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Multiscale Hydrodynamic Phenomena

Part I. : 90 minutes, NO documents

1. Quick Questions In few words :
1.1 What is the usual scale for friction for an incompressible flow at small Reynolds around a sphere ?
1.2 What is the usual scale for friction for an incompressible flow at large Reynolds around a sphere ?
1.3 What is the usual scale for friction for an incompressible flow at small Reynolds around a cylinder ?
1.4 What is the usual scale for friction for an incompressible flow at large Reynolds around a cylinder ?
1.5-6 ∂’Alembert, Heat : give the equation and a physical example of use of this equation.
1.7 Solution of Laplace equation in the upper half domain with Neumann BC in y = 0, Dirichlet 0 at
infinity ?
1.8 What is the KDV equation ? Which balance is it ?
1.9 Find the self similar variable for linear KDV equation.

2. Exercice

Let us look at the following ordinary differential equation : (Eε)
d2y

dt2
+ 4π2y = −2ε

dy

dt
, valid for any

t > 0 with boundary conditions y(0) = 0 and y′(0) = 2π. Of course ε is a given small parameter.
We want to solve this problem with Multiple Scales.
2.1 Expand up to order ε : y = y0(t) + εy1(t), show that there is a problem for long times.
2.2 Introduce two time scales, t0 = t and t1 = εt
2.3 Compute ∂/∂t and ∂2/∂t2

2.4 Solve the problem.
2.5 Suggest the plot of the solution.

3. Exercice
Consider the following equation (of course ε is a given small parameter)

(Eε) ε2
d2u

dx2
+
du

dx
=

1

2
cos(x) with u(0) = 0 u(π) = 1.

We want to solve this problem with the Matched Asymptotic Expansion method.
3.1 Why is this problem singular ?
3.2 What is the outer problem and what is the possible general form of the outer solution ?
3.3 What is the inner problem of (Eε) and what is the inner solution ?
3.4 Suggest the plot of the inner, outer and composite solution.

4. Exercice
Solve with WKB approximation the problem

εy′′(x) = y(x) with y(0) = 0, y(1) = 1
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Multiscale Hydrodynamic Phenomena

Part II. : 1h 15 min all documents. Double Deck

This is a part of ” FLOW THROUGH CONSTRICTED OR DILATED PIPES AND CHANNELS :
PART 1 By F. T. SMITH ” The Quarterly Journal of Mechanics and Applied Mathematics August 1976.
We consider the flow in a pipe or between two parallel plates (in practice we will study the channel 2D
case). The characteristic length is h0 (either radius or half distance between plates) in an incompressible
fluid with vanishing viscosity (Reynolds number Re → ∞). First we consider and establish the classical
Poiseuille profile (flow under a given pressure gradient, say −Π) say ŪP (ȳ). Then we will write the double
deck equations (here, no triple deck).
1.1 Write 2D steady Navier Stokes equations with boundary conditions, with and without dimension (use
h0, use Q/h0 as velocity scale, where Q is the flow rate).
1.2 Suppose a velocity profile invariant by translation in x̄, find it by integration.
1.3 Write pressure and shear stress.
1.6 Write with dimensions the wall shear stress τw and pressure.
We consider the equations of double deck (as a variant of triple deck). We denote x3 the relative small size
of an indentation in x̄ = 0 on the wall which creates a perturbation so that x̄ = x3x̂ and in the lower deck
ŷ = εŷ.
2.1 Main deck, x̄ = x3x̂ and ȳ we do a perturbation of the Poiseuille flow substituted in NS equations, show

360 F. T. SMITH

suggests that a comparison be made with the results calculated from the
full Navier-Stokes equations (2), at moderately large Reynolds numbers.

(a) Constrictions
The solutions obtained for the wall shear stress T(X) and pressure P(X)

for the values A = 2, 2-5 and 3 are shown in Figs 6(a, b). Each of these
values of h produces flow separation (followed by reattachment down-
stream) at a point beyond the position of maximum constriction, the
size of the ensuing reversed-flow bubble increasing with increasing con-
striction. The skin friction always rises quite dramatically from its
undisturbed state, T = 0-5 for X < 0, reaching a maximum at X = Xm^,
say, just ahead of the maximum constriction and then falling sharply
towards separation. The pressure gradient is initially favourable but then
the pressure reaches a minimum just ahead of X = Jf „ „ and its gradient
is adverse thereafter. The variation in skin friction beyond separation is
much less pronounced, however, and T gradually approaches zero again
from below.

Reattachment takes place at T = 0 and downstream from this point T
and P clearly retrieve their Poiseuille values asymptotically as X -> oo.
This asymptotic behaviour is discussed in (1).

Fio. 6. Flow streamlines near and within the revereed-flow eddy for the localized
constriction (4.1) when h = 3.

Figure 6 gives the streamlines for the visoous flow when h = 3. The
local flow pattern, and especially that of the reversed-flow eddy on the
leeward side of the constriction, and the broad shape of the skin-friction
curve in Fig. 5(a), compare favourably with the calculations of Lee and
Fung (2) at K = 100, and with their experiments at K = 740. More
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that :

ū = ŪP (ȳ) + εuĀ(x̂)
dŪP (ȳ)

dȳ
+ ..., v̄ = −εv

dĀ

dx̂
ŪP (ȳ) + ...,

Value of εu, εv ? (suppose that pressure gradient is negligible)
2.2 Write the behavior/ boundary condition for the velocities of (2.1) at the bottom.
2.2 Write the behavior/ boundary condition for the velocities of (2.1) in ȳ = 1 the top. This is a symmetry
line, deduce that v̄ = 0 in ȳ = 1. Deduce that Ā(x̂) = 0. Hence we notice that there is no upper deck
(Poiseuille flow is the equivalent of Blasius, but there is no ideal fluid).
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3.1 Lower deck in 2D : show that the Poiseuille profile is linear near the wall : consider a layer of thickness
ε (for example ȳ = εŷ), and expand Poiseuille flow.
3.2 Deduce that the perturbation of longitudinal velocity are of order ε in the lower deck.
3.3 Show by dominant balance that x3 = Re−1ε3. Then if the bump if of length O(1) (i.e. if x̄ = x̂), then
ε = Re−1/3.
3.4 Show that the pressure is ε2 = Re−2/3

3.5 Show that the velocity is linear (downstream) and that the velocity is linear by matching with the main
deck.
3.6 The wall is defined by ŷ = f̂(x̂) ; boundary condition at the wall for velocity ?

4.1 Gather previous results and conclude that the final system is :

∂û

∂x̂
+
∂v̂

∂ŷ
= 0 and û

∂û

∂x̂
+ v̂

∂û

∂ŷ
= −dp̂

dx̂
+
∂2û

∂ŷ2

for x̂→ −∞ we have û→ Ū ′p(0)ŷ and for ŷ →∞ we have û→ Ū ′p(0)ŷ and û(x̂, f̂(x̂, )) = v̂(x̂, f̂(x̂, )) = 0.
4.2 Show that (û, v̂, p̂) = (ŷ, 0, 0) is a base flow. interpretation ?
4.3 Show that for a small perturbation of the wall f̂(x̂) = af̂1(x̂), say a� 1 we linearise :

û = U ′P (0)ŷ + au1 and v̂ = 0 + av1 + ... and p̂ = 0 + ap1 + ...

Find the differential equation with u1 (by elimination of v1 and p1)
4.4 By linearisation of the boundary condition find u1(x̂, 0) as a function of f1.
4.5 write the differential equation with u1 in fourier space, so deal with modes u1k(ŷ)eikx̂. show that ∂ŷu1k(ŷ)
solves an Airy equation Ai′′(η) = ηAi(η).
Find the relation between the perturbed value of the shear at the wall ∂û/∂ŷ|0 and f1k. Discussion of figure
extracted from the original paper
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FLOW THROUGH CONSTRICTED OR DILATED
PIPES AND CHANNELS: PART 1

By F. T. SMITH
(Mathematics Department, Imperial College, London)

[Received 6 May 1975. Revise 26 September 1975]

SUMMARY
The motion of fluid through an indented non-symmetric channel or symmetric

pipe is considered when the flow ahead of the indentation is fully-developed and the
typical Reynolds number, K, is large. The theoretical description, for steady flows
and slowly-varying indentations, is founded on a three-region structure, according
to which the main core of fluid suffers a small in viscid displacement of its streamlines
while the viscous motion close to the walls is nonlinear and forced along by the
induced pressure-gradient. The displacement can be shown to be the average of the
wall displacements, but the pressure must be calculated together with the viscous
problem. Numerical solutions are presented both for linear constrictions or dilatations
and for more confined ones, and flow separation, if it occurs, appears to be regular,
with, for the more local indentation, a physically sensible eddy and reattachment
ensuing downstream. The theory, which is believed to set out a rational approach
to the solution, is valid provided the small inclination a of the indentation lies
between (^{K'1) and O(K~t) for a non-symmetric distortion of the wall, or between
O^K'1) and O(K~i) for a symmetric distortion, in which ranges there is no sub-
stantial upstream influence. A companion paper (1) considers these limitations
further and extends the theory to unsteady flows.

1. Introduction
I F a pipe or channel is constricted or dilated, then the motion of fluid
through the tube may be affected quite significantly, especially in the
neighbourhood of the wall indentation. Nonlinear changes, from the on-
coming viscous Poiseuille flow for an otherwise straight tube, can occur
locally when the typical (modified) Reynolds number, based on the tube-
width and mean velocity upstream, is not small, and Lee and Fung (2)
have shown that eddies of reversed flow appear downstream of a severe
constriction at moderately high Reynolds numbers. The importance of
the fluid dynamical properties, particularly of the behaviour of the shear
stress locally, has been discussed, for example in (3, 4, 5), in relation to the
physiological implications for blood vessels. It is believed that accurate
analysis of the influence of identations on pipeflows may also have some
application to many other motions, as for example through the lung
airways.
tQ. Jl Mech. appL Mmtb., Vol. XXDC, PL 3, 1976]
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FLOW THROUGH PIPES AND CHANNELS 369

These are particularly convenient for the numerical treatment since they
commence with a corner-type singularity in slope, which may be dealt
with successfully as in section 3(o), and have no other singular points.
Hence the computational procedure in section 3 (a) could be applied
with &(£) = F(X)jg. Moreover, the exponential decay downstream

Maximum
constriction

Maximum
constriction

= 2-5
(a)

- 1 0 L

FiG. 5. Variation of (a) akin Motion T(X), (b) pressure P{X) for the
localized indentations (4.1) when h = 2, 2-6, 3 (constricted motions).

 at U
niversity C

ollege London on M
ay 21, 2015

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 

4



correction Ex 1
want to see the Log(Re)

Π theorem does not work on

∂tη + c0∂xη + (c0h
−1
0 )η∂xη + (c0h

2
0)∂

3
xη = 0

but on
∂tη + c0∂xη + (c0h

−1
0 )η∂xη +K∂3xη = 0

correction Ex 2
Exactly the curse with coefficient 2, y0 = sin(2πt) and y1 = −εt sin(2πt).

so that the solution is y = e−t1sin(t0)

se = DSolve[{ y’’[t] + 4 Pi^2 y[t] == - 2 e y’[t], y[0] == 0,

y’[0] == 2 Pi}, y[t], {t, 0, 1}];

Plot[{0, y[t] /. se /. e -> .25,

Exp[-t .25 ], y[t] /. se /. e -> .125,

Exp[-t .125 ], y[t] /. se /. e -> .05,

Exp[-t .05 ]}, {t, 0, 4 Pi}, Frame -> True,

FrameLabel -> {"t", "y(t)"}]
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correction Ex 3

If wi put ε = 0, we have an order one problem with 2 BC, so singular.
We find uout = 1 + sin(x)/2. We note that uout(0) = 1, so we have to introduce an inner layer to full fit the
0 BC.

Change of scale x = δx̃, by dominant balance ε2 = δ, the problem is

d2ū

dx̄2
+
dū

dx̄
= ε cos(ε2x̄)

as ε → 0 then u′′in + u′in = 0 zolution is uin = A(1 − exp(−x̃)). Matching gives A = 1. Hence composite
expansion...
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se = DSolve[{e u’’[y] + u’[y] == Cos[y]/2, u[Pi] == 1, u[0] == 0},

u[y], {y, 0, 1}];

s = DSolve[{u’[y] == Cos[y]/2, u[Pi] == 1}, u[y], {y, 0, 1}];

Plot[{0, u[y] /. se /. e -> .25, u[y] /. se /. e -> .125,

u[y] /. se /. e -> .05, u[y] /. s}, {y, 0, Pi}, Frame -> True,

FrameLabel -> {"x", "u(x)"}]
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correction Ex 4

• with δ =
√
ε, the eikonal (S′0)

2 = 1 then S0 = ±x
and S1 = cst hence the solution is the sum of e±x/

√
ε
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