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1. Quick Questions In few words :

1.1 What is the usual scale for pressure in incompressible NS equation at small Reynolds ?

1.2 What is the usual scale for pressure in incompressible NS equation at large Reynolds ?

1.3-4-5 @’ Alembert, Laplace, Heat : give the equation and a physical example of use of this equation.
1.6 What is the Biirgers equation ? Which balance is it ?

1.7 What is the KDV equation ? Which balance is it ?

2. Exercice )

d d
Let us look at the following ordinary differential equation : (E;) %g + 25d—‘z +y =0, valid for any

t > 0 with boundary conditions y(0) = 0 and y'(0) = 1. Of course ¢ is a given small parameter.
We want to solve this problem with Multiple Scales.

2.1 Expand up to order € : y = yo(t) + €yi1(t), show that there is a problem for long times.

2.2 Introduce two time scales, tg =t and t; = &t

2.3 Compute 9/0t and 9% /0t?

2.4 Solve the problem.

2.5 Suggest the plot of the solution.

3. Exercice
Consider the following equation (of course ¢ is a given small parameter)

2u d
YT e with w(0) =0 u(l) = e.

(Be) eqzt g

We want to solve this problem with the Matched Asymptotic Expansion method.

3.1 Why is this problem singular ?

3.2 What is the outer problem and what is the possible general form of the outer solution ?
3.3 What is the inner problem of (E.) and what is the inner solution ?

3.4 Suggest the plot of the inner, outer and composite solution.

4. Exercice
Solve with WKB approximation the Airy problem

ey’ = wy,

Hint : show that Sy = + [ /|z|dz and S; o In(|z|)
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This is a part of ”D’Alembert’s Paradox” by Keith Stewartson STAM Review, Vol. 23, No. 3 (1981). We
consider the flow on a smooth body, which is may be a flat plate at first approximation. It is of characteristic
length L in an incompressible viscous fluid which, at infinite distance, is in uniform motion at velocity Uso.
First we consider and establish the classical Boundary layer equations. Then we will write the triple deck
equations (Main, Lower and Upper Decks).
1.1 Write Navier Stokes equations with boundary conditions, with and without dimension.
1.2 Write Euler’s problem with associated boundary conditions (discuss if the problem is singular 7).
1.3 According to Stewartson 1981, what is d’Alembert’s paradox ?
1.4 Comment figure 1. from Stewartson 1981. What is the analytical solution of incompressible irrotational
flows which gives figure 1 top ?
1.5 Write Prandtl problem, with all boundary conditions, to do that, show quickly that dominant balance
gives § = L/v/R for the order of magnitude of the boundary layer thickness. Write scale of velocities and
pressure. Use ¢ = R™1/3 to write the final scales.
1.6 Write with dimensions the wall shear stress 7,, defined by (1.6) without dimension. Is it small or large
compared to variations of pressure?
We consider the equations of triple deck. We denote ¢ = R~1/8
2.1 Main deck, we do a perturbation of the boundary layer. Stewartson notations are obscure, show that
(2.2) may be obtained as :

dUp(y dA
Zj(y) oy D= —52%U3(g) o, P=2Po(m) + ...
if z = L(1+&3%) and y = Le*y, and (u,v) = Uso (@, D) is substituted in NS equations. Value of n ?
2.2 Write the behavior/ boundary condition for the velocity at the bottom.
2.2 Write the behavior/ boundary condition for the velocity at the top.

3.1 Lower deck in 2D : show that (3.5) in 2D may be obtained with :

u=Up(y) +"A(T)

w/Uso = €ty 0/Uso =30, ..., (p— Doo)/(pU%) = "p(Z) + ...
and z = L(1 + &32) and y = Ledy, is substituted in NS equations. Value of n ?
3.2 Lower deck in 3D : What is the scale of the velocity w consistent with 3D effects in eq. (3.5) 7

3.3 Discuss boundary conditions (3.6a)
3.4 Upper deck incompressible 2D, show that (2.4b) may be obtained with :

u/Uso = 1+ €20, v/Us =€, ..., (p— poo)/(pU2) = "5 + ...

and z = L(1 4+ 3%) and y = L&y, is substituted in NS equations. Value of n ?
3.5 Upper deck incompressible 3D, discuss (4.6).
4. Write full problem with all boundary conditions in 2D.



extra questions
- unsteady triple Deck scale of time ?
- Show that (u,0,p) = (¢9,0,0) is a base flow. interpretation ?
- Show that @, = § — af’(g))ei(ki’_wg), with p = ae?*=w) i5 a linearized possible solution with f” solving an
Airy equation Ai”(n) = nAi(n). Deduce the dispersion relation F'(w, k) = 0 for linear waves in the triple deck.
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D'ALEMBERT'S PARADOX®
KEITH STEWARTSONY

Abmitract. Since classical inviscd theary keads to the patently absurd comclusion that the resiviance
anpurienced by @ rigid body maving theosgh a Auid with enilorm velooty is sero, gread effaris have been made
during the last hundred or so years (o propose altersate theories and o explaim how a vanishingly small
irictional force s e Auid cas nevertheless Bave a significant effect on the Now properties. The metdads used
e & combinatios of experimental observation, compastition olicn on & very lrge scale, and analyss of the
wructune of 1he asymplobic fonm al the wolation as the frestios fonds 1o rere. This three -pronged abiack has
acheeved considerable seccess, especially dunng the st fen years, so that now the parsdox may be regarded
as largely reschved. The lectwre will review ihese schievemeniz in subsonic asd supersonic fow, for Blus
bodies, for trailing-edge fows and for internal fows. Most of the work has been on sicady rvo-dimensional
probilemn bul the specl dfeulres in wfitcady and thice -dimensnnal Now will dha be touched on,

1. Introduction. Conjectures are a vital part of the fabric of pure mathematics.
Mot only have they engaged the lasting attention of many mathematicians in all periods
of history, but their resolution has often led to a deeper appreciation of the discipline
and to a broadening of its power, to say nothing of suggesting new problems. Some
conjpectures, still open, are both deceptively simple and quite old: one of my own
favorites s Goldbach's conjecture, first stated in a letter to Euler (1742), that every
ewen number is the sum of 1wo primes.

Theoretical Muid mechanics also has its conjectures which have long tantaliced and
disconcerted scientists. Some of the most persrstent have a history of over two hundred
years, a3 they arise from the famous paradox discovered by d"Alembert in 1752, This
paradox, like Goldbach’s conjecture, B extremely easy to state, namely that there is no
drag on a finite body at rest in an infinite, incompressible, inviscid Auid otherwise in
uniform motion. That such a result is to be expected can be seen from the following
argument, If p is the pressure in the fluid, o the density and g the local velocity, then, in
virtue of Bernoulli’s theorem,

(1.1} p+loq" = const,

since conditbons are uniform at infinite distances from the body. Hence, the drag, i.e.,
the component ol the force on the body in the direction | of the main stream, is the same
il | s replaced by =i Thus, if the drag is positive lor one Aow it will become negative if
the direction of Auid motion at infinity 8 reversed, contradicting the second law of
thermodynamics. It is easy to imagine the consternation which such a conclhusion
immediately caused because it 18 8o entirely at variance with one’s everyday experience,
Indeed the reduction of drag on moving bodies is a central problem for practical fluid
dynamicists such as ship designers and aeronautical engineers. The paradox haunted
theoretical workers throughout the nineteenth century and beyond, and only gradually
were they able to come to terms with it and bearn that, nevertheless, theory has much to
contribute 1o the understanding of the way bodies move through fluids,

Q.

Fig. 2. Sketch of the wiple-deck reglon near separation an a flar plate.

found by an application of Prandtl's transposition theorem (1905). Suppose the basic
boundary layer has the profile Lig(y) in the interaction region and we base L on the
distance of the origin of the triple-deck from the nose or leading edge. Then, in the
main deck,

2.3 u* = Uply)+ Al yly),  o*=—A'lxiUs(pIR '+

from (1.4), giving us an automatic match between the 1-components of velogity in the
main and lower decks, As y - on the main-deck scale

2.3 u* s Ugl=), o= -R7"Ugl=Ax),

Although the lower-deck equations are essentially the same for supersonic or
subsonic external flows, the same is not true for the upper deck, which assumes a
hyperbolic form in supersonic flow (M >1 where M is the Mach number of the
inviscid Aow just outside the triple deck) and elliptic in subsonic Aow. In each case a
simple expression may be written down connecting p and A", After applying appro-
priate but algebraically complicated scales (see Stewartson (1974) for details) the
governing equations of the triple deck may be reduced to (1.4) with p = 1 together with

(2.4a) pE=Alx)il Mo>1,
(2.4h) hl.l._|_» A'(xy)dry Mo,
wdom r—x

form of these equations (Schneider (1974)). Lastly, the generalization to include
three-dimensional effects changes both the lower-deck and upper-deck equations. The
scale of 2z, the variable in the third direction, along the wall but perpendicular 1o the
direction of the main stream, is also B ™%, and il w is the reduced velocity in that

direction (1.4) becomes <t

o de aw o e dudu dp @
3.5) dr dy dz ' ax dy ar dax mu.
(3.

with boundary conditions
(3.6a) u-y+Alx, z),
where aD/dx = —dp/daz (Smith, Sykes and Brighton (1977)). In the upper deck the

rw—+DHx, z}) asy-»o0,

The gencralization of the two-dimensional triple-deck theory to include three-
dimensional effects & obwviously important but difficult in both the lower- and the
upper-deck calculations. Following on the successful studies on two-dimensional
humps in boundary lavers (Smith (1973), Napolitano, Werle and Davis (1978)), some
extensions 10 three dimensions have been made. The lower-deck equations are given in
(3.5) and the Hilbert integral of the upper deck is replaced by

. -|_. —:uh "¢ dgdn

46
N =g +iy=mr] "



correction Ex 2
Exactly the curse with coefficient 2, so that the solution is y = e~ ‘1 sin(tg)

correction Ex 3

If wi put € = 0, we haev an order one problem with 2 BC, so singular.
We find uyyr = €* (note ugyy = € —1 is possible, but is not a good idea, check it !). We note that e, (0) = 1,
so we have to introduce an inner layer to full fit the 0 BC.
Change of scale x = §%, by dominant balance ¢ = §, the problem is
d*u  du .
— 4+ — =c¢e
i iz
as € — 0 then u + u), = 0 zolution is u;, = A(1 — exp(—z)). Matching gives A = 1. Hence composite
expansion is
Ucomposite = 6’95]?(33) - 656])(—56/8).

correction Ex 4
Two cases :
o (S))2 =z if x> 0then Sy = + [ xdr = :l:%acs/2

e S? =1 if 0> z then Sy = +i [ \/]z|dz = :l:z%(—z:)‘g/2 solution will be with cosines and sines

and in both cases S; = —1in(|z|)
see the curse for a plot of the solution.



