using

a
m

ini-
m

alsetof
adjustable

param
eters.Finally

in
Sec.V

,w
e

com
-

pare
to

the
results

of
earlier

theories.
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W
e

intend
to

describe
the

interm
ediate

and
long

tim
e

dynam
ics

of
drop

im
pacts.

T
here,

the
pressure

becom
es

in-
significant

as
a

driving
force

for
the

flow
.T

his
suggests

the
follow

ing
hyperbolic

flow
pattern

as
the

inviscid
base

flow
,

follow
ing

the
first

interaction
period:

v
r =

rt ,
v

z =
−

2zt
.

!2"

W
e

note
the

obvious
fact

that
tim

e
can

be
replaced

by
t+

t0
here

and
in

all
of

the
follow

ing
expressions.

T
he

physical
significance

of
t0

is
the

tim
e

ittakes
for

the
pressure

to
decay

and
the

hyperbolic
flow

to
establish

itself.A
ccording

to
our

previous
argum

ents,
t0

is
in

the
order

of
".

T
he

flow
!2"

is
an

exact
solution

of
the

E
uler

equations
w

ith
the

pressure
distribution

p!z,r,t"/ !
=

−3z 2/t 2.T
he

pres-
sure

is
thus

decaying
quickly

in
tim

e,in
agreem

ent
w

ith
the

observation
that

the
flow

at
interm

ediate
tim

es
is

no
longer

pressure-driven.
T

he
equation

of
m

otion
for

the
convection

of
the

free
surface

h!r,t"
by

E
q.!2"

is

!
t h

+
v

r !h!r
=

v
z .

!3"

T
his

equation
has

the
sim

ilarity
solution

h!r,t"=
1t 2 H%

rt &
,

!4"

valid
for

any
function

H
.N

ote
thatE

q.!4"
perm

its
to

im
ple-

m
ent

any
initial

condition
for

the
shape

of
the

drop
at

tim
e

t=
0.Itis

an
exactsolution

to
the

inviscid
flow

problem
apart

from
the

pressure
boundary

condition,
w

hich
requires

p
=

−3h
2!z,t"/t 2.A

s
h

goes
dow

n,
this

pressure
quickly

be-
com

es
insignificantand

the
boundary

condition
m

ay
be

taken
as

one
of

vanishing
pressure.T

his
is

consistentw
ith

the
fact

thatatinterm
ediate

tim
es,inertia

dom
inates

over
surface

ten-
sion,so

the
physicalboundary

condition
is

once
m

ore
one

of
constant

pressure.
To

putthe
sim

ilarity
solution

!4"
to

the
test,w

e
com

pare
it

to
our

num
erical

sim
ulations.

In
Fig.

5
!left",

w
e

plot
a

series
of

drop
profiles

for
different

tim
es

in
the

interm
ediate

regim
e

of
drop

spreading.
W

e
consider

tw
o

very
different

W
eber

num
bers

W
e=

800
and

W
e=

16
000

for
the

R
eynolds

num
ber

R
e=

800.
T

he
profiles

are
first

m
ade

dim
ensionless

by
rescaling

w
ith

the
length

V
1/3,

w
here

V
is

the
drop

vol-
um

e.C
alling

the
resulting

m
axim

um
dim

ensionless
height

!,

(a)

(b)

FIG
.2.

Tim
e

evolution
of!a"the

radius
ofthe

contactarea
betw

een
the

drop
and

the
substrate

and
of!b"

the
heightof

the
interface

on
the

sym
m

etry
axis.

T
he

radius
and

the
height

are
rescaled

by
the

drop
radius

R
and

tim
e

is
show

n
in

units
of

".
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w
e

divide
the

height
by

!
and

the
radius

by
!

!.
T

he
result

is
equivalent

to
dividing

the
physical

height
by

its
m

axim
um

h
m

ax
and

the
physical

radius
by

"V
/h

m
ax # 1/2.A

s
seen

in
F

ig.
5

"right#,
the

collapse
to

a
self-sim

ilar
profi

le
is

quite
satisfac-

tory
over

a
period

of
very

signifi
cant

drop
deform

ation.
In

both
exam

ples,
the

rescaled
profi

les
for

larger
tim

es
com

e
close

to
a

profi
le

of
universal

shape,
w

hich
is

w
ell

fi
tted

by

H
s "x#

=
1/"1

+
C

x
2# 6,

"5#

w
ith

the
constant

C
=

0.625.
A

s
w

e
vary

the
W

eber
num

ber
from

800
to

16
000,

w
e

see
no

difference
in

the
self-sim

ilar
profi

le,
w

hile
there

is
a

m
ild

dependence
of

C
on

R
eynolds

num
ber.

W
ith

this
adjustm

ent,
R

eynolds
num

bers
from

200
to

8000
can

be
described

equally
w

ell.
T

his
confi

rm
s

our
assertion

that
the

initial"pressure-driven#
im

pact
dynam

ics
is

forgotten
after

a
tim

e
!

and
the

subsequent
evolution

is
de-

scribed
by

the
fl

ow
"2#.
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w
e

divide
the

heightby
!

and
the

radius
by !

!.T
he

resultis
equivalent

to
dividing

the
physical

height
by

its
m

axim
um

h
m

ax
and

the
physicalradius

by
"V

/h
m

ax # 1/2.A
s

seen
in

Fig.5
"right#,the

collapse
to

a
self-sim

ilar
profile

is
quite

satisfac-
tory

over
a

period
of

very
significant

drop
deform

ation.
In

both
exam

ples,
the

rescaled
profiles

for
larger

tim
es

com
e

close
to

a
profile

of
universal

shape,w
hich

is
w

ell
fitted

by

H
s "x#=
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+

C
x

2# 6,
"5#

w
ith

the
constant

C
=

0.625.A
s

w
e

vary
the

W
eber

num
ber

from
800

to
16

000,w
e

see
no

difference
in

the
self-sim

ilar
profile,

w
hile

there
is

a
m

ild
dependence

of
C

on
R

eynolds
num

ber.
W

ith
this

adjustm
ent,

R
eynolds

num
bers

from
200

to
8000

can
be

described
equally

w
ell.
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his

confirm
s

our
assertion

thatthe
initial"pressure-driven#

im
pactdynam

ics
is

forgotten
after

a
tim
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!

and
the

subsequent
evolution

is
de-

scribed
by

the
flow
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ore
than

50
years

ago
and

can
be

found
in

R
ef.24;w

e
repeatthe

axisym
m

etric
version

of
the

analysis
here.M

oreover,sim
ilar

calculations
have

been
proposed

recently
in

the
sam

e
context

of
drop

im
pacts. 17

T
he

r
com

ponent
of

the
axisym

m
etric

N
avier–Stokes

equation
reads 25

!
t v
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−
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!
r v

r +
!
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z +

v
r /r
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!7"

is
the

incom
pressibility

condition.A
ccording

to
the

boundary
layer

theory
of

Prandtl, 26
a

typical
length

scale
in

the
z-direction

!norm
alto

the
solid

surface"
is

sm
aller

by
a

factor
of

1/ #R
e

than
a

corresponding
scale

in
the

r-direction.A
c-

cording
to

E
q.!7",

on
the

other
hand,

v
r /v

z =
O

! #R
e".A

s
a

result,
all

term
s

on
the

left
hand

side
of

E
q.!6"

are
of

the
sam

e
order,

but
of

the
viscous

term
s,

only
the

one
w

ith
the

highest
num

ber
of

z-derivatives
survives.

T
hus

the
boundary

layer
equation

becom
es

!
t v

r +
v

r !
r v

r +
v

z !
z v

r =
−

!
r p/!

+
"!

z 2v
r .

!8"

A
s

usual,
the

pressure
distribution

is
that

of
the

inviscid
problem

,
w

hich
does

not
have

any
radial

gradients,
so

it
drops

outfrom
the

equation.To
satisfy

incom
pressibility,itis

m
ost

convenient
to

look
for

the
stream

function
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FIG
.

5.
Top

and
bottom

left:
series

of
drop

profiles
for

different
tim

es.
Top

left
for

R
e=

400
and

W
e=

400
for

t
varying

from
0.8

to
2.7.

B
ottom

left:
R

e=
400

and
W

e=
8000

for
t

varying
from

0.9
to

2.3.R
ight

figures
show

the
sam

e
profiles

rescaled
by

the
m

axim
um

height
for

h
and

by
its

square
root

for
r,according

to
E

q.!4".T
he

axis
coordinates

in
the

figures
correspond

to
the

num
erical

m
esh.T

he
dashed

line
show

s
a

fit
of

the
converged

rescaled
profiles

H
s =

1/!1
+

C
x

2" 6,w
ith

C
=

0.625
in

dim
ensionless

units.
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v
r =

−
!

z !r
,

v
z =

!
r !r

.
!9"

In
the

inviscid
case,

!
=

−
r 2z/t.M

oreover,the
typical

length
scale

for
diffusion

of
vorticity

is
"

= #
#t,w

hich
suggests

the
ansatz!

= #
#

r 2

#
t f$

z#
#t %

.
!10"

For
f!$"=

−
$,

the
inviscid

result
is

recovered.
Inserting

E
q.

!10"
into

the
boundary

layer
E

q.!8",w
e

find

f! +
%

f" /2
+

f! 2−
2ff" =

−
f"

.
!11"

T
he

boundary
conditions

are

f! !&
"=

−
1,

f!0"=
0,

f! !0"=
0.

!12"

T
he

num
erical

solution
of

E
q.

!11",
subject

to
E

q.
!12",

is
show

n
in

Fig.
6.

W
e

are
not

able
to

solve
the

equation
ex-

actly
butreportan

em
piricalfunction

w
hich

m
atches

the
true

solution
closely.

W
e

now
com

pare
this

boundary
layer

solution
w

ith
our

num
erical

sim
ulations

of
the

im
pacting

drop.T
he

z
com

po-
nent

of
the

velocity
field

is
given

in
the

boundary
layer

theory
by

v
z =

2 #
#

t+
t0 f&

z
#

#!t+
t0 " '

,
!13"

so
that

its
derivative

becom
es

!
z v

z =
2

t+
t0 f!&

z
#

#!t+
t0 " '

.

Since
the

m
inim

um
of

f!
is

'
1

from
the

asym
ptotic

m
atching,w

e
can

w
rite

for
any

tim
e

!
z v

z =
!−

M
"f!&

z
#

2#!−
M

" '
,

!14"

w
here

M
is

the
m

inim
um

of
!

z v
z .

T
herefore,

rescaling
the

num
ericalvelocity

derivative
profiles

by
−

M
and

the
vertical

coordinate
z

by #
2#!−

M
",

all
profiles

should
collapse

onto
the

m
aster

curve
f! .

T
his

is
true

for
any

tim
e

and
or

any
value

of
the

param
eters

R
e,W

e.
Figure

7
!left"

show
s

the
num

erical
profiles

!
z v

z
for

tw
o

different
sets

of
param

eter
values

at
different

tim
es.

O
n

the
right,the

profiles
w

hich
have

been
rescaled

according
to

E
q.

!14"
are

com
pared

to
the

theoretical
boundary

layer
profile.

W
e

find
good

collapse
as

w
ell

as
good

agreem
ent

w
ith

the
predicted

sim
ilarity

profile
f! !$".

W
e

have
also

checked
the

collapse
for

R
eynolds

num
bers

betw
een

200
and

8000
and

W
eber

num
bers

betw
een

400
and

16
000,

and
found

the
re-

sults
com

parable
to

those
show

n
in

the
tw

o
representative

exam
ples

of
Fig.7.

N
ote

thatw
e

have
assum

ed
the

boundary
layer

to
rem

ain
lam

inar,w
hich

w
e

believe
to

be
realistic.N

am
ely,according

to
R

ef.27,p.95,the
criticalR

eynolds
num

ber
R

e
"

based
on

the
boundary

layer
thickness

is
typically

400.O
n

accountof
the

sm
allness

of
",

R
e

"
is

m
uch

sm
aller

than
R

e,
and

w
ell

below
the

critical
value.

W
e

w
ill

give
a

m
ore

quantitative
estim

ate
below

.

IV.R
IM

D
Y

N
A

M
IC

S

W
e

now
put

all
the

inform
ation

gathered
so

far
together

to
develop

a
coupled

system
of

equations
m

odeling
the

rim
and

film
dynam

ics
!see

the
sketch

of
the

m
odel

in
Fig.

8".
O

ur
approach

is
sim

ilar
to

the
classical

Taylor
and

C
ulick

m
ethod

to
describe

receding
liquid

sheets. 28,29
It

has
already

been
used

in
the

context
of

drop
im

pact
but

w
ithout

taking
into

account
the

viscous
layer

explicitly. 9

W
e

assum
e

that
the

velocity
field

in
the

film
is

E
q.!2",

but
w

ith
a

shift
in

the
z-direction

to
account

for
the

viscous
boundary

layer
thickness

h
l !t"

U
!r,z,t"=

!u
r ,u

z "=(
r

t+
t0 ,−

2)z
−

h
l !t"*

t+
t0 +

(
)z

−
h

l !t"*.!15"

H
ere,

(
!·"

is
the

H
eaviside

function.
W

e
thus

suppose
that

m
ost

of
the

fluid
is

at
rest

inside
the

boundary
layer.

From
the

profile
of

f
show

n
in

Fig.
6,

w
e

infer
that

the
viscous

layer
is

of
order

unity
in

boundary
layer

coordinates,
and

thus
w

e
w

illuse
the

estim
ate

h
l !t",

#
#t.W

hen
this

boundary
layer

reaches
the

heightof
the

film
,the

film
ceases

to
thin,so

w
e

define
an

effective
thickness

below
w

hich
there

is
no

m
ore

m
otion

h
m !t"=

m
in)h

l !t",h!t"*.
!16"

U
sing

this
idea,

one
can

derive
an

estim
ate

for
the

asym
ptotic

film
thickness

h
f at

w
hich

the
drop

m
otion

stops
in

the
inner

region
of

the
drop.N

am
ely,from

the
scaling

of
the

inviscid
solution

!4",one
derives

the
estim

ate

FIG
.

6.
!C

olor
online"

T
he

sim
ilarity

profile.
T

he
dashed

line
is

f! !$"=
−1

+
exp-−

$−
$
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Fig.
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layer

coordinates,
and

thus
w

e
w

illuse
the

estim
ate

h
l !t",

#
#t.W

hen
this

boundary
layer

reaches
the

heightof
the

film
,the

film
ceases

to
thin,so

w
e

define
an

effective
thickness

below
w

hich
there

is
no

m
ore

m
otion

h
m !t"=

m
in)h

l !t",h!t"*.
!16"

U
sing

this
idea,

one
can

derive
an

estim
ate

for
the

asym
ptotic

film
thickness

h
f at

w
hich

the
drop

m
otion

stops
in

the
inner

region
of

the
drop.N

am
ely,from

the
scaling

of
the

inviscid
solution

!4",one
derives

the
estim

ate

FIG
.

6.
!C

olor
online"

T
he

sim
ilarity

profile.
T

he
dashed

line
is

f! !$"=
−1

+
exp-−

$−
$
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v
r =

−
!

z !r
,

v
z =

!
r !r

.
!9"

In
the

inviscid
case,

!
=

−
r 2z/t.M

oreover,the
typical

length
scale

for
diffusion

of
vorticity

is
"

= #
#t,w

hich
suggests

the
ansatz!

= #
#

r 2

#
t f$

z#
#t %

.
!10"

For
f!$"=

−
$,

the
inviscid

result
is

recovered.
Inserting

E
q.

!10"
into

the
boundary

layer
E

q.!8",w
e

find

f! +
%

f" /2
+

f! 2−
2ff" =

−
f"

.
!11"

T
he

boundary
conditions

are

f! !&
"=

−
1,

f!0"=
0,

f! !0"=
0.

!12"

T
he

num
erical

solution
of

E
q.

!11",
subject

to
E

q.
!12",

is
show

n
in

Fig.
6.

W
e

are
not

able
to

solve
the

equation
ex-

actly
butreportan

em
piricalfunction

w
hich

m
atches

the
true

solution
closely.

W
e

now
com

pare
this

boundary
layer

solution
w

ith
our

num
erical

sim
ulations

of
the

im
pacting

drop.T
he

z
com

po-
nent

of
the

velocity
field

is
given

in
the

boundary
layer

theory
by

v
z =

2 #
#

t+
t0 f&

z
#

#!t+
t0 " '

,
!13"

so
that

its
derivative

becom
es

!
z v

z =
2

t+
t0 f!&

z
#

#!t+
t0 " '

.

Since
the

m
inim

um
of

f!
is

'
1

from
the

asym
ptotic

m
atching,w

e
can

w
rite

for
any

tim
e

!
z v

z =
!−

M
"f!&

z
#

2#!−
M

" '
,

!14"

w
here

M
is

the
m

inim
um

of
!

z v
z .

T
herefore,

rescaling
the

num
ericalvelocity

derivative
profiles

by
−

M
and

the
vertical

coordinate
z

by #
2#!−

M
",

all
profiles

should
collapse

onto
the

m
aster

curve
f! .

T
his

is
true

for
any

tim
e

and
or

any
value

of
the

param
eters

R
e,W

e.
Figure

7
!left"

show
s

the
num

erical
profiles

!
z v

z
for

tw
o

different
sets

of
param

eter
values

at
different

tim
es.

O
n

the
right,the

profiles
w

hich
have

been
rescaled

according
to

E
q.

!14"
are

com
pared

to
the

theoretical
boundary

layer
profile.

W
e

find
good

collapse
as

w
ell

as
good

agreem
ent

w
ith

the
predicted

sim
ilarity

profile
f! !$".

W
e

have
also

checked
the

collapse
for

R
eynolds

num
bers

betw
een

200
and

8000
and

W
eber

num
bers

betw
een

400
and

16
000,

and
found

the
re-

sults
com

parable
to

those
show

n
in

the
tw

o
representative

exam
ples

of
Fig.7.

N
ote

thatw
e

have
assum

ed
the

boundary
layer

to
rem

ain
lam

inar,w
hich

w
e

believe
to

be
realistic.N

am
ely,according

to
R

ef.27,p.95,the
criticalR

eynolds
num

ber
R

e
"

based
on

the
boundary

layer
thickness

is
typically

400.O
n

accountof
the

sm
allness

of
",

R
e

"
is

m
uch

sm
aller

than
R

e,
and

w
ell

below
the

critical
value.

W
e

w
ill

give
a

m
ore

quantitative
estim

ate
below

.

IV.R
IM

D
Y

N
A

M
IC

S

W
e

now
put

all
the

inform
ation

gathered
so

far
together

to
develop

a
coupled

system
of

equations
m

odeling
the

rim
and

film
dynam

ics
!see

the
sketch

of
the

m
odel

in
Fig.

8".
O

ur
approach

is
sim

ilar
to

the
classical

Taylor
and

C
ulick

m
ethod

to
describe

receding
liquid

sheets. 28,29
It

has
already

been
used

in
the

context
of

drop
im

pact
but

w
ithout

taking
into

account
the

viscous
layer

explicitly. 9

W
e

assum
e

that
the

velocity
field

in
the

film
is

E
q.!2",

but
w

ith
a

shift
in

the
z-direction

to
account

for
the

viscous
boundary

layer
thickness

h
l !t"

U
!r,z,t"=

!u
r ,u

z "=(
r

t+
t0 ,−

2)z
−

h
l !t"*

t+
t0 +

(
)z

−
h

l !t"*.!15"

H
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H
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function.
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of
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is
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inside
the

boundary
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From
the

profile
of
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is
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order
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in
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an

effective
thickness

below
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hich
there

is
no
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ore
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can
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for
the

asym
ptotic

film
thickness

h
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the
drop
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region
of
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drop.N
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the
scaling

of
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F
igure

1.14
–

Schém
a

illustrantleraisonnem
entgéom

étriqueutilisépourdéterm
inerla

position
de

l’intersection
entre

la
goutte

et
la

couche
liquide

r
j (t).La

goutte
de

rayon
R

tom
be

à
vitesse

constante
U

doncl’équation
dela

sphèredansleplan
(r,z)estdonnéepar

r
2+

(z≠
(R

≠
U

t))
2

=
R

2

puisqu’aux
tem

ps
courts

la
goutte

a
la

form
e

d’une
sphère

tronquée.En
prenant

z
=

0
et

en
négligeant

le
term

e
d’ordre

2
en

tem
ps,on

obtient
r

j (t)=
Ô

D
U

t.

Im
pact of a drop on a plane.  

Sketch of the intersection of the spherical 
drop w

ith the plane. At first order the drop 
rem

ains spherical, and the corolla is so 
sm

all that it is negligible. The w
et radius 

rj (t) is then in square root of tim
e.
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