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1. Quick Questions In few words :

1.1 What is the usual scale for friction for an incompressible flow at small Reynolds around a sphere ?

1.2 What is the usual scale for friction for an incompressible flow at large Reynolds around a sphere 7

1.3 What is the usual scale for friction for an incompressible flow at small Reynolds around a cylinder 7
1.4 What is the usual scale for friction for an incompressible flow at large Reynolds around a cylinder ?
1.5-6 0’Alembert, Heat : give the equation and a physical example of use of this equation.

1.7 Solution of Laplace equation in the upper half domain with Neumann BC in y = 0, Dirichlet 0 at
infinity 7

1.8 What is the KDV equation ? Which balance is it ?

1.9 Find the self similar variable for linear KDV equation.

2. Exercice
&’y

dt?
t > 0 with boundary conditions y(0) = 0 and y'(0) = 27. Of course ¢ is a given small parameter.

We want to solve this problem with Multiple Scales.

2.1 Expand up to order ¢ : y = yo(t) 4+ ey1(t), show that there is a problem for long times.
2.2 Introduce two time scales, tg =t and t; = et

2.3 Compute d/0t and 9?/0t?

2.4 Solve the problem.

2.5 Suggest the plot of the solution.

dy

Let us look at the following ordinary differential equation : (E;) + 4y = —QSE, valid for any

3. Exercice
Consider the following equation (of course ¢ is a given small parameter)
2
(E:) 62% % = %cos(w) with ©(0) =0 wu(w) = 1.
We want to solve this problem with the Matched Asymptotic Expansion method.
3.1 Why is this problem singular ?
3.2 What is the outer problem and what is the possible general form of the outer solution ?
3.3 What is the inner problem of (F.) and what is the inner solution ?
3.4 Suggest the plot of the inner, outer and composite solution.

4. Exercice
Solve with WKB approximation the problem

ey’ (x) = y(z) with y(0) = 0,y(1) = 1
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Part II. : 1h 15 min all documents. Double Deck

This is a part of 7 FLOW THROUGH CONSTRICTED OR DILATED PIPES AND CHANNELS :
PART 1 By F. T. SMITH ” The Quarterly Journal of Mechanics and Applied Mathematics August 1976.
We consider the flow in a pipe or between two parallel plates (in practice we will study the channel 2D
case). The characteristic length is hg (either radius or half distance between plates) in an incompressible
fluid with vanishing viscosity (Reynolds number Re — oo). First we consider and establish the classical
Poiseuille profile (low under a given pressure gradient, say —II) say Up(%). Then we will write the double
deck equations (here, no triple deck).

1.1 Write 2D steady Navier Stokes equations with boundary conditions, with and without dimension (use
ho, use Q/hg as velocity scale, where @ is the flow rate).

1.2 Suppose a velocity profile invariant by translation in Z, find it by integration.

1.3 Write pressure and shear stress.

1.6 Write with dimensions the wall shear stress 7, and pressure.

We consider the equations of double deck (as a variant of triple deck). We denote x3 the relative small size
of an indentation in £ = 0 on the wall which creates a perturbation so that £ = x3Z and in the lower deck
Uy =€j.

2.1 Main deck, £ = 32 and y we do a perturbation of the Poiseuille flow substituted in NS equations, show

8r

Zyl
y=f(x)
Fie. 1. The regions of flow through an indented channel (or sym-
metric pipe) when the Reynolds number » L F16. 6. Flow streamlines near and within the reversed-flow eddy for the localized
constriction (4.1) when k = 8.
that :
- -+ dUp(7) dA -
u=Up(7) + e, A(Z) i +.., 0= —EU%UP(Z/)-F...,

Value of €,, &, 7 (suppose that pressure gradient is negligible)

2.2 Write the behavior/ boundary condition for the velocities of (2.1) at the bottom.

2.2 Write the behavior/ boundary condition for the velocities of (2.1) in § = 1 the top. This is a symmetry
line, deduce that = 0 in § = 1. Deduce that A(Z) = 0. Hence we notice that there is no upper deck
(Poiseuille flow is the equivalent of Blasius, but there is no ideal fluid).



3.1 Lower deck in 2D : show that the Poiseuille profile is linear near the wall : consider a layer of thickness
e (for example § = £3), and expand Poiseuille flow.

3.2 Deduce that the perturbation of longitudinal velocity are of order ¢ in the lower deck.

3.3 Show by dominant balance that x3 = Re~!e3. Then if the bump if of length O(1) (i.e. if Z = 2), then
e = Re /3.

3.4 Show that the pressure is e2 = Re~2/3

3.5 Show that the velocity is linear (downstream) and that the velocity is linear by matching with the main
deck.

3.6 The wall is defined by § = f (Z) ; boundary condition at the wall for velocity 7

4.1 Gather previous results and conclude that the final system is :

0i 00 _ o ana a0 100 _ _db  O"0
oF oy o Yoy di o
for & — —oo we have @ — U} (0)§ and for § — oo we have @ — U}(0)j and (z, f(&,)) = o0&, f(2,)) =0

4.2 Show that (a,9,p) = (9,0,0) is a base flow. interpretation ?
4.3 Show that for a small perturbation of the wall f(&) = af1(Z), say a < 1 we linearise :

@ =Up(0)§ + au; and © =0+ avy + ... and p = 0+ ap;y + ...

Find the differential equation with u; (by elimination of v; and p;)

4.4 By linearisation of the boundary condition find u;(Z,0) as a function of f;.

4.5 write the differential equation with u; in fourier space, so deal with modes w1y (9)e**?. show that Oyu1(9)
solves an Airy equation Ai”(n) = nAi(n).

Find the relation between the perturbed value of the shear at the wall 94/97|p and fij. Discussion of figure
extracted from the original paper
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SUMMARY -

The motion of fluid through an indented non-symmetric channel or symmetric ] 0 h=20 ———

L . . . ! 2t
pipe is considered when the flow ahead of the indentation is fully-developed and the o T — 5 20
typical Reynolds number, K, i8 la.rge The theoretical description, for steady flows Maximum | 0 s X
and slowly-varying indentations, is founded on a three-region structure, according ®
to which the main core of fluid suffers a small inviscid displacement of its streamlines Maximum X
while the viscous motion close to the walls is nonlinear and forced along by the 0 10 20 30
induced pressure-gradient. The displacement can be shown to be the average of the =20
wall displacements, but the pressure must be calculated together with the viscous =25
problem. Numerical solutions are presented both for linear constrictions or dilatations 3l

and for more confined ones, and flow separation, if it occurs, appears to be regular,
with, for the more local indentation, a physically sensible eddy and reattachment P
ensuing downstream. The theory, which is believed to set out & rational approach

to the solution, is valid provided the small inclination a of the indentation lies
between O(K ~') and O(K ~%) for a non-symmetric distortion of the wall, or between

O(K ') and O(K %) for a symmetric distortion, in which ranges there is no sub- mor (b)

stantial upstream influence. A companion paper (1) considers these limitations [, Verston of () el frction r(X), 1) preseurs P for iov
further and extends the theory to unsteady flows.




correction Ex 1
want to see the Log(Re)
II theorem does not work on

dem + codam + (cohg  )nden + (coh)din = 0
but on

Oin + coden + (cohg ndaen + KO3n =0
correction Ex 2

Exactly the curse with coefficient 2, yo = sin(27t) and y; = —et sin(27t).
so that the solution is y = e t1sin(ty)

se = DSolvel[{ y’’[t] + 4 Pi"2 y[t] ==

y’[0] == 2 Pi}, yl[t]l, {t, 0, 13}];
Plot[{0, y[t] /. se /. e —> .25,

Exp[-t .26 1, yl[t] /. se /. e => .125,
Exp[-t .125 1, y[t]l /. se /. e => .05,

- 2 e y’[t], y[0] ==

3

Exp[-t .05 1}, {t, 0, 4 Pi}, Frame -> True,
FrameLabel -> {"t", "y(t)"}]

correction Ex 3

If wi put € = 0, we have an order one problem with 2 BC, so singular.
We find gy = 1+ sin(z)/2. We note that 1y, (0) = 1, so we have to introduce an inner layer to full fit the
0 BC.

Change of scale x = 0%, by dominant balance &2

=, the problem is
d*u  du o

— 4+ — =ecos(e°T

dz? = dz ()

as € — 0 then u}, + u}, = 0 zolution is u;, = A(1 — exp(—2)). Matching gives A = 1. Hence composite
expansion...



se = DSolve[{e u’’[y] + u’[y] == Cos[yl/2, ul[Pi] == 1, u[0] == 0},
ulyl, {y, 0, 1}1;
s = DSolve[{u’[y] == Cos[yl/2, ulPi] == 1}, ulyl, {y, 0, 13}]1;
Plot[{0, uly]l /. se /. e => .25, uly] /. se /. e => .125,
ulyl] /. se /. e => .05, ulyl] /. s}, {y, 0, Pi}, Frame -> True,
FrameLabel -> {"x", "u(x)"}]
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correction Ex 4

e with § = /¢, the eikonal (S})? = 1 then Sy = +x
and S] = est hence the solution is the sum of e¥%/ Ve



