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S Multiscale Hydrodynamic Phenomena

1. Quick Questions In few words and few formula :

1.1 Order of magnitude of drag on a sphere at small Re.

1.2 Order of magnitude of drag on a cylinder at small Re.

1.3 What is the natural selfsimilar variable for Blasius?

1.4 In which one of the 3 decks of Triple Deck is flow separation ?

1.5 What is the KdV equation? What balance is it 7 One example of solution.
1.6 What is Burgers equation ? What balance is it 7 One example of solution.
1.7 0’Alembert equation : write the equation and the generic solution of it.
1.8 Quote at least two RER B stations linked with asymptotic modelisation.

2. Exercice

We look at the displacement of a small ball of very small mass in a very viscous flow, in the gravity field.
The ball is initially at rest, we look at the position as function of time.

2.1 Show that we obtain the following equation, (of course ¢ is a given small parameter that you have to
define with the parameters of the problem and you have to decide the proper orientation of motion)

(E:) ey'(t)=—y'(t) - 1 with y(0) =0, ¢'(0)=0.

We want to solve this unsteady problem with the Matched Asymptotic Expansion method.

2.2 Why is (E.) problem singular ?

2.3 What is the outer problem and what is the possible general form of the outer solution ?

2.4 What is the inner problem of (E.) and what is the inner solution ? (hint : for the inner problem time is
small and displacement y is small as well)

2.5 Suggest the plot of the inner and outer solution.

2.6 What is the exact solution of (E;) for any . Check that we recover inner and outer solution.

2.7 Comments ?

3. Exercice )

% =—y— %%, valid for any ¢ > 0
with boundary conditions y(0) = 1 and 3/(0) = 0. Of course ¢ is a given small parameter.

We want to solve this problem with Multiple Scales Analysis.

3.1 Expand up to order ¢ : y = yo(t) 4+ ey1(t), show that there is a problem for long times.

3.2 Introduce two time scales, tg = t and ¢1, what is the relation between ¢, t; and 7

3.3 Compute 9/0t and 9% /0t?

3.4 Solve the problem.

3.5 Suggest the plot of the solution.

3.6 What is the exact solution for any e, compare.

Let us look at the following ordinary differential equation : (E;)

4. Exercice
Solve with WKB approximation the problem

(Ee) ey (z) +2y(z) = 0 with y(0) =1

Compare with exact solution.
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Multiscale Hydrodynamic Phenomena

This is a part of "Beyond Shallow Water : Appraisal of a numerical approach to hydraulic jumps based
upon the Boundary Layer theory” by Vita et al. European Journal of Mechanics / B Fluids 79 (2020) 233-
246. We consider the thin film 2D flow on a horizontal plate, see figure 5, and we look at the equation that
may explain hydrolic jump (as presented by Higuera in ref [25] ”The hydraulic jump in a viscous laminar
flow”, J. Fluid Mech. 274 (1994) 69-92 and ref [26] ” The circular hydraulic jump”, Phys. Fluids 9 (5) (1997)
1476-1478.).

As all the results are more or less in the paper, be careful and rigorous to prove the results.

Equations :

1.1 Write incompressible Navier Stokes equations in 2D, eq. (1).

1.2 Write the kinematic condition at the interface, and no slip boundary condition. Which equations are
they in the paper?

1.3 How is the flow for y > h (in air) in terms of pressure? and in terms of viscosity ? (it is maybe not
clearly written in the paper, you must do some extra classical hypothesis).

1.4 Equation (4a,b,c) use ¢g as velocity scale. Use another velocity scale, say Uy, write a version of (4a,b,c)
with the Froude number.

1.5 Verify that with an another choice of characteristic velocity Uy = ¢o (i.e. F'r = 1) we obtain (5a,b,c).

Toward Saint Venant :

2.1 Starting from (5a,b,c), verify the Prandtl transposition theorem and obtain (7)
2.2 Obtain (8a,b) from (7)

2.3 Give some general properties/ draw backs of Saint Venant equations.

Some solutions of the equations (5a,b,c) not associated with the hydraulic jump :

3.1 In section 4.1 of the paper the solution at the center line of symmetry is Z2(3Z — 2)/2. Check it works.
3.2 In section 4.2.1, obtain equation (26),

3.3 Show that (26) has a self similar solution

3.4 In section 4.2.2, same questions.

Some solutions of the equations (5a,b,c) associated with the hydraulic jump :

4.1 Check that with the choice of characteristic velocity Uy = Qo/ho, it gives equation 27 (see question 1.4).
4.2 Show that for large Froude, there is no more pressure gradient. Show that we can obtain a self similar
solution @ = f(y/z)/Z. This is called the ”Watson solution”.

4.3 Show that for small Froude, there is no inertia. Show that we can obtain a Poiseuille solution .

About the jump :

5.1 Classically the jump is solved using ”Bélanger” relations in an ideal fluid framework (in 1D Saint Ve-
nant). There is a discontinuity in height and velocity. What is Bélanger equation for a ”hydraulic jump” ?

5.2 The change in height that we observe in figure 5 and 6 is the "hydraulic jump”, there, we have rein-
troduced viscosity in a thin layer flow. The Watson (upstream) and Poiseuille (downstream) solutions are
connected by a fast change in water depth. We have no more discontinuity but an abrupt change in water
depth. Considering the lectures on KdV, what are the next effects that we have neglected and that we must
consider next 7 What is the associated not so small parameter 7

5.3 Another effect is surface tension, what is the order of magnitude of the stress associated with 7



European Journal of Mechani

| B Fluids 79 (2020

journal homepage: www.elsevier.com/locate/ejmflu

Contents lists available at ScienceDirect

European Journal of Mechanics / B Fluids

Beyond Shallow Water: Appraisal of a numerical approach to hydraulic | m)
jumps based upon the Boundary Layer theory St

Francesco De Vita®”, Pierre-Yves Lagrée”, Sergio Chibbaro °, Stéphane Popinet"
2 Linné FLOW Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, S-100 44 Stockholm, Sweden

b Sorbonne Université, CNRS, Institut Jean le Rond d’Alembert, 75005 Paris, France

ARTICLE INFO ABSTRACT

Article history:

Received 14 September 2018
Received in revised form 1 July 2019
Accepted 13 September 2019
Available online 19 September 2019

Keywords:

Shallow water
Saint-Venant
Boundary layer flows

We study the flow of a thin layer of fluid over a flat surface. Commonly, the 1-D Shallow-water
or Saint-Venant set of equations are used to compute the solution of such flows. These simplified
equations may be obtained through the integration of the Navier-Stokes equations over the depth of
the fluid, but their solution requires the introduction of constitutive relations based on strict hypothesis
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of the computation. It is then demonstrated that the corresponding closures are very dependent on the
type of flow considered, for example laminar viscous slumps or hydraulic jumps. This has important
practical consequences as far as the applicability of standard closures is concerned.
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1. Introduction

The “shallow water equations” or “Saint-Venant Equations”,
from the author of the first proposition [1], are a classical model
useful for a large variety of practical configurations in coastal
and hydraulic engineering. For example, they are used to pre-
dict flows in rivers, in open channels, in lakes, in shallow seas.
Floods are simulated with the shallow water equations, as well
as tides and many other environmental applications (see for
instance Chanson’s book [2]). The depth averaging strategy to
obtain them is also used for many non-Newtonian flows [3] use-
ful in industrial (concrete) or environmental applications (mud
flows, avalanches). Moreover, the Saint-Venant equations are an
hyperbolic system analogous to compressible gas flow so that the
problem has some universality [4].

Nevertheless, the Saint-Venant equations are based on verti-
cal averaging, which gives rise to several problems as it over-
simplifies the physics. One of the approximation comes from
the hypothesis of small depth compared to the length of the
phenomena. This fundamental hypothesis is not relaxed here, but
it is known that if depth increases, dispersive effects appear (the
celerity of the waves depends on their wavelength [5]). What will
be discussed here is the fact that one needs strong hypothesis on
the shape of the velocity profile and on the wall shear stress to
close the system of equations. Indeed, the Saint-Venant equations
were originally proposed on a phenomenological basis. In [6]
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an asymptotic analysis is proposed to derive them from the 2D
Navier-Stokes equations with mixed boundary conditions. In that
derivation, only the laminar case is considered and the derived
one-dimensional unclosed equations are closed primarily through
a simple constant velocity assumption. Since then, while some
attempts have been made to justify the different approximations
and to point out more general non-constant closures [7], most of-
ten the constant closure is retained in practical computations [8].
All the numerical schemes set the so called Boussinesq coeffi-
cient (which accounts for the non-uniform velocity profile in the
transverse direction) to one; recently, [9] proposed to artificially
increase the Boussinesq coefficient in order to reduce oscillations
in transcritical flows or unsteady flows over frictional beds. The
influence of the modelling of the wall shear stress has been
recently discussed for jumps in water and granular flows, where
closure is very different [10].

Furthermore, the range of application of the Saint-Venant
model is notably limited because it does not describe the vertical
profile of the horizontal velocity. For this reason, the multilayer
approach to the Shallow Water equations has been developed,
and in particular in the form of numerical schemes for a set
of Saint-Venant-like systems. It consist in dividing the liquid
depth in layers, each one described by its own height and ve-
locity [11,12], thus modelling the fluid as composed of layers
of immiscible liquids. Mass exchanges between layers have also
been considered [13-15]. From a numerical point of view, the
global stability of weak solutions for the method proposed in [13]
has been demonstrated in [16], while new efficient techniques
have been recently developed [17-19]. Concerning applications
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beyond Newtonian fluids, a multilayer method with j(I') rheology
and side walls friction has also been derived [20]. It is important
to note that since these multilayer schemes have been developed
as mathematical/numerical schemes, less attention has been paid
to the physical boundary conditions and the relevant friction
coefficients. An alternative method is also worth mentioning, con-
sisting in performing a gradient expansion of the depth-averaged
Navier-Stokes equations which gives a system of equations for
the depth, the flow rate and an additional variable which accounts
for the deviation of the wall shear from the shear corresponding
to a parabolic velocity profile [21,22]. This approach has had some
success in particular in the analysis of the motion of viscous liquid
films.

Here we follow a different path to present an unified picture
of the problem. We hope in this way to shed some light on
the links between different approaches, which are either more
physically or mathematically grounded. Starting from the Saint-
Venant model, we would like to address the issue of the value
of the Boussinesq coefficient. In order to get information on this
coefficient, we deal with a reduced system obtained from the
Navier-Stokes equations using an asymptotic thin-layer expan-
sion, which results in fact in the classical boundary layer or
Prandtl equations. From a conceptual point of view, it means
that the domain may be divided into two physically separated
regions: an ideal fluid and a viscous boundary layer [23]. The
equations we obtain asymptotically, are actually the same already
proposed to tackle the problem of the standing hydraulic jump
on phenomenological grounds [24], when considering the limit
of infinite Reynolds number. In particular, Higuera [25,26] was
the first to use these boundary layer equations to study a viscous
hydraulic jump. This is an important test case that we shall repeat
in the present work with a different numerical approach.

This simplified set of boundary layer or Prandtl equations will
allow to compute directly the shape factor and the wall shear
stress, whereas they are parameters in standard Saint-Venant
approaches. Indeed, from a practical point of view, one success of
the Shallow Water equations is its ability to describe a standing
jump. This is known as Bélanger equations [27]. Indeed, as shown
by Watson [28], the position of the standing jump within the
Saint-Venant description depends on the modelling of viscous
effects. Many authors have tried, since then, to understand the
structure of the radially-symmetric or 2D hydraulic jump [29-
31] using various techniques issued from simplified boundary
layer theory [29,32,33]. At the same time, thanks to 2D Navier-
Stokes computations, Dasgupta et al. [34] were able to simulate
completely the problem, while a similar analysis was performed
for a flow over a bump [35]. In this work, we will characterize
clearly what is the actual friction in terms of the Boussinesq coef-
ficients in order to assess the validity of the different hypothesis
usually adopted together with the Saint-Venant model. Besides,
similar closure problems are encountered in different physical
phenomena: granular flows when modelled by a Savage-Hutter
depth-averaged model [36]; or flows in arteries when modelled
by averaging over the circular cross section. Note that the same
idea has already been applied for these problems [37-39].

Starting from a physically-sound model, we need a numer-
ical scheme to discretize and simulate it. It turns out that the
natural scheme for our model is the one proposed for the multi-
layer Saint-Venant equations [13,14] with the introduction of
an appropriate boundary condition that allows to compute the
wall shear stress without the input of friction coefficients. This is
fundamental for the proper description of transcritical flows or
hydraulic jumps where errors in the quantification of the bottom
friction and in the reconstruction of the vertical velocity profile
can lead to instabilities or overestimation of the dissipation.

The aim of this paper is thus to present in a general way a the-
oretical boundary layer model coupled with a versatile numerical

model [13,14]. The relation between the boundary layer model
and the numerical multi-layer schemes developed for the Saint-
Venant equations will therefore be emphasized. The ensemble
constitutes a general framework applicable to a wide range of
phenomena. For instance, a boundary layer interacting with an
external flow may lead to a “jump” in several different con-
texts [40]: it was first observed by [41] for compressible flows,
and has been identified by [42-44] for boundary layer mixed
convection flows. This behaviour often corresponds to a “triple
deck” structure [45,46]. To support this view, we will recompute
the Higuera solution, and we will present several other similar
test cases while comparing the numerical solutions with the an-
alytical ones whenever possible. We also discuss in some details
the numerical scheme used to solve the equations via the free
solver Basifisk [47].

The paper is organized as follows: in the first section, the
Navier-Stokes equations are presented with their thin layer ap-
proximation leading to the Reduced Navier-Stokes set, which are
Prandtl equations with specific boundary conditions and hydro-
static pressure. This system is integrated over the depth to obtain
the Saint-Venant equations. Then, in the second section, the nu-
merical “multilayer technique” is presented to solve the system.
In the third section, some viscous slump flows are presented
(Huppert slumps), then the Higuera standing jump solution is re-
simulated. Finally, the influence of a bottom slope on the position
of the standing jump is presented.

2. Governing equations
2.1. Navier-Stokes equations

The overall multiphase flow problem of two fluids (say a
liquid and a gas) with a separating free surface over a given
bottom may be simplified if one of the fluid is much heavier
than the other. In this case, free surface flow phenomena can
be fully described by the incompressible Navier-Stokes equations
for the heavy fluid only, with proper boundary conditions at the
interface. For simplicity we will consider a two-dimensional flow
with x the horizontal axis and z the vertical axis, pointing upward.
The location of the free surface is denoted as n(x,t), and the
position of the bottom (or bathymetry) is denoted as z,(x), so
that the depth is h = n — z,. Across the depth the Navier-Stokes
equations can be written as:
@+=4<=u|w§+§ﬂ=+n V.u=0, (1)
at 0
where u = (u, w) is the velocity field, p the pressure, vy the
kinematic viscosity, p the mass density ( .« = pvy is the dynamic
viscosity), and f = —gz the gravitational force. The two bound-
ary conditions closing the system of Eqs. (1) are the kinematic
boundary condition at the free surface

— U~ —ws =0, )

with no tangential stress at the surface and continuity of the
normal stress, and the impermeability condition at the bottom
(and no slip for viscous flow)

9zp

ax
The subscripts s and b denote quantities at the free surface and
at the bottom respectively. Let us rescale the Egs. (1) introducing
two characteristic dimensions hg (typical depth) and L (a typical
evolution length), in the z and x direction respectively, a typ-
ical wave amplitude a; and a characteristic wave speed ¢, =

up —w, =0. 3)
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+/gho. With these quantities we can define two dimensionless
parameters:
&= @ and § = W“
L ho
we do not take into account the possibility of dispersion leading
to solitary waves [5,48]. The classical Saint-Venant derivation
assumes the characteristic length in the vertical direction z to
be smaller than in the horizontal direction, i.e. ¢ <« 1, and
8 = O(1) which allows to produce jumps. On the contrary, the
Airy linearized wave theory on arbitrary depth requires ¢ = O(1)
and § <« 1. With the scales defined above it is possible to make
dimensionless all the quantities in the Navier-Stokes equations:
~ - ecot - u - w
X=-=—, Z=—, —, U=— and w=—
L ho hy hoy Co £Co
where scales of time and transverse velocity are chosen assuming
that inertial terms are dominant over viscous ones. For pressure,
assuming the reference pressure to be zero at the surface, the
following scales are taken:

X &X z

=

- p - n ~ h
p=—1H, =, h=—,
pgho ho ho
Thus the rescaled system of Navier-Stokes equations is:
UL (4a)
x 0z
ou  ou*  uw ap n 321 ,0%0
—=+ = —=——=+—|= e— . 4b
at + ax + V4 ax  epcohy \ 922 + ax2 (4b)
dw  duw  dw? p
2
= — —|=—=-1
N\t wta oz
I3 2w ,%m
= = 4c
+mb8§ 922 te ax2 (40
Note that the topography variations are supposed compatible
0z 3z,
with the long-wave hypothesis: T~ 22 Note as well

ax X
that the Froude number is one by construction, since we are
considering flows with a single velocity scale. The velocity &t can
still be smaller or larger than one, as a result of the computation.

2.2. Reduced Navier-Stokes equations in the boundary-layer ap-
proximation

Since we have assumed that ¢ < 1, Egs. (4) can be simplified
through elimination of the terms of order O(¢) and, defining
Reynolds number Re = epcohg/p which may be large or small
(but not smaller than &), gives:

ou + w_y (5a)
x| 8z
TR D E i) ap 1 9%
9T ox T ez T ox T Reaz (5)
op
0=———1 5¢
% (5¢)

This system of equation :mmm:mxmo:oém:m boundary conditions
at the free surface Z = Z, + h(x, t), namely velocity of interface,
reference pressure, and no shear stress:

= w\sim\w B, 7 =7, + h(x, )) = 0, w\w =
and at the solid bottom Z = Z, there is the no-slip boundary
condition for both & = 0 and w = 0. The set of Egs. (5a)-(5¢)
are the Prandtl equations for boundary-layer flows, and for this
reason we call them Reduced Navier-Stokes Prandtl equations
(RNSP). Together with the above boundary conditions, they are
the system which we employ in this study.

0, (6)

2.3. RNSP equations with Prandtl transposition theorem

Note that the classical Prandtl transposition theorem may be
used here [49]; it consists in changing Z in Z — Zj, while & is un-

changed, and w is replaced by & — w%mm With this transformation,
the no-slip boundary condition is at Z = 0. The pressure term I%
changes to (using the chain rule derivative and (5c¢)):

ap 3z 0p p 9z

W amay T ok
Hence the momentum equation reads:
au  aur  duw p 0z, 1d%
ot TR T er T o o T Reom «

where Z = 0 is now the bottom and Z = h the free surface.
2.4. Shallow water or Saint-Venant equations
The set of Egs. (5a)-(5¢) can now be integrated over the depth

using Leibniz rule and boundary conditions to obtain the system
linking the two variables (Q, h):

8h 8 ("

—=+ = udz =0, (8a)

at - 0% Jy,

8 (" 9 [",_  0h .07, 1 (di

= adz+ | wdE=-h -hST - (=) . (8b)

at Jy, 0X Jz, X dx Re\dz/,

where we recall that i = 7j — Z,. The mass flow rate is then

- il

DH\. idz. 9)
2y

Thus, a closed 2D problem has been transformed into a not-closed
1-D problem. Therefore, an hypothesis on the shape of the profile

is required to obtain a relation between the unknowns ( MN i? dz,
N\w_i and the variables (Q, h). This allows to close the problem.

Let us define 7, the bottom stress, or wall shear stress, and I" the

shape factor coefficient, or Boussinesq coefficient as:
h [ @2dz

T (fudzp’

In general, these quantities are functions of x, where the integral

\4& is a short hand for integration from the bottom to the

free surface. The main hypothesis for Saint-Venant models is to

suppose that the velocity profile has always the same “shape” in

the longitudinal direction %, so that I" is supposed to be constant.
The previous equations then read

- 1 [ou

=\ r
Re \dz/,

(10)

oh  8Q

UL S (11a)
at X

Q o Q2 R _07, .

=+ ==+ | =-hZ - 11b
at + ox h + 2 x (116)

in which 7, has still to be written as a function 020. 3 and I is
a constant. If one considers a steady viscous homogeneous flow in
X with a constant pressure gradient, the solution of (5a)-(5¢) is a
half-Poiseuille (Nusselt film solution): the shape is i1, = wmﬁlmu.
This profile has the following characteristics: \o i,dz = 1 and
\o_ i2dZ = £, and the slope at the wall is 9l,/dZ|o= 3. This gives
the final closure (Boussinesq and friction coefficients) for laminar
flows:

6 -

I'=—-and 7, =
5

Flw
|

For turbulent flows, an heuristic approach is necessary. In this
framework, equations have to be meant as statistical ones, and
hence Q. h represent the statistical averages over many realiza-
tions of the flow [50]. Moreover, since the higher the Re number
the flatter the velocity profile, it is usually assumed to be a simple
plug-flow, which corresponds to I" = 1. Furthermore, following
Prandtl analysis, the friction is taken to be proportional to the
square of the mean velocity (Q/h) with a coefficient ¢ /2 pro-
portional to Re~"/4 (and maybe function of the bottom rugosity,
see Schlichting’s book [49]). This gives the following closure for
turbulent flows:

2
ﬁH_m:nJHnI\W.
2 p?
(see [51] for an example with a transition from one to the other
model in the Shallow Water approximation).

This kind of closure deserves a critical assessment. In partic-
ular, the hypothesis underlying these closures cannot be general.
For instance, Watson [28] found a laminar self-similar solution
of (5a)-(5b)-(5¢) with no pressure gradient (steady flow, large
velocity). This solution comes from a balance between inertia and
viscosity only, it gives a linear profile in x for h and a velocity
profile. The associated closure is:

22799 Q

Re j2’
This shows clearly that, in general, it is necessary to solve Egs.
(5a)-(5¢) to directly compute the correct coefficients /™ and 7.

I' = 1.25697 and 7 =

0.5

0.4 sy

0.3

hixt)

0.2

0.1

4. Results

Having presented the Boundary-Layer model and the numer-
ical scheme, this section is devoted to illustrating some numer-
ical applications. These examples are used both to validate the
method and to point out the differences with the “standard”
Saint-Venant approach. In particular, the impact of the shape
factor and friction coefficient which are to be closed in shallow-
water approximation, are assessed. First the viscous examples of
slumps by Huppert [55] and [56] are considered. In these cases,
the flow is so viscous that the velocity remains always a half-
Poiseuille one and the inertia is negligible in (11a)-(11b). Non-
linearity is introduced afterwards in the standing jump cases [25].
Web links for the codes of most of the examples presented here
are given in the Appendix. Among them one of the example
of [11-13] is reproduced.
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lar solution. Here o = 1/2, so that & = (3*7/2)i'%,



4.1. Stress induced flow

To validate our implementation we consider the flow of a fluid
in a closed basin driven by a constant wind stress at the top
(wind-driven cavity, as proposed in [57]). The action of the wind
induces a stress on the free surface which causes the motion of

collapse. The same curves are plotted in self-similar variables
demonstrating the collapse of all the rescaled heights on the
master curve H(n) with the self-similar variable 7. The solution
of (11a)-(11b) gives almost the same result, as well as the direct
resolution of Eq. (26) (not presented here). As expected, the
resolution of (12a)-(12b), after a short transient phase, gives the

steady equations obtained in [25] are therefore

h
\, udz =1,

(27)

ou  ow il e ou mm: .
w—=—
X 3z ox 0z

LT
5 given

with this choice the Froude number is S~/2, With our choice,
those equations are:

the liquid. The value of the wind stress gives the scale of the computed values: @ 4 @ -0

flow. Because the fluid is confined, the only stationary solution F oy < ax 0z !

is a steady-state recirculation inside the basin. The boundary h [#dz ~1.2and ou h* ~30 oi 8 siii oh 9% 3 (28)
conditions on the horizontal velocity are Neumann on the top and A\mum% Z0Q Fig. 5. Sketch of the flow, the free surface is in blue, longitudinal velocity ‘m + hu + Fut =—>=+ WM_ given \, idz = Q.

no-slip on the other sides. The solution for the vertical profile of Eo. les in red. The fluid is 42:5 on the left :muammsa.a by the long vertical at X 9z ax 0z o

the horizontal velocity at the centreline is, by symmetry:

- Z

i=7 (32-2)

so that the stress at the surface is unity and the mass flow is
zero. If the domain is long enough this solution is valid for a large
part of the flow, except at the boundaries (left and right). We
report in Fig. 2 (left) the comparison between results obtained
with our solver and the analytical solution. We vary the number
of layers from 4 to 32 and keep constant the horizontal resolution

which are the half-Poiseuille Nusselt values.

4.2.2. Inclined plate
An initial heap of viscous fluid is released on an inclined
plate with a constant slope [56]. In this case, pressure gradient
and inertia are negligible, there is only a balance between the
projection of gravity along the plate and the viscous friction. The
laminar ma:ﬁ-<m=%:ﬁ equations simplify into a single evolution
Z

equation: (k = Re%2):

arrow) and turns to be parallel to the plate. A thin supercritical layer grows
gently. At the end of the plate, fluids falls down. A jump in the height of the
free surface appears, the flow slows down across this abrupt variation. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

4.3. Hydraulic jumps on flat surfaces

It is straightforward to see that the relation between S and Q is:

§-12 — 52

For steady flow @ is indeed constant, then the value of OM\N isa
global Froude number.

Let us begin with analysing some asymptotic behaviours, for
which analytical results can be obtained. For small S, or large
Q, the pressure gradient is negligible, from Eq. (28) one obtains
the Watson self-similar solution (steady flow, balance between

to 64 grid cells. We compute the norm L; of the error and verify @ _ \Ammﬁ —0 The previous two examples were relevant for the viscous and  inertia and viscosity) u,, = +f(n) with n = y/x. The function f
that the use of the boundary condition (23) gives a second-order at ax the topographic terms. In this section, we show the application s solution of the mn:ﬂzo: f" = —f* with f(0) = 0, f'(H,) = 0
convergence rate while in [13] it is reported that the use of @ Thjs equation has a self-similar solution ~/374(%/F"/3) which of the proposed model to the study of a standing jump. Thisisa  for 3 unit flow rate [, f(y)dy = 1. After solving the equation,

Navier friction coefficient for the bottom condition reduce the
convergence rate order from 2 to 1.7.

4.2. Viscous collapse on a plate

4.2.1. Horizontal plate

The slump of an initial heap of viscous fluid on a horizontal
plate is considered. This is a double dam break viscous problem.
In this flat bottom case [55], z, = O, the pressure gradient
balances friction so that from (11b) one obtains Q, which is
substituted in mass conservation (11a), and the laminar Saint-
<m:m~w: equations simplify into a single evolution equation (with
k= %)
=0. (26)

This equation has a self-similar solution = t=V51(kE1/5) of the
self-similar variable 7 = Xf~'/> which turns out to be:

turns out to be:
H(n) = v/ (n)/k.

so that for a given initial mass Ay = ow: h(x, 0)dx, the flow spreads

9AZkE
1/3
2=)"3 and

up to X = (

h=t"3J((RF13)/k =

kt

Huppert’s resolution to find the solution is based on the method
of characteristics. It is not based on this self-similar analysis.
See on Fig. 4 the numerical resolution and some profiles at
different times. Again, numerical resolution of (12a)-(12b), after
a short transient phase, gives the half-Poiseuille Nusselt profile.
The self-similar solution is obtained (Fig. 4) for large times for the
Saint-Venant (Egs. (11a)-(11b)) and the multilayer resolution of
RNSP (Egs. (12a)-(12b)). The profiles are plotted in self-similar
variables showing the collapse of all the rescaled heights on the
master curve #H(n) with the self-similar variable 7.

particularly interesting case where all the terms, inertia, viscos-
ity, pressure gradient and topography are important (dominant
balance).

4.3.1. Hydraulic jump on a horizontal surface

First the application of the proposed multilayer model is used
to study a standing jump problem previously analysed by [25].
The flow is sketched in Fig. 5. A vertical 2D jet, not described
in the thin layer approximation, with flow rate Qp, impacts at
the centre of a plate of length 2L (only one half is presented). At
the beginning of the plate, the flow is very fast and supercritical.
Then, due to the fact that the flat plate is of finite extent, and
due to viscous effects, a deceleration occurs downstream. Hence,
a jump connects a region of fast flow (supercritical) to another of
slower velocity (subcritical). This decrease is due to viscosity so
that for this configuration Re = 1 which gives L = ho(coho)/vo.
This problem has been described, for a plane surface using the
steady RNSP model [25], and in the axi-symmetric case [26],

one finds: H,, = 1.8138, f(H,) = 0.8964 and f'(0) = 0.693. So
that mczc = 1.8138%. The already mentioned shape factor is I" =
v fn)dy e M2 —

253 = 1.25697, the shear is 7, = f'(0)H,, = 2.2799.
_ Another limit of Eq. (28) may be obtained for large S, or small
Q, when the pressure gradient is no more negligible, but inertia
is now negligible, one obtains the Poiseuille solution (balance
between pressure gradient and viscosity).

=, 8h (7 V. = R ah
0, Oy g Moh

X 2h h 3 ox

so that one can solve the equation for h(%), and as a small height
(even 0) is given at the boundary condition, we neglect it and
obtain as an approximation of the surface position for small flow
rate near the output:
h(x) = (12Q)4(1 = %)%,
the shape factor is I' = m and shear is 7, = 3.
We present here the numerical results for the full problem.

=

2/3 173 3/5 . I . . . . . N . . .
_ 323 z\ n? N _2'P54Ar (3) / Note that a small time step At (small CFL condition) is needed yet using a different scaling of the equations. Instead of scaling  The system of equations is solved using Q (or S) as a parameter.
H(n) = 015 1- ﬂ where 7y = 230 (175 in the Saint-Venant approximation, in order to prevent an ar- velocity with co, Higuera uses Qp/hg were Qo is the flow rate. The A first flat profile is imposed at the input at X > 0 on a small
d u va tificial numerical slip of the bump. Moreover, with the Saint-

with I" the Euler function, not to be confused with the Boussinesq
coefficient. On Fig. 3, an example of the full resolution of (12a)-
(12b) is presented, showing some profiles of h(x, ) during the

Venant model, a spurious small numerical overshoot appears at
the shock, which is also present in the multilayer solution, when
N is small.

given height (say 0.1) compatible with Watson's solution. At the
outlet a zero Neumann boundary condition is imposed on the
velocity and a zero depth, h — 0. The simulations have been
performed using 256 points in the horizontal direction and 30
layers in the vertical direction. These values have been chosen
checking the convergence both on the thickness of the hydraulic
jump, influenced by the horizontal resolution, and on the skin

2 15 ML S=05 friction which is affected by the number of layers.
ML, S =1 Fig. 6 shows a comparison of the free surface profile and the
1.5 _N :_ucﬂm:wf_warm,mmm skin friction (resp. h(x) and du/dz|), for different values of S,
' h 9 Higuera (1994), S = 1 between the solution obtained with the proposed solver, written
N Higuera (1994), § = 2 in “bar” variables, Eq. (28), and the data from [25]. The agreement
R S 6 is quite good.
ML S=05 — | 3
KW m ] 5. Conclusions
Higuera (1994), S = 0.5 0 Y= A . .v
Higuera (1994), S = 1
0 Higuera (1994), S = 2 3
0.2 0.4 06 0.8 1 0.2 0.4 0.6 0.8 1 . . . .
. . . . incompressible equations assume hydrostatic pressure by con-
X X d:m work presents a reduced set of zm<_m_\wm8_6m equations struction. If they are integrated over the depth of fluid, they
(a) leading to a kind of Prandtl system of equations (RNSP equa- give the Saint-Venant equations (or Shallow Water equations)
tions), obtained through the asymptotic thin-layer expansion. s . ol X
Fig. 6. Comparison of the liquid depth h (a) and s friction (b) sol ) with the data from [25]. Multilayer solver (ML) in “bar” variables (Froude These are the Prandtl ma:mﬂo:m with different _.uo::n_m_‘z con- In these reduced Navier-Stokes equations no _~<uo~_3m_m is made

about the velocity profile, which is a result of the computations,
whereas in the Saint-Venant equations a closure hypothesis is
necessary.

number is S ): § = 0.5 solid purple line, S = 1 solid green line, $ = 2 solid blue S=05red +, S =1 green x, S = 2 blue *.

ditions (Schlichting [49]) and they have already been derived
on more phenomenological grounds [24-26]. These thin-layer



e correction Ex 2
2.1 Newton’s law for a mass falling in gravity with viscous friction is

d%y dy

mﬁ = —mg — 6muR i

We have for sure a competition between free fall mg and viscous drag. A natural velocity is the Stokes
velocity Vs = mg/(6mpR), this is the terminal chute velocity. We define the scales y = Yy and t = 7, we
have :

ViYdy ., Ydy
g 2dt2 % rdt’

hence we take % =V, and we identify ¢ = V/(g7), so that we obtain the following ODE

d*y dy
E—= = —1— —.
di2 di

.- s . _ . A . .
Boundary condition are same : ¢(0) = 0 and ¢'(0) = 0. Indeed, the ratio o= is small if velocity scale g7 of

free fall is large compared to the Stokes velocity. Or when the time scale 7 compared to the time scale Vs/g
is large. Or if the mass is small, or if viscosity is small.....

2.2 Problem singular for small €, indeed, if we put € = 0, we have 2 BC, but only one degree of derivation ,
_ dgout

dt
we take Fout(0) = 0 so that Jou:(t) = —t, the problem is in ¢ = 0 where §4,:(0) = =1 # 0

0=-1

2.3 So, as we have identified a problem at small time scale, near the origin, we change the scale of time
t = 7.t and space § = 1§

E——np = <
T2dt? T.dt

A full dominant balance gives v = 7. and €25 = 1 so that v. = 7. = €.

€

ng2g_ 1 vedy

The problem is in the new small scales :

dy . dg

diz dt’

2BC: §(0)=0, 7#(0)=0
It is no more singular, the solution is § = —f + A + Be~ with BC in 0 gives 0 = —0 + A + B and 7(0)=0
which give 0 = —1 4+ 0 — B hence :

gjzl—f—e_fandg]':—l—l—e_t.

There is no need to match at this order, matching will appear at next order. Note the matching on velocity

is verified 5
. edy . dy
lim = lim(—=

g—oo edy S0 dt’

As when § — oo then § ~ —1 + ¢ shows that the displacement induced at small time is of order e. This will
be used at next order....

++

2.4
The full solution of the problem is

we see that indeed, for ¢ — 0

J



as seen for the external solution, we see as well the ¢ small displacement induced by the small time, ¢ = &t,
corresponding to the interanl problem :

ej=c—ct—ce !

Finally, note that if we take very small time
g=c—t—e(l —t/e+12/e?)2... = —1?)c/2 = —cl?/2 + ...
this is the free fall.

DSolve[{eps y’’[t] == -y’ [t] - 1, y[0] == 0, y’[0] == O}, y[t], t]
Expand[E~(-(t/eps)) (-eps + E~(t/eps) eps - E~(t/eps) t)]

DSolve[{ y’’[t] == -y’[t] - 1, y[0] == 0, y’[0] == 0}, y[t], tI]

e correction Ex 3
€ is the small parameter : tg =t and ¢; = €t...

cost —t/4cost
yo +yo = (2B’ + B/2) costy + — (24’ + A/2) cos ty
secular terms ... solution
e /% cost
A=—¢g/4+i\/1—¢2/16
e correction Ex 4

e with 0 = &, the eikonal S|, = —2 hence the solution is y(x) = e~2%/% c’est exactement la solution exacte!



correction Ex 2
Exactly the curse with cos,

In[18]:= Simplify[DSolvely’’[t] + y[t] == 2 Sin[t] , y[t], t 1]

Out[18]= {{y[t] -> (-t + C[1]) Cos[t] + 1/2 (1 + 2 C[2]) Sin[t]l}}

yo = cos(t) and y; = —t cos(t).
so that the solution is y = e~ cos(to)

se = DSolve[{y’’[t] + y[t] == -2 e y’[t], y[0] == 1, y’[0] == 0O},
y[tl, {t, 0, 1}]1;

Plot[{0, y[t] /. se /. e —> .25, Exp[-t .25], y[t] /. se /. e —> .125,
Exp[-t .125], y[t] /. se /. e -> .05, Exp[-t .05]}, {t, O, 4 Pi},

Frame -> True, FrameLabel -> {"t", "y(t)"}]

se = DSolve[{e u’’[y] + wly] + e uly]l == (1 + y)/2, ull] == 1,
ul0] == 0}, ulyl, {y, 0, 1}1;
s = DSolve[{u’[y] == (1 + y)/2, ull] == 1}, ulyl, {y, 0, 1}]1;
Plot[{0, ulyl /. se /. e => .25, ulyl /. se /. e => .125,
ulyl /. se /. e => .05 uly]l /. se /. e => .025, ulyl /. s}, {y, O,
1}, Frame -> True, FrameLabel -> {"x", "u(x)"}]



