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1. Quick Questions In few words and few formula :

1.1 What is "dominant balance” ?

1.2 Order of magnitude of drag on a sphere at small Re

1.3 Order of magnitude of drag on a cylinder at small Re

1.4 Write 2D Boundary layer equations (in z,y, u,v) in the case of Blasius problem, what is the scale of y
compared to the scale of x 7

1.5 In which one of the 3 decks of Triple Deck is flow separation ?

1.6 What is the KDV equation ?

1.7 What is the natural selfsimilar variable for heat equation ?

1.8 0’Alembert equation : write the equation and the generic solution of it

2. Exercice
2.1 What is the name of the following equation (of course ¢ is a given small parameter)

2
Ou Ou = Ea—u with u(—o0) =1, wu(oco) = —1.

2.2 Say in few sentences what it represents

2.3 Let us define (Eg.) the steady solution of (E.). We want to solve this steady problem with the Matched
Asymptotic Expansion method.

2.4 Why is (Fsc) problem singular ?

2.5 What is the outer problem and what is the possible general form of the outer solution ?

2.6 What is the inner problem of (Fg.) and what is the inner solution ?

2.7 Solve the problem at first order (up to power £°).

2.8 Suggest the plot of the inner and outer solution.

2.9 What is the exact solution of (Eg.) for any e.

Hint : tanh’(z) = 1 — tanh?(z)

3. Exercice

d? d
Let us look at the following ordinary differential equation : (E;) EZQ/ +y= —z—:Qd—gtJ,

with boundary conditions y(0) = 1 and y'(0) = 0. Of course ¢ is a given small parameter.

We want to solve this problem with Multiple Scales Analysis.

3.1 Expand up to order €2 : y = yo(t) + ey1(t) + 2ya(t), show that there is a problem for long times.
3.2 Introduce two time scales, tg =t and ¢1, what is the relation between ¢, t; and €7

3.3 Compute 9/0t and 9?/0t>

3.4 Solve the problem.

3.5 Suggest the plot of the solution.

3.6 What is the exact solution for any e, compare.

valid for any ¢t > 0

4. Exercice
Solve with WKB approximation the problem

ey’ (z) + y(z) = 0 with y(0) =1

Compare with exact solution.
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Multiscale Hydrodynamic Phenomena

This is a part of ”Modeling film flows down inclined planes” by C. Ruyer-Quil and P. Manneville. Eur.
Phys. J. B 6, 277- 292 (1998). We consider the thin film 2D flow on an infinite inclined plate, see figure 1,
and we aim to establish Shkadov’s equation.

As all the results are more or less in the paper, be careful and rigorous to prove the results.

1.0 Write incompressible Navier Stokes equations, (1) and (2).

1.1 Write the kinematic condition at the interface, and no slip boundary condition. Which equations are
they in the paper ?

1.2 Write g, the stress tensor, what is its definition with derivatives of u,v and pressure.

1.3 How is the flow for y > h (in air) in terms of pressure? and in terms of viscosity ? (it is not clearly
written in the paper, you must do some extra classical hypothesis).

1.4 Compute the normal n and tangent ¢ to the surface and compute g - n (stress vector).

1.5 Compute (V - n).
1.6 Continuity of stress at the surface involves surface tension. Write the change of normal stress, n from
media 1 to 2, at the interface :

(g-n)Q— (g-n)l =V -n)n

due to surface tension, then obtain (5) and (6).

1.7 It is said that system admits a trivial solution : the Nusselt solution. Check that this is the case (remind
all the hypothesis to obtain this simple solution). What link with Poiseuille ?

1.8 Compute wall shear stress 7, = pdu/dy. Write it as function of gx.

1.9 Compute foh u?dy. Write it as function of ¢3,.

1.10 Show that (3), (4) give (9), note that there is a derivation of an integral (Leibnitz integral rule).

1.11 Do a full dominant balance analysis of Navier Stokes equations using a length L, a velocity U and a
time T'. Note that B = O(1), why ?

1.12 Show that it leads indeed to (10) (11) and (12).

2. In this part we consider (38)-(40) and (41)-(43). Those equations are presented in this paper without
expanding in €. We want to put back some ¢ in those equations to be sure of approximations presented here.
We will write (38)-(40) and (41)-(43) starting form (10)-(12) with tildes to show and emphasize the change
of scales. We will do a small layer analysis : the longitudinal scale is 1/e compared to the transversal one.
2.1 Show that if we define Z,y as : © = & /e, y = g, it corresponds to a long wave analysis. From dominant
balance of (9) show that t = {/e.

2.2 As we keep u = @, what is the new scales for v in order that (3) is invariant (and gives (40) but with
tildes over the variables) ?

2.3 Question 2.3 and 2.4 are strongly coupled. The pressure remains p = p, show that (38) corresponds to
(10) with an error of O(g?) (show that the convective term is O(g)).

2.4 Starting from (11) we obtain (39) (and that indeed p = p), what is the error in term of order of magnitude
ine?

2.5 Do the same analysis for (41)-(43) : check the linearisation in (41)-(43). Note that I" is large, what is
O(T') in order of magnitude in € so that it surface tension plays a role and appears in the pressure gradient ?
2.6 Write (44) and (45) with the £ and tilde variables.

3.1 Using the same (Leibnitz integral rule) than in 1.10, integrate the momentum (44) to obtain (46) and
(47).

3.2 Identify r and 7, from question (1.8) and (1.9).

3.3 Obtain the final Shkadov equation (49)-(50).
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Abstract. A new model of film flow down an inclined plane is derived by a method combining results of
the classical long wavelength expansion to a weighted-residuals technique. It can be expressed as a set of
three coupled evolution equations for three slowly varying fields, the thickness h, the flow-rate ¢, and a new
variable 7 that measures the departure of the wall shear from the shear predicted by a parabolic velocity
profile. Results of a preliminary study are in good agreement with theoretical asymptotic properties close
to the instability threshold, laboratory experiments beyond threshold and numerical simulations of the full

Navier—Stokes equations.

1 Introduction

In addition to being involved in a wide variety of techni-
cal applications (chemical reactors, evaporators, etc.), the
dynamics of fluid films is an interesting topic in itself. As
a matter of fact, thin films flowing down inclined surfaces
exhibit a rich phenomenology [1] and offer a good testing
ground for the study of the transition to turbulence. Insta-
bilities take place at low flow rates, which gives a unique
opportunity to analyze the development of waves at the
surface of the fluid into large-amplitude strongly nonlin-
ear localized structures such as solitary pulses and fur-
ther to study their disorganization into developed spatio-
temporal chaos via secondary instabilities.

A trivial solution to the flow equations is easily found
in the form of a steady uniform parallel flow with parabolic
velocity profile, often called Nusselt’s solution, where the
work done by gravity is exactly consumed by viscous
dissipation. Thin films at low flow rate over sufficiently
steep surfaces turn out to be unstable against long wave-
length infinitesimal perturbations, i.e. wavelength large
when compared to the thickness of the flow. This is con-
firmed by a general study of the relevant Orr—Sommerfeld
equation which shows that short-wavelength shear insta-
bilities of the Tollmien—Schlichting type are only relevant
for flows over planes at vanishingly small inclination an-
gles and very high flow rates [2].

In the following we will thus be concerned with long
wavelength interfacial instability modes, the dynamics
of which is essentially controlled by viscosity and sur-
face tension effects. (. . .)

Fig. 1. Fluid film flowing down an inclined plane: definition
of the geometry.

2 Governing equations

The geometry is defined in Figure 1: the inclined plane
makes an angle 8 with the horizontal. As usual, X, ¥,
and Z are unit vectors in the stream-wise, cross-stream,
and span-wise directions respectively. Here we only con-
sider the two-dimensional case where the solution is inde-
pendent of coordinate z, the extension to the full three-
dimensional case does not present conceptual difficulties.
The basic (2D) equations read

p [Oru+u Opu+v Oyu] =—0zp+pgsin 41 (0pe+0yy) u,
(1

p [0rv+1u ;v +v Oyv] =—0yp—pg cos B+ (Dzz + Oyy) v,
(2)
Ozt + Oyv = 0, (3)

where u and v denote z and y velocity components, and
p the pressure. p is the density, u the viscosity, and g the
intensity of the gravitational acceleration.

These equations must be completed with boundary
conditions at y = 0 or y = h. They will be denoted as
w‘o or w| , Where w(z,y,t) is a generic name for the pres-
sure field, the velocity components and their derivatives.
The first such condition:

ath+u|h8zhzv{h, (4)

simply expresses the fact that the interface h(z,t) is a
material line. The continuity of the stress at y = h adds
two more equations. The normal component reads

Y Ozzh 2p
REER 1+ (9.h)?
[1+ @] "

— (0:h) Do, — O], | + ], ~pa = 0 (5)

[6zh (ay“’h + am”’h)

where coefficient « is the surface tension and the term in
Ozzh describes the curvature of the interface (p, is the
atmospheric pressure). For the tangential component one
gets

0=20,h (9y0], ~ B, )+ [1- @ah)?] (O], +0u0],)
(6)

Finally, the no-slip condition at the rigid bottom, y = 0,
reads:

u|0=v|0:0. (1)

It will turn interesting to replace the kinematic condition
(4) at y = h by an equivalent equation derived from the



continuity condition. Integrating (3) over the interval [0, h]
we obtain:

h h
o=/ <azu+ayv)dy=/ Dpudy + ], — o],
0 0

= 0ih +

h h
u|h81h+/ 6zudy] :6‘th+6z/ udy
0 0

using v|, given by (4) and v|; = 0 from (7). Defining the
local instantaneous flow rate as

h(z,t)
a(a,t) = / u(z,y, 1)dy, (8)
0

we arrive at the integral condition

System (1-7) admits a trivial solution corresponding to a
steady constant-thickness film, often called the Nusselt so-
lution (hence the subscript “N” in the following). Assum-
ing ; = 0 and 9, = 0, one simply gets v = 0, p‘h = Pq
and

pOyyu+pgsin =0, yp=—pgcospf, u‘0:07 ayu‘hzo’

which, for a film of thickness hy yields:

u(y) =220

o y(2hn —y), p(y)=pa + pgcosB(hn —y),

where the atmospheric pressure p, is set to zero in the
following. The corresponding flow rate is given by

h : 3
g sin Gh
N = / u(y)dy = PPN YR
0 [

from which an average velocity uy can be defined by gy =
hyupn, .e. uy = pgsinﬂh?\,/?)u.

At this stage, it is usual to turn to dimensionless
equations. Different scalings can be used. The first and
most obvious one takes hy and hy/uy as length and
time units, see note [26]. Here, we will take another scal-
ing defined without reference to the flow by construct-
ing the length and time units from g (L72) and the
kinematic viscosity v = u/p (L2T~1). Taking for conve-
nience gsin (3 instead of g, this yields L = v?/3(gsin 3)~1/3
and T = v!/3(gsinB)~2/3. The velocity unit is then
U = LT™' = (vgsinB)Y/3. For the pressure, we get
p(vgsin 3)%/3. The surface tension is then measured by
the Kapitza number I' = fy/[pl/l/?’(g sinﬁ)l/?’} . In fact,
Kapitza was concerned with vertical planes for which
B = m/2 so that the factor sin did not appear in his
definition. It is a matter of convenience to include it or
not. The two numbers, with and without, are of the same
order of magnitude as long as one does not consider nearly
horizontal planes.

Inserting the corresponding variable changes we obtain

Oru+u Opu~+v Oyu = —0,p+1+(0ze+0yy) u, (10)
0rv+u 0,40 0yv =—0yp— B+ (0pz+0yy) v, (11)

where B = cot 8 and, for the normal-stress boundary con-
dition at y = h

I' Opzh n 2
3/2
[1 N (azh)ﬂ 1+ (0:h)

—(axh)Qazu|h—ayu|h} +p, =0, (12)

5 [awh(f)yu|h + 8$v’h)

while the continuity condition (3), the kinematic condition
(4) at y = h and the remaining boundary conditions (6,7)
are left unchanged. In this unit system where gsin 8 = v =
p = 1, the Nusselt flow rate given by gy = unhy = %h:;’v
is numerically equal to the Reynolds number R as defined
in note [26].
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4 First-order model

In the gradient expansion, the flow variables are sup-
posed to be strictly enslaved to the local thickness h which

plays the role of an effective degree of freedom governed
by a Benney-like evolution equation. Another approach is
then needed to deal with the dynamics of the film in a
context where this enslaving is partly relaxed and other
effective degrees of freedom are introduced, under the con-
straint that these new variables should remain slowly vari-
able in x and ¢ and that exact results of the gradient
expansion should be recovered in the appropriate limit.
Up to now, the hydrodynamic fields (u,v,p) could be ex-
panded on a special set of polynomials in y with slowly
varying coeflicients functions of h(z, ) and its derivatives.
If the flow modulations are sufficiently slow, these fields
should not be far from their estimates obtained by the gra-
dient expansion. In other terms, the residue of a Galerkin
expansion —or of an approximation derived from a more
general weighted residual method— based on these poly-
nomials should be intrinsically small. The coefficients of
the expansion would then be considered as the sought-
after effective degrees of freedom, and they would be gov-
erned by equations generalizing the expressions asymp-
totically valid when modulations are infinitely slow. The
required extension would give some latitude of evolution
to these coeflicients around the asymptotic value obtained
from the gradient expansion. The model developed below
is an attempt to implement this general idea in the most
“economical” way.

Let us begin with the set of equations consistent at
first order except for surface tension effects that, though
formally of higher order, are included here owing to their
gradient-limiting role, as discussed above. The problem to
be solved reads:

Oput + u0yu + v0yu + Oyp — Oyyu — 1 = 0, (38)
Oyp + B — Oyyv =0, (39)
Ozu+ 0yv =0, (40)

with boundary conditions

pl,, + I'0ah — 20,v|, =0, (41)
dyul, =0, (42)
ul, =0, v|, =0, (43)

and of course the kinematic condition at the interface
which, in integral form (9), accounts for mass conserva-
tion on average over the thickness.

Integrating (39) with the help of boundary conditions
(41-42) we get p = B(h — y) + Oyv + ayv’h — I'Oy,h and
further eliminate 0,p from (38). Because 0,v = —0,u is a
first order term, its derivative is of second order and can
be dropped of. Therefore, our set of equations read

Oru + u0u + voyu — Oyyu = 1 — BOyh + I'0,sh, (44)
Ozu+ O0yv =0, (45)

with boundary conditions (42-43). (44-45) is sometimes
called boundary-layer equations (BL).

Let us now consider the averaging of equation (44) that
gives the balance of z-momentum (von Karmdan’s equation

in the context of boundary layers). We obtain:

h
/ [Oru+udyu+v0yu—Oyyu] dy=h+I"hdsh—Bhdgh,
0
(46)

which can be transformed into

h h
8,5/ udy—i—am/ u2dy:h—ayu|0+Fh8xsh—Bh6mh.
0 0
(47)

Transformation of the 1.h.s. is similar to that leading to
(9). The term Oyul o» Tepresenting the shear at the wall,
will be denoted 7, in the following. On the lL.h.s. we rec-

ognize q = foh u(y) dy and we can define a new averaged
field r = foh u?(y) dy. With these notations (47) reads:

Orq + Orr = h (14 I'dysh — BOLh) — 7. (48)

Assuming a given velocity profile, one arrives at a set of

two equations (9) and (48) for two unknowns h and g, since

r can then be computed from ¢. Simply taking Kapitza’s

parabolic profile u(y) oc 1((2— () where ¢ = y/h, we have
6

r = $(¢*/h), and 7, = 3q/h*. Inserting these estimates

in (48) we obtain Shkadov’s model [22]:

¢ 124 6 ¢*
—h-3=_-229p, -1 _ B s  sh.
oq=nh 3h2 3 h6q+<5h2 h ) 0zh+T'hd,sh
(50)

(.-.)
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e correction Ex 2
Steady problem :

ou u
(Ese) Us = E€ha with u(—o0) =1, wu(oo0) = —1.
The external problem is
ou
E — =0
(Es0) " ox
so the solution is u(z < 0) = 1 and u(x > 0) = —1, solution is discontinuous in z = 0, and this gives the

limits for the matching u(07) = 1 and u(0") = —1
By dominant balance we find the scale of the solution is with z = €2 so that
_ou 0%

Uo= = 02 with @(—00) = u(07), (oo) =u(0")

first integral
o u* 1, 0u

—(=—z)===+0
e Pt
du du du
: —an = dz/2 so that - _“u + 2 fu = di/2 hence — Log(1 — ) + Log(1 + @) = &/2

so @ = tanh(—x/2)

e correction Ex 3

trap : €2 is the small parameter : tg =t and t; = £2t...

e correction Ex 4

e with 0 = ¢, the eikonal S{, = —1 hence the solution is y(x) = e~ /¢, c’est exactement la solution exacte !



Part IT normal tangent vectors :

. 1 (—Gmh) L 1 ( 1 )
- 1+(@.n2\ 1 )7~ 1+ (0,h)2 \Ozh

without dimension teh stresstensor ¢ :

compute ¢ - n and next n- (g-n) and t- (g - n)

n-(g-n) = H(lw(_2“ (9o + Byu) — (0am)20pu — By0))
t-(g-n)= ! 5 (1 (2(82m) (Byv — Bput) + (1 — (9:n)*)(Oav + Oyur)))

1+ (0zn)

Condition at the interface (pressure is 0 in the air, where there is no vsicosity as well) :

—pn+pu(V u+Vu') n=—(V n)n without dimension —pn +pu(Va+V a') -n= —%(i ‘n)n
P9
~ 2
Kapitza number : T' = ooL? = L—Z, avec la longueur capillaire . = \/v/(pg)

n=(=h,1)/(14+h?Y2 donc (V-n) = —h"/(1+ h'?)3/2

Scaling
to take all the terms in NS : L = v?/3(gsin 8)'/3 | T = v'/3(gsin 8)~%/3, U = L/T adn P = p(rgsin §)*/>

Thin layer
if we define Z,9 as : © = /e, y = g, it corresponds to a long wave analysis; (3) or (40 )is :
ou  0v
42— 1
9z * 95 M)
(10) is (38) which is
on _ou _0u op 0%a 9
o b | = et 1+ = + O 2
€<8t+u05i+vﬁg]> €5z T +8§2+ (%) (2)
(11) is (39) which is
op 0% 9
0=-2L4 B+ 0 3
a5 + + 8692 + O(&%) (3)

pressure is then .
. s 9 O%h
5= Blh— ) + (D) 2 4+ Oc)
we have to suppose that (2I') is of order one to be larger that the neglected O(e) terms of the velocity.
Hence

ou _ou 0 oh #h 0%
T a2 5% = 41— BeZY e gy 2 4
€<8t+u85:+v6§> + 60i+5(6 )8352+8g]2+0(5) (4)
by integration
o [h 8 [t _ _Oh - o, Oh  0a
G adg+ L | atdy) =h— BehSl 4 eh(e2r)2n - 9Y 2
5 ((%/0 ady + a7 /. 0 dy) gh&% +eh(e )8;%2 8gj|0+0(€ ) (5)

by hypothesis : we are close to a Nusselt film ; so Shkadov equations (50) are, as proposed

*h ,q 2
—35+ O(e?) (6)

o- 0 _ d_ 963\ - -0h -,



