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Multiscale Hydrodynamic Phenomena

1. Quick Questions In few words :

1.1 Usual scales for pressure and friction for an incompressible flow at small Reynolds around a sphere ?
1.2 Usual scales for pressure and friction for an incompressible flow at large Reynolds around a sphere ?
1.3 Usual scales for pressure and friction for an incompressible flow at small Reynolds around a cylinder ?
1.4 Usual scales for pressure and friction for an incompressible flow at large Reynolds around a cylinder ?
1.5 0’Alembert equation : write the equation and the generic solution of it

1.6 Heat equation in a 1D domain, temperature imposed in 0 and at infinity : write the equation and show
that there is a self similar solution

1.7 Remind without demonstration the solution of Laplace equation in the upper half domain (Vz and y > 0)
with a Neumann BC in y = 0, and a Dirichlet Boundary Condition equal to 0 at infinity ?

1.8 What is the Burgers equation 7 Which balance is it ?

2. Exercice )
d d
Let us look at the following ordinary differential equation : (E;) d—tgz/ +y= _26(7?;’ valid for any ¢ > 0

with boundary conditions y(0) = 1 and 3/(0) = 0. Of course ¢ is a given small parameter.
We want to solve this problem with Multiple Scales.

2.1 Expand up to order € : y = yo(t) + eyi1(t), show that there is a problem for long times.
2.2 Introduce two time scales, tg =t and t; = et

2.3 Compute 9/0t and 9*/0t?

2.4 Solve the problem.

2.5 Suggest the plot of the solution.

3. Exercice
Consider the following equation (of course ¢ is a given small parameter)

2

(E:) 5% + Z—Z +eu = %(1 + ) with u(0) =0 u(l) =1.

We want to solve this problem with the Matched Asymptotic Expansion method.
3.1 Why is this problem singular ?
3.2 What is the outer problem and what is the possible general form of the outer solution ?
3.3 What is the inner problem of (E.) and what is the inner solution ?
3.4 Suggest the plot of the inner, outer and composite solution.

4. Exercice
Solve with WKB approximation the problem

ey’ (z) = y(z) with y(0) = 0,y(1) =1
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Multiscale Hydrodynamic Phenomena

This is a part of ”On some model equations for pulsatile flow in viscoelastic vessels” by Mitsotakis et
al. Wave Motion 90 (2019) 139-151. We consider the flow in a viscoelastic pipe. The behaviour of the flow
is very similar to the free surface water flow.

1.0 Write incompressible Navier Stokes equations.
1.1 The viscous longitudinal term in axi symetrical incompressible NS is :

=V or2  ror  0z2

justify that for large Reynolds number (to be defined) this term is negligible.

1.2 Using scaling (2.5) of the paper, show that one term is smaller than the others.

1.3 Take the mean value of V,, ( i.e. evaluate [;*(V;)rdr), show that we obtain the wall shear stress.

1.4 As the scale of laminar wall shear stress is proportional to the scale of the velocity, the authors introduce
an empirical ”"damping coefficient” x (formula 1.1). From previous questions what should be the scale of x
with v and R?

1.5 As they do after a inviscid analysis, they claim that the total friction is proportional to —xu®. This
point of view is to my opinion strange (I was not referee!), and even false. Explain why ?

1.6 Write a sentence to justify this very crude approximation, that we take for granted from now.

1.7 The small perturbation of the radius ro of the artery is 1. As we suppose an ideal fluid, the normal
velocity of the wall is the normal velocity of the fluid. Justify (1.5).

1.8 The acceleration of the wall is due to the normal pressure on it plus elastic and visco elastic forces.
Identify each term in (1.6). What term is here neglected as viscosity of the fluid is neglected ?

2.1 Using small disturbance theory with a small ¢, scaling (2.5-2.6), and supposing a plug velocity profile
u(x,t) (no r) show that we can obtain a wave equation for 77. What is the scale of the wave speed (its name
is Moens -Korteweg celerity) ?

3.1 Demonstrate (2.1) from Euler.

3.2 Show that (2.7) is the good scaling of (2.1).

3.3 For each following equation : (2.8), (2.9) (2.10), give its name and check the scaling
3.4 Justify (2.18)

3.5 Justify (2.22) and (2.23). What are the differences with the case of water in channel ?

4.1 After some algebra, a kind of KdV equation (or BBM Benjamin Bona Mahony) is obtained, check (4.10)
and (4.11).
4.2 Comment (4.12-4.14).
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HIGHLIGHTS

A derivation of Boussinesq systems for pulsatile flow in viscoelastic vessels is presented.
The derivation is based on formal asymptotic expansions of the velocity potential.
Simpler unidirectional model equations are also derived.

Dissipative effects due to viscous stresses in bio-fluids are also taken into account.

The dissipation effects are explored numerically.
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1. Introduction

The description of fluid flows in pipes with viscoelastic wall material is motivated mainly by the studies of hemo-
dynamics [1]. A cardiac cycle consists of the systolic phase where the heart ventricles contract and pump blood to the
arteries and the diastolic phase where the heart ventricles are relaxed and the heart fills with blood again. During the
systolic phase the large arteries are deformed and store elastic energy that is released during the diastolic phase. This
property of the vessels is usually referred to as the compliance of the vessels. Modelling the viscoelastic properties of the
vessels appears to have significant difficulties of mathematical and numerical nature [1-6]. The mathematical modelling
of such flows suggests the use of the equations of continuum mechanics for incompressible fluid flow known as the
Navier-Stokes equations.
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Fig. 1. Sketch of the physical domain for a single vessel segment with elastic and impenetrable wall.

The Navier-Stokes equations in three dimensions are too complicated to be used in practical situations and for
this reason several simplified mathematical models have been derived [7-12]. The main simplifications that have
been made are based on the assumption of the axial (or cylindrical) symmetry of the vessels. This assumption and
using approximations of the averaged velocity of the fluid led to the derivation of simple one-dimensional (1 4+ 1D)
models [13-20]. The models include unidirectional [12,21-24], and bidirectional models [25-27]. Bidirectional models
can approximate accurately reflections of pulses occurred in the presence of non-uniformities in the vessels wall as
opposed to unidirectional models such as the KdV equation [21,28] where it is assumed that the pulses propagate mainly
in one direction. In this paper we focus on the derivation of bidirectional equations. Further simplifications were made
by assuming that the velocity of the fluid is very large. This assumption led to lumped-parameter (or zero-dimensional)
models [29,30] and the references therein. The later models are used in practice to predict the flow and the pressure of
the blood in operational situations [4].

For practical reasons, the inclusion of the dissipative effects in the flow can be done by assuming a laminar flow and
small viscosity. For example assuming a parabolic profile for the horizontal velocity of the fluid it has been shown that the
Navier-Stokes equations can be reduced to a modified system which is very similar to the Euler equations [6], (we also
refer to the Poiseuille solution for the justification of this parabolic profile of the horizontal velocity). Specifically, denoting
u=u(x,r,t),v=uv(x,r,t)the horizontal and radial velocity respectively, and u*(x, t) = u(x, r, t) the horizontal velocity
of the fluid on the vessel wall (at radius r = r*(x, t)), then assuming that u(x, r, t) is proportional to ((r")? — r?)u®(x, t)
these equations can be written in cylindrical coordinates in the form:

1
Up + utly 4 vity + — py+ku” =0, (1.1)
P
1
S+=cx+c$+MPHo, (1.2)
1
:X+S+ﬂcﬂo, (1.3)

where p = p(x, r,t) is the pressure of the fluid, p is the constant density of the fluid and « is the viscous frequency
parameter (also known as the Rayleigh damping coefficient) with dimensions [s~'].

A sketch of the physical domain for this problem is presented in Fig. 1, where the distance of vessel's wall from the
centre of the vessel in a cross section is denoted by r*(x, t) and depends on x and t while the radius of the vessel at rest
is given by the function ry(x). In general the deformation of the wall will be a function of x and t. If we denote the radial
displacement of the wall by n(x, t) then the vessel wall radius can be written as r*(x, t) = ro(x) + n(x, t).

The governing equations (1.1)-(1.3) combined with initial and boundary conditions form a closed system. A compat-
ibility condition is also applied at the centre of the vessel (due to cylindrical symmetry). Specifically, we assume that

v(x,r,t)=0, for r=0. (1.4)

In general we assume for consistency purposes that v(x, r, t) = O(r'*7), with r > 0 as r — 0. The impermeability of the
vessel wall can be described by the equation:

v(x, 1, t) = ne(x, t) + (ro(x) + n(x, )u(x, r, t), forr =r"(x,t), (1.5)

and expresses that the fluid velocity equals the wall speed v = r,". The system is accompanied also by a second boundary
condition, which is the Newton second law applied on the vessel wall:

E;h
13(%)
where p" is the wall density, p” is the transmural pressure, h is the thickness of the vessel wall, E, = E/(1—0*) where E
is the Young modulus of elasticity with o denoting the Poisson ratio of the viscoelastic wall. In this study we assume that
E is a constant and in general we simplify the notation by denoting E, with E. The last term in (1.6) models the viscous
nature of the vessel wall and can be derived by using a simple Kelvin-Voigt model (spring-dashpot model). In this setting
y = n,/E, where n,, is the dashpot coefficient of viscosity and E, is the Young modulus of the viscous part of Kelvin
body. In practical situations the parameter y is very small and usually can be taken to be of order 0(10~4). It is noted

P hne(x, £) = p"(x, t) — (n(x, t) + yme(x, t)), (1.6)

2
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that because the flow is pressure-driven the effect of gravity is neglected. For more information about the derivation of
the Euler equations and the boundary conditions we refer to [2,31].

Although the dispersion of the flow can be ignored from the majority of mathematical models derived from the
Navier-Stokes equations or from the Euler equations resulting into very simple systems of conservation laws, the need
for more accurate description of the waves and their reflections suggests the inclusion of this fundamental property. A
first attempt towards the derivation of bi-directional weakly-nonlinear and weakly-dispersive system of equations was
presented in [27]. Using asymptotic techniques more general asymptotic models were derived in [32]. The systems derived
in [32] appeared to justify the non-dispersive models of [33,34] with asymptotic reasoning. It was also shown that the
inclusion of dispersive terms can describe more accurately the effects of the vessel wall variations within the flow. One
basic ingredient that was ignored in both works [27,32] is the viscosity effects of the vessels by assuming simple elastic
vessels.

In this paper we extend the work [32] and derive some new asymptotic one-dimensional equations of Boussinesq
type (weakly non-linear and weakly dispersive) that approximate the system (1.1)—(1.3) with boundary conditions (1.4)-
(1.6). The derivation is based on formal expansions of the velocity potential as in [35]. The new systems generalise the
previously derived Boussinesq systems of [32] as they coincide with them when the viscoelastic property of the vessel wall
is ignored. The new mathematical models are of significant importance since they include all the necessary ingredients
for the accurate description of regular fluid flows in pipes with viscoelastic walls.

Since the dissipation caused by the fluid viscosity and the dissipation caused by the viscoelasticity of the vessel wall
are different in their nature there is a question on whether the different dissipative terms have also different effects on
the propagation of pulses. The answer to this question is explored computationally by studying the effects caused by the
two dissipative terms on the propagation of a solitary wave.

The paper is organised as follows: In Section 2 we present the derivation of a new system of Boussinesq type for the
description of the velocity and the deviation of the vessel wall for fluid flow in a viscoelastic vessel. This system is further
improved in Section 3 by computing the fluid velocity at different levels of radius. In Section 4 further simplifications lead
to unidirectional equations that depend only on the deviation of the vessel wall, while the velocity of the fluid can be
computed explicitly using a simple asymptotic formula. Section 5 demonstrates the dissipation effects on the propaga
of solitary and periodic waves. We close this paper with some conclusions and perspectives.

2. Derivation of the new mathematical models

Here we proceed with the derivation of the new equations. The derivation is based on the assumption :).m.m ﬁrm flow
is irrotational and therefore we assume the existence of a smooth velocity potential ¢(x, r, t) such that (u, v)T = V¢,
i.e. we assume that u = ¢, and v = ¢,. Then, as in [36] the velocity potential can be chosen appropriately such that the
Egs. (1.1)-(1.2) can be integrated into the generalised Cauchy-Lagrange integral:

Gote B st tprep=0, forr= @1
2 2 P

The mass conservation (continuity) equation is then reduced to the elliptic equation

T+ () =0, 0<r <1, (2.2)
and boundary conditions for the velocity are written as

¢ =0, forr =0, (2.3)
and

¢r = ne + (ro(x) + n)xpx, forr =r"(x,t). (2.4)

In order to make simplifications to the previous equations we consider the following non-dimensional (scaled)
variables:
e M o X LTt
== X'=—, "=, t" ==, —
" R T ¢ = »mnﬁ P’ mbm
where a is a typical deviation of the vessel wall from its rest position, A a typical wavelength of a pulse, R is a vessel's
typical radius, T = A/C the characteristic time scale, while ¢ = /Eh/2pR is the Moens-Korteweg characteristic speed, [1].
It is noted that the external pressure is considered zero and is neglected. The parameters ¢ and § characterise the
nonlinearity and the dispersion of the system:
a R
e=—, 8=—. (2.6)
R A
Usually, ¢ and 8 are very small. Specifically, we assume that ¢ < 1, 8% « 1, while the Stokes—Ursell number is of order
1: ¢/8? = O(1). The system of Egs. (2.1)-(2.5) along with the boundary condition (1.6) is then written in dimensionless
variables in the form:

N? (25)

oh+ = e 2 + *w +p*+extp* =0, forr*=r*", (2.7)
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S Pl + (i) =0, 0 <1 <1, (2.8)
¢ =0, forr* =0, (2.9)
@ = 825 + 8 () + en e, for 1t =r*", (2.10)
P* ="k + B + 8y ), forrt =1, (211

where k* = kA/Ce, a* = p”h/pR, B* = B*(x) = 2R*/r3(x) and y* = y /8°T. For the sake of simplicity in the notation,
we drop the asterisk from the new variables in the following derivations for the non-dimensional variables except if it is
stated otherwise.

Following standard asymptotic techniques, cf. [37], we consider a formal expansion of the velocity potential [38]:

)
BT, 8) =Y "pn(x 0). (212)
Demanding ¢ to satisfy Eq. (2.8) leads to the following recurrence relation
820 $om + (2m + 2P damsz = 0, Gamr1 =0, (213)
form =0, 1,2, ..., where 3 denotes the jth order derivative with respect to x. A direct application of the last relation is
%N
¢ == ¥, (2.14)
and
54 " 4
= 4. = 0(8Y), 2.15
Pam+2 @m T 22GmeE  $2m—2 = 0(8%) (2.15)
for m = 1, 2, .... The last relation ensures that the terms ¢, of the velocity potential expansion for m > 4 are negligible.
More general, we observe that
s
¢om = (=1)" 5 Jam % "o, (2.16)
form =1, 2, ..., and therefore
)
P(x. 1. 1) = MET: S %59 (2.17)

A 2nd order asymptotic vaSiEmmoz of the velocity potential is

GX, T, t) = o, :lm\ Bepo(X, t) + 0(8%). (2.18)

Using the previous observations on the expansion of the velocity potential we observe that (2.10) can be approximated
by the relation

r rérg
0+ 1y eox+\sc§|% o -

Born — % § Poxe = 0(8%, £6%). (2.19)
Since the momentum balance _m<<m were qmn:_nmn_ to the Cauchy-Lagrange integral equation (2.7) for r = r we can
eliminate the pressure using (2.11) and obtain
£ 5 e 1 , 5
§+Mﬁx+m\w Me* +exkd +ad ne + B(n +yne) = 0. (2.20)

Substituting (2.18) into (2.20) we obtain the approximate momentum equation

doc ;N "o Pou + = ? + excdo + a8’ + B(n + 82y ne) = 0(8*, £8%). (221)

Denoting n:m :o:No:B_ velocity at the centre of the vessel u(x, 0, t) = ¢o,(x, t) by w(x, t) we rewrite the Eqgs. (2.19)-
(2.21) in the following form:

w w;t
ne+rew+ — wy

5 L U = 0(8%, £8%), (2.22)

ToTox

2 wy — 8 M W + @8N + 8%y (Bne)y = 0(8%, €8%). (2.23)

Although the system (2.22)-(2.23) is a valid approximation of the Euler equations for the prescribed asymptotic regime, it
is not of much practical use due to the temporal derivatives of the wall deviations in the momentum equation (2.23). For

we 4 (B7)x + swwy + scw — 82
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this reason we proceed with further simplifications using low-order approximation for the velocity w and the
of the vessel wall.
From the Eqs. (2.22)-(2.23) we observe that

~1=\_
we = —[Bnl+0(e,8%),  ne=-rfw— < wet O, 82).

Substituting these low-order approximations into (2.23) we obtain the simplified momentum equation
(3 + 1o)rox (2a +ro)ro

2 [Bn)w + ewwy — QN{ Wixt +

w
+ exw — 8y [Blroaw + 3wl = 0(6*, £8°).
The system (2.22)-(2.25) can be the base to other more amenable Boussinesq systems along the lines of [3
next section we derive a simplified Boussinesq systems with favourable properties in analogy to the classical Bc
system for fluid flow in purely elastic vessels derived in [32].

(1 — Satoulwe + [Bnlx + 87

Egs. (4.5) and (4.6) coincide up to the order O(e, §2) to a single equation for n*, namely, the dimensionless BBM equation:

5 4o* +1 K* y*
M + 0 + €3 " — %4 Neerer + 65 - %W N = 0. (4.8)
In dimensional variables (4.8) takes the form
- 51 . Ahmw +ﬂo¥\c K ¢
Ee+ = — Engy — ——— —n—= =0, 49
et Cnet 5 7y Cx 16 Mot + 5 1= 5 Vi (4.9)

where here ¢ = \% is the standard Moens-Korteweg characteristic speed. The dispersion relation @ = w (k) can be
easily computed:

ck i K + yck?
w = = - = = . (4.10)
1+ ro(4a + QV»N 2 1+ ro(4a + o) K2
16 16

In the absence of any form of dissipation, it is known that the BBM equation possesses classical solitary waves
propagating with speed c; given by the formula, [32],

nln nla
ix;vnwm wmn:N m QIDD‘ ?::
b 4cc
with a = ¢, b = 5¢/2rg, and ¢ = ¢(4a + ro)ro/16.
Observing that ny = —nf + O(e, 82) from (4.8) and modifying accordingly the dispersive term of the BBM equation
we obtain the analogous KdV equation:

N N 5 4" +1 K* ve o
Mo+ M 65 0+ %# Miewexs + 857 1 = %W N = 0, (4.12)
which in dimensional form becomes
~ 51 _ xﬁ%ﬁw + ﬂoVﬂo K c
c = —¢ C—— —-n—= =0. 4.13
ne + §+N§ nnx + 16 :xxx+mz Muxxxx ( )
The dispersion relation w = w (k) of the derived KdV equation (4.13) can be easily computed:
- roC(4a r i .
w =tk — %»w - 5 e+ ek, (4.14)

The imaginary part Jw (k) comes with the negative sign, which indicates that we have effectively introduced dissipation
into the model.

6. Conclusions

In this paper we derived new weakly nonlinear and weakly dispersive asymptotic equations that describe the
irrotational and dissipative flow of a fluid in pipes with viscoelastic walls. We also derived unidirectional equations of
BBM and KdV type when the undisturbed radius is constant along the pipe. In order to study the dissipative effects due

to fluid viscosity and the viscoelastic walls, we considered solitary and periodic waves propagating in a vessel of constant
undisturbed radius and with parameters that resemble a large blood vessel. We observed that the dissipation caused

by the viscoelastic wall is equally important compared to the dissipation caused by the viscosity of the fluid or more :

important, and therefore should not be neglected. It is also observed that the dissipative effects can be described very
accurately by linear approximations. The new asymptotic models have the potential to contribute in the derivation of .

new lumped parameter models that can be used in operational situations where measurements of the pressure and flow ,

of the fluid are required.



correction Ex 1
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In[18]:= Simplify[DSolvely’’[t] + y[t] == 2 Sin[t] , y[t], t 1]

Out[18]= {{y[t] -> (-t + C[1]) Cos[t] + 1/2 (1 + 2 C[2]) Sin[t]l}}

yo = cos(t) and y; = —t cos(t).
so that the solution is y = e~ cos(tp)

se = DSolve[{y’’[t] + y[t] == -2 e y’[t], y[0] == 1, y’[0] == 0},
y[tl, {t, 0, 1}];
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Change of scale x = 6%, by dominant balance €2 = §, the problem is

d*u  du

- =0
d:i‘2+da_c

as € — 0 then v}, + u}, = 0 zolution is u;, = A(1 — exp(—z)). Matching gives A = 1/4. Hence composite
expansion...
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e with § = /¢, the eikonal (S})? = 1 then Sy = +x
and S = cst hence the solution is the sum of e/ VE
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c’est exactement la solution exacte!
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