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Multiscale Hydrodynamic Phenomena

1. Quick Questions In few words and few formula :
1.1 Order of magnitude of drag on a sphere at small Re.
1.2 Order of magnitude of drag on a cylinder at small Re.
1.3 What is the natural selfsimilar variable for Blasius ?
1.4 In which one of the 3 decks of Triple Deck is flow separation ?
1.5 What is the KdV equation ? What balance is it ? One example of solution.
1.6 What is Burgers equation ? What balance is it ? One example of solution.
1.7 ∂’Alembert equation : write the equation and the generic solution of it.
1.8 Quote at least two RER B stations linked with asymptotic modelisation.

2. Exercice
We look at the displacement of a small ball of very small mass in a very viscous flow, in the gravity field.
The ball is initially at rest, we look at the position as function of time.
2.1 Show that we obtain the following equation, (of course ε is a given small parameter that you have to
define with the parameters of the problem and you have to decide the proper orientation of motion)

(Eε) εy′′(t) = −y′(t)− 1 with y(0) = 0, y′(0) = 0.

We want to solve this unsteady problem with the Matched Asymptotic Expansion method.
2.2 Why is (Eε) problem singular ?
2.3 What is the outer problem and what is the possible general form of the outer solution ?
2.4 What is the inner problem of (Eε) and what is the inner solution ? (hint : for the inner problem time is
small and displacement y is small as well)
2.5 Suggest the plot of the inner and outer solution.
2.6 What is the exact solution of (Eε) for any ε. Check that we recover inner and outer solution.
2.7 Comments ?

3. Exercice

Let us look at the following ordinary differential equation : (Eε)
d2y

dt2
= −y − ε

2

dy

dt
, valid for any t > 0

with boundary conditions y(0) = 1 and y′(0) = 0. Of course ε is a given small parameter.
We want to solve this problem with Multiple Scales Analysis.
3.1 Expand up to order ε : y = y0(t) + εy1(t), show that there is a problem for long times.
3.2 Introduce two time scales, t0 = t and t1, what is the relation between t, t1 and ε ?
3.3 Compute ∂/∂t and ∂2/∂t2

3.4 Solve the problem.
3.5 Suggest the plot of the solution.
3.6 What is the exact solution for any ε, compare.

4. Exercice
Solve with WKB approximation the problem

(Eε) εy′(x) + 2y(x) = 0 with y(0) = 1

Compare with exact solution.
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M2, Fluid mechanics 2021/2022
Friday, December 3th, 2021

Multiscale Hydrodynamic Phenomena

Part II. : 1h 15 min all documents. Film Flow down on a plane : hydraulic jump

This is a part of ”Beyond Shallow Water : Appraisal of a numerical approach to hydraulic jumps based
upon the Boundary Layer theory” by Vita et al. European Journal of Mechanics / B Fluids 79 (2020) 233-
246. We consider the thin film 2D flow on a horizontal plate, see figure 5, and we look at the equation that
may explain hydrolic jump (as presented by Higuera in ref [25] ”The hydraulic jump in a viscous laminar
flow”, J. Fluid Mech. 274 (1994) 69-92 and ref [26] ”The circular hydraulic jump”, Phys. Fluids 9 (5) (1997)
1476-1478.).
As all the results are more or less in the paper, be careful and rigorous to prove the results.

Equations :
1.1 Write incompressible Navier Stokes equations in 2D, eq. (1).
1.2 Write the kinematic condition at the interface, and no slip boundary condition. Which equations are
they in the paper ?
1.3 How is the flow for y > h (in air) in terms of pressure ? and in terms of viscosity ? (it is maybe not
clearly written in the paper, you must do some extra classical hypothesis).
1.4 Equation (4a,b,c) use c0 as velocity scale. Use another velocity scale, say U0, write a version of (4a,b,c)
with the Froude number.
1.5 Verify that with an another choice of characteristic velocity U0 = c0 (i.e. Fr = 1) we obtain (5a,b,c).

Toward Saint Venant :
2.1 Starting from (5a,b,c), verify the Prandtl transposition theorem and obtain (7)
2.2 Obtain (8a,b) from (7)
2.3 Give some general properties/ draw backs of Saint Venant equations.

Some solutions of the equations (5a,b,c) not associated with the hydraulic jump :
3.1 In section 4.1 of the paper the solution at the center line of symmetry is z̃(3z̃ − 2)/2. Check it works.
3.2 In section 4.2.1, obtain equation (26),
3.3 Show that (26) has a self similar solution
3.4 In section 4.2.2, same questions.

Some solutions of the equations (5a,b,c) associated with the hydraulic jump :
4.1 Check that with the choice of characteristic velocity U0 = Q0/h0, it gives equation 27 (see question 1.4).
4.2 Show that for large Froude, there is no more pressure gradient. Show that we can obtain a self similar
solution ũ = f(ỹ/x̃)/x̃. This is called the ”Watson solution”.
4.3 Show that for small Froude, there is no inertia. Show that we can obtain a Poiseuille solution .

About the jump :
5.1 Classically the jump is solved using ”Bélanger” relations in an ideal fluid framework (in 1D Saint Ve-
nant). There is a discontinuity in height and velocity. What is Bélanger equation for a ”hydraulic jump” ?
5.2 The change in height that we observe in figure 5 and 6 is the ”hydraulic jump”, there, we have rein-
troduced viscosity in a thin layer flow. The Watson (upstream) and Poiseuille (downstream) solutions are
connected by a fast change in water depth. We have no more discontinuity but an abrupt change in water
depth. Considering the lectures on KdV, what are the next effects that we have neglected and that we must
consider next ? What is the associated not so small parameter ?
5.3 Another effect is surface tension, what is the order of magnitude of the stress associated with ?
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beyond
N
ew

tonian
fluids,a

m
ultilayerm

ethod
w
ith

µ
(I)rheology

and
side

w
alls

friction
has

also
been

derived
[20].Itis

im
portant

to
note

thatsince
these

m
ultilayerschem

es
have

been
developed

as
m
athem

atical/num
ericalschem

es,less
attention

has
been

paid
to

the
physical

boundary
conditions

and
the

relevant
friction

coefficients.An
alternative

m
ethod

isalso
w
orth

m
entioning,con-

sisting
in

perform
ing

a
gradientexpansion

ofthe
depth-averaged

N
avier–Stokes

equations
w
hich

gives
a
system

of
equations

for
the

depth,the
flow

rate
and

an
additionalvariable

w
hich

accounts
for

the
deviation

ofthe
w
allshear

from
the

shear
corresponding

to
a
parabolic

velocity
profile

[21,22].Thisapproach
hashad

som
e

successin
particularin

the
analysisofthe

m
otion

ofviscousliquid
film

s.
H
ere

w
e
follow

a
different

path
to

present
an

unified
picture

of
the

problem
.
W

e
hope

in
this

w
ay

to
shed

som
e

light
on

the
links

betw
een

different
approaches,w

hich
are

either
m
ore

physically
or

m
athem

atically
grounded.Starting

from
the

Saint-
Venant

m
odel,w

e
w
ould

like
to

address
the

issue
of

the
value

ofthe
Boussinesq

coefficient.In
order

to
get

inform
ation

on
this

coefficient,
w
e

deal
w
ith

a
reduced

system
obtained

from
the

N
avier–Stokes

equations
using

an
asym

ptotic
thin-layer

expan-
sion,

w
hich

results
in

fact
in

the
classical

boundary
layer

or
Prandtl

equations.
From

a
conceptual

point
of

view
,
it

m
eans

that
the

dom
ain

m
ay

be
divided

into
tw

o
physically

separated
regions:

an
ideal

fluid
and

a
viscous

boundary
layer

[23].
The

equationsw
e
obtain

asym
ptotically,are

actually
the

sam
e
already

proposed
to

tackle
the

problem
of

the
standing

hydraulic
jum

p
on

phenom
enological

grounds
[24],w

hen
considering

the
lim

it
of

infinite
Reynolds

num
ber.In

particular,H
iguera

[25,26]
w
as

the
firstto

use
these

boundary
layerequations

to
study

a
viscous

hydraulic
jum

p.Thisisan
im

portanttestcase
thatw

e
shallrepeat

in
the

presentw
ork

w
ith

a
differentnum

ericalapproach.
This

sim
plified

setofboundary
layerorPrandtlequations

w
ill

allow
to

com
pute

directly
the

shape
factor

and
the

w
all

shear
stress,

w
hereas

they
are

param
eters

in
standard

Saint-Venant
approaches.Indeed,from

a
practicalpointofview

,one
success

of
the

Shallow
W

ater
equations

is
its

ability
to

describe
a
standing

jum
p.Thisisknow

n
asBélangerequations[27].Indeed,asshow

n
by

W
atson

[28],
the

position
of

the
standing

jum
p

w
ithin

the
Saint-Venant

description
depends

on
the

m
odelling

of
viscous

effects.M
any

authors
have

tried,since
then,to

understand
the

structure
of

the
radially-sym

m
etric

or
2D

hydraulic
jum

p
[29–

31]
using

various
techniques

issued
from

sim
plified

boundary
layer

theory
[29,32,33].At

the
sam

e
tim

e,thanks
to

2D
N
avier–

Stokes
com

putations,Dasgupta
et

al.[34]
w
ere

able
to

sim
ulate

com
pletely

the
problem

,w
hile

a
sim

ilar
analysis

w
as

perform
ed

for
a
flow

over
a
bum

p
[35].In

this
w
ork,w

e
w
illcharacterize

clearly
w
hatis

the
actualfriction

in
term

s
ofthe

Boussinesq
coef-

ficients
in

order
to

assess
the

validity
ofthe

differenthypothesis
usually

adopted
together

w
ith

the
Saint-Venant

m
odel.Besides,

sim
ilar

closure
problem

s
are

encountered
in

different
physical

phenom
ena:

granular
flow

s
w
hen

m
odelled

by
a
Savage–H

utter
depth-averaged

m
odel[36];

or
flow

s
in

arteries
w
hen

m
odelled

by
averaging

over
the

circular
cross

section.N
ote

that
the

sam
e

idea
has

already
been

applied
for

these
problem

s
[37–39].

Starting
from

a
physically-sound

m
odel,w

e
need

a
num

er-
ical

schem
e
to

discretize
and

sim
ulate

it.It
turns

out
that

the
naturalschem

e
for

our
m
odelis

the
one

proposed
for

the
m
ulti-

layer
Saint-Venant

equations
[13,14]

w
ith

the
introduction

of
an

appropriate
boundary

condition
that

allow
s
to

com
pute

the
w
allshearstress

w
ithoutthe

inputoffriction
coefficients.This

is
fundam

ental
for

the
proper

description
of

transcritical
flow

s
or

hydraulic
jum

ps
w
here

errors
in

the
quantification

ofthe
bottom

friction
and

in
the

reconstruction
of

the
verticalvelocity

profile
can

lead
to

instabilities
or

overestim
ation

ofthe
dissipation.

The
aim

ofthispaperisthusto
presentin

a
generalw

ay
a
the-

oreticalboundary
layerm

odelcoupled
w
ith

a
versatile

num
erical

m
odel

[13,14].The
relation

betw
een

the
boundary

layer
m
odel

and
the

num
ericalm

ulti-layer
schem

es
developed

for
the

Saint-
Venant

equations
w
ill

therefore
be

em
phasized.

The
ensem

ble
constitutes

a
general

fram
ew

ork
applicable

to
a
w
ide

range
of

phenom
ena.For

instance,a
boundary

layer
interacting

w
ith

an
external

flow
m
ay

lead
to

a
‘‘jum

p’’
in

several
different

con-
texts

[40]:
it

w
as

first
observed

by
[41]

for
com

pressible
flow

s,
and

has
been

identified
by

[42–44]
for

boundary
layer

m
ixed

convection
flow

s.This
behaviour

often
corresponds

to
a
‘‘triple

deck’’structure
[45,46].To

supportthis
view

,w
e
w
illrecom

pute
the

H
iguera

solution,and
w
e
w
ill

present
several

other
sim

ilar
testcases

w
hile

com
paring

the
num

ericalsolutions
w
ith

the
an-

alyticalones
w
henever

possible.W
e
also

discuss
in

som
e
details

the
num

erical
schem

e
used

to
solve

the
equations

via
the

free
solver

Basilisk
[47].

The
paper

is
organized

as
follow

s:
in

the
first

section,
the

N
avier–Stokes

equations
are

presented
w
ith

their
thin

layer
ap-

proxim
ation

leading
to

the
Reduced

N
avier–Stokes

set,w
hich

are
Prandtlequations

w
ith

specific
boundary

conditions
and

hydro-
static

pressure.This
system

is
integrated

overthe
depth

to
obtain

the
Saint-Venant

equations.Then,in
the

second
section,the

nu-
m
erical‘‘m

ultilayer
technique’’is

presented
to

solve
the

system
.

In
the

third
section,

som
e

viscous
slum

p
flow

s
are

presented
(H

uppertslum
ps),then

the
H
iguera

standing
jum

p
solution

is
re-

sim
ulated.Finally,the

influence
ofa

bottom
slope

on
the

position
ofthe

standing
jum

p
is

presented.

2.Governing
equations

2.1.
Navier–Stokes

equations

The
overall

m
ultiphase

flow
problem

of
tw

o
fluids

(say
a

liquid
and

a
gas)

w
ith

a
separating

free
surface

over
a

given
bottom

m
ay

be
sim

plified
if

one
of

the
fluid

is
m
uch

heavier
than

the
other.

In
this

case,
free

surface
flow

phenom
ena

can
be

fully
described

by
the

incom
pressible

N
avier–Stokesequations

for
the

heavy
fluid

only,w
ith

proper
boundary

conditions
atthe

interface.Forsim
plicity

w
e
w
illconsidera

tw
o-dim

ensionalflow
w
ith

x
the

horizontalaxisand
z
the

verticalaxis,pointing
upw

ard.
The

location
of

the
free

surface
is

denoted
as

⌘(x,t),
and

the
position

of
the

bottom
(or

bathym
etry)

is
denoted

as
zb (x),so

thatthe
depth

is
h

=
⌘

�
zb .Across

the
depth

the
N
avier–Stokes

equations
can

be
w
ritten

as:
@u@t

+
u

·
r
u

=
�

1⇢
r
p

+
⌫
0
r

2u
+

f,
r

·u
=

0
,

(1)

w
here

u
=

(u
,
w
)
is

the
velocity

field,p
the

pressure,
⌫
0
the

kinem
atic

viscosity,⇢
the

m
ass

density
(
µ

=
⇢
⌫
0
is

the
dynam

ic
viscosity),and

f
=

�
gẑ

the
gravitationalforce.The

tw
o
bound-

ary
conditions

closing
the

system
of

Eqs.(1)
are

the
kinem

atic
boundary

condition
atthe

free
surface

@
⌘@t

+
u
s @

⌘

@x
�

w
s
=

0
,

(2)

w
ith

no
tangential

stress
at

the
surface

and
continuity

of
the

norm
al

stress,and
the

im
perm

eability
condition

at
the

bottom
(and

no
slip

for
viscous

flow
)

u
b
@zb
@x

�
w

b
=

0
.

(3)

The
subscripts

s
and

b
denote

quantities
at

the
free

surface
and

atthe
bottom

respectively.Letus
rescale

the
Eqs.(1)introducing

tw
o
characteristic

dim
ensions

h
0
(typicaldepth)

and
L
(a

typical
evolution

length),in
the

z
and

x
direction

respectively,a
typ-

ical
w
ave

am
plitude

a
s
and

a
characteristic

w
ave

speed
c0

=
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a
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Com

m
only,

the
1-D

Shallow
-w

ater
or

Saint-Venant
set

of
equations

are
used

to
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pute
the

solution
of

such
flow

s.These
sim

plified
equations

m
ay

be
obtained

through
the

integration
ofthe

N
avier–Stokes

equations
over

the
depth

of
the

fluid,buttheirsolution
requiresthe

introduction
ofconstitutive

relationsbased
on

stricthypothesis
on

the
flow

régim
e.H

ere,w
e
present

an
approach

based
on

a
kind

of
boundary

layer
system

w
ith

hydrostatic
pressure.This

relaxes
the

need
forclosure

relations
w
hich

are
instead

obtained
as

solutions
ofthe

com
putation.Itis

then
dem

onstrated
thatthe

corresponding
closures

are
very

dependenton
the

type
of

flow
considered,for

exam
ple

lam
inar

viscous
slum
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or

hydraulic
jum

ps.This
has

im
portant

practicalconsequences
as

far
as

the
applicability

ofstandard
closures

is
concerned.
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1.Introduction

The
‘‘shallow

w
ater

equations’’or
‘‘Saint-Venant

Equations’’,
from

the
author

ofthe
firstproposition

[1],are
a
classicalm

odel
useful

for
a

large
variety

of
practical

configurations
in

coastal
and

hydraulic
engineering.For

exam
ple,they

are
used

to
pre-

dict
flow

s
in

rivers,in
open

channels,in
lakes,in

shallow
seas.

Floods
are

sim
ulated

w
ith

the
shallow

w
ater

equations,as
w
ell

as
tides

and
m
any

other
environm

ental
applications

(see
for

instance
Chanson’s

book
[2]).

The
depth

averaging
strategy

to
obtain

them
is

also
used

for
m
any

non-N
ew

tonian
flow

s
[3]use-

ful
in

industrial
(concrete)

or
environm

ental
applications

(m
ud

flow
s,avalanches).M

oreover,the
Saint-Venant

equations
are

an
hyperbolic

system
analogousto

com
pressible

gasflow
so

thatthe
problem

has
som

e
universality

[4].
N
evertheless,the

Saint-Venant
equations

are
based

on
verti-

cal
averaging,w

hich
gives

rise
to

several
problem

s
as

it
over-

sim
plifies

the
physics.

One
of

the
approxim

ation
com

es
from

the
hypothesis

of
sm

all
depth

com
pared

to
the

length
of

the
phenom

ena.Thisfundam
entalhypothesisisnotrelaxed

here,but
itis

know
n
thatifdepth

increases,dispersive
effects

appear
(the

celerity
ofthe

w
avesdependson

theirw
avelength

[5]).W
hatw

ill
be

discussed
here

is
the

factthatone
needs

strong
hypothesis

on
the

shape
ofthe

velocity
profile

and
on

the
w
allshear

stress
to

close
the

system
ofequations.Indeed,the

Saint-Venantequations
w
ere

originally
proposed

on
a

phenom
enological

basis.
In

[6]

⇤
Corresponding

author.
E-m

ailaddress:
fdv@

m
ech.kth.se

(F.D.Vita).

an
asym

ptotic
analysis

is
proposed

to
derive

them
from

the
2D

N
avier–Stokesequationsw

ith
m
ixed

boundary
conditions.In

that
derivation,only

the
lam

inar
case

is
considered

and
the

derived
one-dim

ensionalunclosed
equationsare

closed
prim

arily
through

a
sim

ple
constant

velocity
assum

ption.Since
then,w

hile
som

e
attem

pts
have

been
m
ade

to
justify

the
differentapproxim

ations
and

to
pointoutm

ore
generalnon-constantclosures[7],m

ostof-
ten

the
constantclosure

is
retained

in
practicalcom

putations
[8].

All
the

num
erical

schem
es

set
the

so
called

Boussinesq
coeffi-

cient(w
hich

accounts
for

the
non-uniform

velocity
profile

in
the

transverse
direction)to

one;recently,[9]proposed
to

artificially
increase

the
Boussinesq

coefficientin
orderto

reduce
oscillations

in
transcriticalflow

s
or

unsteady
flow

s
over

frictionalbeds.The
influence

of
the

m
odelling

of
the

w
all

shear
stress

has
been

recently
discussed

for
jum

ps
in

w
ater

and
granular

flow
s,w

here
closure

is
very

different[10].
Furtherm

ore,
the

range
of

application
of

the
Saint-Venant

m
odelis

notably
lim

ited
because

itdoes
notdescribe

the
vertical

profile
ofthe

horizontalvelocity.For
this

reason,the
m
ultilayer

approach
to

the
Shallow

W
ater

equations
has

been
developed,

and
in

particular
in

the
form

of
num

erical
schem

es
for

a
set

of
Saint-Venant-like

system
s.

It
consist

in
dividing

the
liquid

depth
in

layers,each
one

described
by

its
ow

n
height

and
ve-

locity
[11,12],

thus
m
odelling

the
fluid

as
com

posed
of

layers
ofim

m
iscible

liquids.M
ass

exchanges
betw

een
layers

have
also

been
considered

[13–15].From
a
num

erical
point

of
view

,the
globalstability

ofw
eak

solutionsforthe
m
ethod

proposed
in

[13]
has

been
dem

onstrated
in

[16],w
hile

new
efficient

techniques
have

been
recently

developed
[17–19].Concerning

applications

https://doi.org/10.1016/j.eurom
echflu.2019.09.010
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M
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p
gh

0 .
W

ith
these

quantities
w
e

can
define

tw
o

dim
ensionless

param
eters:

"
=

h
0L

and
�

=
a
s

h
0
;

w
e
do

nottake
into

accountthe
possibility

ofdispersion
leading

to
solitary

w
aves

[5,48].
The

classical
Saint-Venant

derivation
assum

es
the

characteristic
length

in
the

vertical
direction

z
to

be
sm

aller
than

in
the

horizontal
direction,

i.e.
"

⌧
1,

and
�

=
O
(1)

w
hich

allow
s
to

produce
jum

ps.On
the

contrary,the
Airy

linearized
w
ave

theory
on

arbitrary
depth

requires
"

=
O
(1)

and
�

⌧
1.W

ith
the

scales
defined

above
it

is
possible

to
m
ake

dim
ensionless

allthe
quantities

in
the

N
avier–Stokes

equations:

x̃
=

xL
=

"xh
0
,

z̃
=

zh
0
,

t̃
=

"c0 t
h
0

,
ũ

=
uc0

and
w̃

=
w"c0

w
here

scalesoftim
e
and

transverse
velocity

are
chosen

assum
ing

thatinertialterm
s
are

dom
inantover

viscous
ones.For

pressure,
assum

ing
the

reference
pressure

to
be

zero
at

the
surface,the

follow
ing

scales
are

taken:

p̃
=

p
⇢gh

0
,

⌘̃
=

⌘h
0
,

h̃
=

hh
0
,

Thus
the

rescaled
system

ofN
avier–Stokes

equations
is:

@ũ@x̃
+

@
w̃@z̃

=
0
,

(4a)

@ũ@t̃
+

@ũ
2

@x̃
+

@ũ
w̃

@z̃
=

�
@p̃@x̃

+
µ

"
⇢c0 h

0

✓
@
2ũ

@z̃
2

+
"
2
@
2ũ

@x̃ 2 ◆
,

(4b)

"
2 ✓

@
w̃@t̃

+
@ũ

w̃

@x̃
+

@
w̃

2

@z̃

◆
=

�
@p̃@z̃

�
1

+
"

µ

⇢c0 h
0

✓
@
2w̃

@z̃
2

+
"
2
@
2w̃

@x̃ 2

◆
.

(4c)

N
ote

that
the

topography
variations

are
supposed

com
patible

w
ith

the
long-w

ave
hypothesis:

@zb
@x

=
"
@z̃b
@x̃

.
N
ote

as
w
ell

that
the

Froude
num

ber
is

one
by

construction,
since

w
e

are
considering

flow
s
w
ith

a
single

velocity
scale.The

velocity
ũ
can

stillbe
sm

allerorlargerthan
one,as

a
resultofthe

com
putation.

2.2.
Reduced

Navier–Stokes
equations

in
the

boundary-layer
ap-

proxim
ation

Since
w
e
have

assum
ed

that
"

⌧
1,Eqs.(4)can

be
sim

plified
through

elim
ination

of
the

term
s
of

order
O
(")

and,
defining

Reynolds
num

ber
Re

=
"
⇢c0 h

0 /µ
w
hich

m
ay

be
large

or
sm

all
(butnotsm

aller
than

"),gives:
@ũ@x̃

+
@
w̃@z̃

=
0
,

(5a)

@ũ@t̃
+

@ũ
2

@x̃
+

@ũ
w̃

@z̃
=

�
@p@x̃

+
1Re

@
2ũ

@z̃
2
,

(5b)

0
=

�
@p@z̃

�
1

(5c)

This
system

of
equation

has
the

follow
ing

boundary
conditions

at
the

free
surface

z̃
=

z̃b
+

h̃(x̃,t̃),nam
ely

velocity
ofinterface,

reference
pressure,and

no
shear

stress:

w̃
=

@
⌘̃@t

+
ũ
@
⌘̃

@x̃
,

p̃(x̃,z̃
=

z̃b
+

h̃(x̃,t̃))
=

0
,

@ũ@z̃
=

0
,

(6)

and
at

the
solid

bottom
z̃

=
z̃b

there
is

the
no-slip

boundary
condition

for
both

ũ
=

0
and

w̃
=

0.The
set

of
Eqs.(5a)–(5c)

are
the

Prandtlequations
for

boundary-layer
flow

s,and
for

this
reason

w
e

call
them

Reduced
N
avier–Stokes

Prandtl
equations

(RN
SP).Together

w
ith

the
above

boundary
conditions,they

are
the

system
w
hich

w
e
em

ploy
in

this
study.

2.3.
RNSP

equations
w
ith

Prandtltransposition
theorem

N
ote

that
the

classicalPrandtltransposition
theorem

m
ay

be
used

here
[49];itconsists

in
changing

z̃
in

z̃
�

z̃b ,w
hile

ũ
is

un-
changed,and

w̃
isreplaced

by
w̃

�
@z̃b
@x̃ ũ.W

ith
thistransform

ation,
the

no-slip
boundary

condition
isatz̃

=
0.The

pressure
term

�
@p̃@x̃

changes
to

(using
the

chain
rule

derivative
and

(5c)):

�
( @p̃@x̃

�
@z̃b
@x̃

@p̃@ỹ )
=

�
@p̃@x̃

�
@z̃b
@x̃

.

H
ence

the
m
om

entum
equation

reads:

@ũ@t̃
+

@ũ
2

@x̃
+

@ũ
w̃

@z̃
=

�
@p̃@x̃

�
@z̃b
@x̃

+
1Re

@
2ũ

@z̃
2
,

(7)

w
here

z̃
=

0
is

now
the

bottom
and

z̃
=

h̃
the

free
surface.

2.4.
Shallow

w
ater

or
Saint-Venantequations

The
setofEqs.(5a)–(5c)can

now
be

integrated
overthe

depth
using

Leibniz
rule

and
boundary

conditions
to

obtain
the

system
linking

the
tw

o
variables

(Q̃
,h̃):

@h̃@t̃
+

@@x̃

Z
⌘

zb
ũdz̃

=
0
,

(8a)

@@t̃ Z
⌘

zb
ũdz̃

+
@@x̃

Z
⌘

zb
ũ
2dz̃

=
�
h̃
@h̃@x̃

�
h̃
@z̃b
@x̃

�
1Re

✓
@ũ@z̃ ◆

b
,

(8b)

w
here

w
e
recallthath̃

=
⌘̃

�
z̃b .The

m
ass

flow
rate

is
then

Q̃
=

Z
⌘̃

z̃b
ũ
dz̃.

(9)

Thus,a
closed

2D
problem

hasbeen
transform

ed
into

a
not-closed

1-D
problem

.Therefore,an
hypothesis

on
the

shape
ofthe

profile
is

required
to

obtain
a
relation

betw
een

the
unknow

ns
( R

⌘̃z̃b ũ
2dz̃,

@ũ@z̃
|b )

and
the

variables
(Q̃

,h̃).This
allow

s
to

close
the

problem
.

Letus
define

⌧̃b
the

bottom
stress,orw

allshearstress,and
�

the
shape

factor
coefficient,or

Boussinesq
coefficientas:

⌧̃b
=

1Re

✓
@ũ@z̃ ◆

b
,

�
=

h̃ R
ũ
2dz̃

( R
ũdz̃) 2

.
(10)

In
general,these

quantities
are

functions
ofx,w

here
the

integral
R

·dz̃
is

a
short

hand
for

integration
from

the
bottom

to
the

free
surface.The

m
ain

hypothesis
for

Saint-Venant
m
odels

is
to

suppose
thatthe

velocity
profile

has
alw

ays
the

sam
e
‘‘shape’’in

the
longitudinaldirection

x̃,so
that

�
is

supposed
to

be
constant.

The
previous

equations
then

read

@h̃@t̃
+

@Q̃@x̃
=

0
,

(11a)

@Q̃@t̃
+

@@x̃

 
�

Q̃
2h̃

+
h̃
22

!
=

�
h̃
@z̃b
@x̃

�
⌧̃b

(11b)

in
w
hich

⌧̃b
has

stillto
be

w
ritten

as
a
function

of(Q̃
,h̃)and

�
is

a
constant.Ifone

considersa
steady

viscoushom
ogeneousflow

in
x̃
w
ith

a
constantpressure

gradient,the
solution

of(5a)–(5c)is
a

half-Poiseuille
(N

usseltfilm
solution):the

shape
isũ

p
=

32 z̃(2
�
z̃).

This
profile

has
the

follow
ing

characteristics:
R

10
ũ
p dz̃

=
1

and
R

10
ũ
2p dz̃

=
65 ,and

the
slope

atthe
w
allis

@ũ
p /@z̃

|0
=

3.This
gives

the
finalclosure

(Boussinesq
and

friction
coefficients)forlam

inar
flow

s:

�
=

65
and

⌧̃b
=

3Re
Q̃h̃
2
.

(…
)
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Fig.3.
Collapse

of
a

viscous
flow

on
a

flat
surface.

Left:
at

t̃
=

100
,300

,500
...1500

plot
of

h̃(x̃,t̃)
for

Saint-Venant
(solid

purple
line)

and
m
ultilayer

resolution
(green

⇤
).The

initial
height

is
h̃(x̃,0)

=
1

for
�
1

<
x̃

<
1,and

surface
R

10
h(x̃,0)dx̃

=
2.Right:

plot
for

t̃
>

500
of

H
(⌘)

=
t̃ 1

/5h̃(x̃,t̃)
as

function
of

⌘
=

x̃/t̃ 1
/5

w
ith

Saint-Venant
(purple

⇤
)
and

m
ultilayer

resolution
(green

�),and
analytical(solid

black
line),w

hich
is

here
num

erically
(0

.9(1
.28338

�
⌘
2)) 1

/3.

4.1.
Stress

induced
flow

To
validate

ourim
plem

entation
w
e
considerthe

flow
ofa

fluid
in

a
closed

basin
driven

by
a

constant
w
ind

stress
at

the
top

(w
ind-driven

cavity,as
proposed

in
[57]).The

action
ofthe

w
ind

induces
a
stress

on
the

free
surface

w
hich

causes
the

m
otion

of
the

liquid.The
value

of
the

w
ind

stress
gives

the
scale

of
the

flow
.Because

the
fluid

is
confined,the

only
stationary

solution
is

a
steady-state

recirculation
inside

the
basin.

The
boundary

conditionson
the

horizontalvelocity
are

N
eum

ann
on

the
top

and
no-slip

on
the

other
sides.The

solution
for

the
verticalprofile

of
the

horizontalvelocity
atthe

centreline
is,by

sym
m
etry:

ũ
=

z̃4
�3z̃

�
2 �

so
that

the
stress

at
the

surface
is

unity
and

the
m
ass

flow
is

zero.Ifthe
dom

ain
is

long
enough

this
solution

is
valid

fora
large

part
of

the
flow

,except
at

the
boundaries

(left
and

right).W
e

report
in

Fig.2
(left)

the
com

parison
betw

een
results

obtained
w
ith

our
solver

and
the

analyticalsolution.W
e
vary

the
num

ber
oflayersfrom

4
to

32
and

keep
constantthe

horizontalresolution
to

64
grid

cells.W
e
com

pute
the

norm
L1

ofthe
error

and
verify

thatthe
use

ofthe
boundary

condition
(23)gives

a
second-order

convergence
rate

w
hile

in
[13]

it
is

reported
that

the
use

of
a

N
avier

friction
coefficient

for
the

bottom
condition

reduce
the

convergence
rate

order
from

2
to

1.7.

4.2.
Viscous

collapse
on

a
plate

4.2.1.
Horizontalplate

The
slum

p
of

an
initialheap

of
viscous

fluid
on

a
horizontal

plate
is

considered.This
is

a
double

dam
break

viscous
problem

.
In

this
flat

bottom
case

[55],
z̃b

=
0,

the
pressure

gradient
balances

friction
so

that
from

(11b)
one

obtains
Q̃
,
w
hich

is
substituted

in
m
ass

conservation
(11a),and

the
lam

inar
Saint-

Venantequations
sim

plify
into

a
single

evolution
equation

(w
ith

k
=

Re3
):

@h̃@t̃
�

k
@@x̃

 
h̃
3
@h̃@x̃ !

=
0
.

(26)

Thisequation
hasa

self-sim
ilarsolution

h̃
=

t̃
�
1
/5H

(x̃t̃
�
1
/5)ofthe

self-sim
ilar

variable
⌘

=
x̃t̃

�
1
/5

w
hich

turns
outto

be:

H
(⌘)

=
3
2
/3⌘

2
/3

f

10
1
/3

 
1

�
⌘
2

⌘
2f !

1
/3

w
here

⌘
f
=

2
1
/55

4
/5�

�
56 �3

/5

3
2
/5⇡

3
/10�

�
13 �3

/5
,

w
ith

�
the

Eulerfunction,notto
be

confused
w
ith

the
Boussinesq

coefficient.On
Fig.3,an

exam
ple

ofthe
fullresolution

of(12a)–
(12b)

is
presented,show

ing
som

e
profiles

of
h̃(x̃,t̃)

during
the

collapse.
The

sam
e

curves
are

plotted
in

self-sim
ilar

variables
dem

onstrating
the

collapse
of

all
the

rescaled
heights

on
the

m
aster

curve
H
(⌘)

w
ith

the
self-sim

ilar
variable

⌘.The
solution

of(11a)–(11b)gives
alm

ostthe
sam

e
result,as

w
ellas

the
direct

resolution
of

Eq.
(26)

(not
presented

here).
As

expected,
the

resolution
of(12a)–(12b),after

a
shorttransientphase,gives

the
com

puted
values:

h̃ R
ũ
2dz̃

( R
ũdz̃) 2

'
1
.2

and
@ũ@z̃

0 h̃
2Q̃

'
3
.0

w
hich

are
the

half-Poiseuille
N
usseltvalues.

4.2.2.
Inclined

plate
An

initial
heap

of
viscous

fluid
is

released
on

an
inclined

plate
w
ith

a
constant

slope
[56].In

this
case,pressure

gradient
and

inertia
are

negligible,there
is

only
a
balance

betw
een

the
projection

ofgravity
along

the
plate

and
the

viscous
friction.The

lam
inar

Saint-Venant
equations

sim
plify

into
a
single

evolution
equation:(k

=
Re

@z̃b
@x̃ ):

@h̃@t̃
�

kh̃
2
@h̃@x̃

=
0
.

This
equation

has
a

self-sim
ilar

solution
t̃
�
1
/3H

(x̃/t̃ 1
/3)

w
hich

turns
outto

be:

H
(⌘)

=
p
(⌘)/k.

so
thatfora

given
initialm

assA
0

=
R

x̃1
0

h(x̃,0)dx̃,the
flow

spreads

up
to

x̃f
=

(
9A 20 kt̃

4
) 1

/3
and

h̃
=

t̃
�
1
/3 q

((x̃)t̃
�
1
/3)/k

=

r
x̃kt̃

.

H
uppert’s

resolution
to

find
the

solution
is

based
on

the
m
ethod

of
characteristics.

It
is

not
based

on
this

self-sim
ilar

analysis.
See

on
Fig.

4
the

num
erical

resolution
and

som
e

profiles
at

different
tim

es.Again,num
ericalresolution

of(12a)–(12b),after
a
short

transient
phase,gives

the
half-Poiseuille

N
usselt

profile.
The

self-sim
ilarsolution

isobtained
(Fig.4)forlarge

tim
esforthe

Saint-Venant
(Eqs.(11a)–(11b))

and
the

m
ultilayer

resolution
of

RN
SP

(Eqs.(12a)–(12b)).The
profiles

are
plotted

in
self-sim

ilar
variables

show
ing

the
collapse

ofallthe
rescaled

heights
on

the
m
aster

curve
H
(⌘)w

ith
the

self-sim
ilar

variable
⌘.

N
ote

thata
sm

alltim
e
step

�
t(sm

allCFL
condition)is

needed
in

the
Saint-Venant

approxim
ation,

in
order

to
prevent

an
ar-

tificial
num

erical
slip

of
the

bum
p.

M
oreover,

w
ith

the
Saint-

Venant
m
odel,a

spurious
sm

allnum
ericalovershoot

appears
at

the
shock,w

hich
is

also
presentin

the
m
ultilayer

solution,w
hen

N
is

sm
all.
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Fig.4.
Collapse

of
a
viscous

flow
along

a
slope.(left)

at
t̃

=
100

,300
,500

...1500
plot

of
h̃(x̃,t̃)

for
Saint-Venant

(purple
solid

line)
and

m
ultilayer

resolution
(em

pty
green

square).The
initialheightis

h̃(x̃,0)
=

1
for

0
<

x̃
<

1,and
surface

R
10
h̃(x̃,0)dx̃

=
1.(right)plotfor

t̃
>

500
ofH

(⌘)
=

t̃ 1
/3h̃(x̃,t̃)as

a
function

of
⌘

=
x̃/t̃ 1

/3
w
ith

Saint-Venant(em
pty

purple
circle),m

ultilayer
resolution

(em
pty

green
square),and

analyticalsquare
rootself-sim

ilar
solution.H

ere
↵

=
1
/2,so

thatx̃f
=

(3
2
/3/2)t̃ 1

/3,
w
ith

(3
2
/3/2)

'
1
.04.

Fig.
5.

Sketch
of

the
flow

,
the

free
surface

is
in

blue,
longitudinal

velocity
profiles

in
red.The

fluid
is

falling
on

the
left

(represented
by

the
long

vertical
arrow

)
and

turns
to

be
parallel

to
the

plate.
A

thin
supercritical

layer
grow

s
gently.At

the
end

of
the

plate,fluids
falls

dow
n.A

jum
p

in
the

height
of

the
free

surface
appears,

the
flow

slow
s

dow
n

across
this

abrupt
variation.

(For
interpretation

of
the

references
to

colour
in

this
figure

legend,
the

reader
is

referred
to

the
w
eb

version
of

this
article.)

4.3.
Hydraulic

jum
ps

on
flatsurfaces

The
previous

tw
o
exam

ples
w
ere

relevantfor
the

viscous
and

the
topographic

term
s.In

this
section,w

e
show

the
application

ofthe
proposed

m
odelto

the
study

ofa
standing

jum
p.This

is
a

particularly
interesting

case
w
here

allthe
term

s,inertia,viscos-
ity,pressure

gradient
and

topography
are

im
portant

(dom
inant

balance).

4.3.1.
Hydraulic

jum
p
on

a
horizontalsurface

Firstthe
application

ofthe
proposed

m
ultilayer

m
odelis

used
to

study
a
standing

jum
p

problem
previously

analysed
by

[25].
The

flow
is

sketched
in

Fig.5.A
vertical

2D
jet,not

described
in

the
thin

layer
approxim

ation,w
ith

flow
rate

Q
0 ,im

pacts
at

the
centre

ofa
plate

oflength
2L

(only
one

halfis
presented).At

the
beginning

ofthe
plate,the

flow
is

very
fastand

supercritical.
Then,due

to
the

fact
that

the
flat

plate
is

of
finite

extent,and
due

to
viscous

effects,a
deceleration

occurs
dow

nstream
.H

ence,
a
jum

p
connects

a
region

offastflow
(supercritical)to

anotherof
slow

er
velocity

(subcritical).This
decrease

is
due

to
viscosity

so
that

for
this

configuration
Re

=
1
w
hich

gives
L

=
h
0 (c0 h

0 )/⌫
0 .

This
problem

has
been

described,for
a
plane

surface
using

the
steady

RN
SP

m
odel

[25],
and

in
the

axi-sym
m
etric

case
[26],

yet
using

a
different

scaling
of

the
equations.Instead

of
scaling

velocity
w
ith

c0 ,H
iguera

uses
Q
0 /h

0
w
ere

Q
0
is

the
flow

rate.The

steady
equations

obtained
in

[25]are
therefore

@ū@x̄
+

@
w̄@z̄

=
0
,
ū
@ū@x̄

+
w̄

@ū@z̄
=

�
S
@h̄@x̄

+
@
2ū

@z̄
2
given

Z
h̄

0
ūdz̄

=
1
,

(27)

w
ith

this
choice

the
Froude

num
ber

is
S

�
1
/2.W

ith
our

choice,
those

equations
are:

@ũ@x̃
+

@
w̃@z̃

=
0
,

@ũ@t̃
+

@ũ
2

@x̃
+

@ũ
w̃

@z̃
=

�
@h̃@x̃

+
@
2ũ

@z̃
2
given

Z
h̃

0
ũdz̃

=
Q̃

.

(28)

Itis
straightforw

ard
to

see
thatthe

relation
betw

een
S
and

Q̃
is:

S
�
1
/2

=
Q̃

5
/2.

For
steady

flow
Q̃

is
indeed

constant,then
the

value
ofQ̃

5
/2

is
a

globalFroude
num

ber.
Let

us
begin

w
ith

analysing
som

e
asym

ptotic
behaviours,for

w
hich

analytical
results

can
be

obtained.
For

sm
all

S,or
large

Q̃
,the

pressure
gradient

is
negligible,from

Eq.(28)
one

obtains
the

W
atson

self-sim
ilar

solution
(steady

flow
,balance

betw
een

inertia
and

viscosity)
u

w
=

1x f(⌘)
w
ith

⌘
=

y/x.The
function

f
is

solution
ofthe

equation
f
00

=
�
f 2

w
ith

f(0)
=

0,f
0(H

w )
=

0
for

a
unit

flow
rate

R
H

w

0
f(⌘)d

⌘
=

1.After
solving

the
equation,

one
finds:

H
w

=
1
.8138,f(H

w )
=

0
.8964

and
f
0(0)

=
0
.693.So

thath̃(x̃)
=

1
.8138x̃.The

already
m
entioned

shape
factor

is
�

=

H
w

R
H
w

0
f(⌘) 2d

⌘

( R
H
w

0
f(⌘)d

⌘) 2
=

1
.25697,the

shear
is

⌧b
=

f
0(0)H

2w
=

2
.2799.

Anotherlim
itofEq.(28)m

ay
be

obtained
forlarge

S,orsm
all

Q̃
,w

hen
the

pressure
gradient

is
no

m
ore

negligible,but
inertia

is
now

negligible,
one

obtains
the

Poiseuille
solution

(balance
betw

een
pressure

gradientand
viscosity).

ũ
=

�
h̃
2
@h̃@x̃

(ỹ)
2h̃

(2
�

(ỹ)h̃
),

Q̃
=

�
h̃
33

@h̃@x̃

so
thatone

can
solve

the
equation

for
h̃(x̃),and

as
a
sm

allheight
(even

0)
is

given
at

the
boundary

condition,w
e
neglect

it
and

obtain
as

an
approxim

ation
ofthe

surface
position

forsm
allflow

rate
near

the
output:

h̃(x̃)
=

(12Q̃
) 1

/4(1
�

x̃) 1
/4,

the
shape

factor
is

�
=

65
and

shear
is

⌧̃b
=

3.
W

e
present

here
the

num
erical

results
for

the
full

problem
.

The
system

ofequations
is

solved
using

Q̃
(or

S)as
a
param

eter.
A

first
flat

profile
is

im
posed

at
the

input
at

x̃
>

0
on

a
sm

all

(…
)



• correction Ex 2
2.1 Newton’s law for a mass falling in gravity with viscous friction is

m
d2y

dt2
= −mg − 6πµR

dy

dt
.

We have for sure a competition between free fall mg and viscous drag. A natural velocity is the Stokes
velocity Vs = mg/(6πµR), this is the terminal chute velocity. We define the scales y = Y ȳ and t = τ t̄, we
have :

Vs
g

Y

τ2

d2ȳ

dt̄2
= −Vs −

Y dȳ

τdt̄
,

hence we take Y
τ = Vs and we identify ε = Vs/(gτ), so that we obtain the following ODE

ε
d2ȳ

dt̄2
= −1− dȳ

dt̄
.

Boundary condition are same : ȳ(0) = 0 and ȳ′(0) = 0. Indeed, the ratio Vs
gτ is small if velocity scale gτ of

free fall is large compared to the Stokes velocity. Or when the time scale τ compared to the time scale Vs/g
is large. Or if the mass is small, or if viscosity is small.....

2.2 Problem singular for small ε, indeed, if we put ε = 0, we have 2 BC, but only one degree of derivation ,
ȳout(0) = 0 and ȳ′out(0) = 0

0 = −1− dȳout
dt̄

we take ȳout(0) = 0 so that ȳout(t) = −t̄, the problem is in t̄ = 0 where ȳout(0) = −1 6= 0

2.3 So, as we have identified a problem at small time scale, near the origin, we change the scale of time
t̄ = τεt̃ and space ȳ = νεỹ

ε
νεd

2ỹ

τ2
ε dt̃

2
= −1− νεdỹ

τεdt̃

A full dominant balance gives νε = τε and ε νε
τ2ε

= 1 so that νε = τε = ε.

The problem is in the new small scales :

d2ỹ

dt̃2
= −1− dỹ

dt̃
, 2 BC : ỹ(0) = 0, ỹ′(0) = 0

It is no more singular, the solution is ỹ = −t̃+A+Be−t̃ with BC in 0 gives 0 = −0 +A+B and ỹ′(0) = 0
which give 0 = −1 + 0−B hence :

ỹ = 1− t̃− e−t̃ and ỹ′ = −1 + e−t̃.

There is no need to match at this order, matching will appear at next order. Note the matching on velocity
is verified

lim
ỹ→∞

(
εdỹ

εdỹ
) = lim

t̄→0
(
dȳ

dt̄
).

As when ỹ →∞ then ỹ ∼ −1 + t̃ shows that the displacement induced at small time is of order ε. This will
be used at next order....

++
2.4
The full solution of the problem is

ȳ = ε− t̄− εe−t̄/ε

we see that indeed, for ε→ 0
ȳ = −t̄

7



as seen for the external solution, we see as well the ε small displacement induced by the small time, t̄ = εt̃,
corresponding to the interanl problem :

εỹ = ε− εt̃− εe−t̃

Finally, note that if we take very small time

ȳ = ε− t̄− ε(1− t̄/ε+ t̄2/ε2/2... = −t̄2/ε/2 = −εt̃2/2 + ...

this is the free fall.

DSolve[{eps y’’[t] == -y’[t] - 1, y[0] == 0, y’[0] == 0}, y[t], t]

Expand[E^(-(t/eps)) (-eps + E^(t/eps) eps - E^(t/eps) t)]

DSolve[{ y’’[t] == -y’[t] - 1, y[0] == 0, y’[0] == 0}, y[t], t]

• correction Ex 3
ε is the small parameter : t0 = t and t1 = εt...

cos t− t/4 cos t

y′′0 + y0 = (2B′ +B/2) cos t0 +−(2A′ +A/2) cos t0

secular terms ... solution

e−t1/4 cos t

∆ = −ε/4± i
√

1− ε2/16

• correction Ex 4

• with δ = ε, the eikonal S′0 = −2 hence the solution is y(x) = e−2x/ε. c’est exactement la solution exacte !
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correction Ex 2
Exactly the curse with cos,

In[18]:= Simplify[DSolve[y’’[t] + y[t] == 2 Sin[t] , y[t], t ]]

Out[18]= {{y[t] -> (-t + C[1]) Cos[t] + 1/2 (1 + 2 C[2]) Sin[t]}}

y0 = cos(t) and y1 = −t cos(t).
so that the solution is y = e−t1 cos(t0)

se = DSolve[{y’’[t] + y[t] == -2 e y’[t], y[0] == 1, y’[0] == 0},

y[t], {t, 0, 1}];

Plot[{0, y[t] /. se /. e -> .25, Exp[-t .25], y[t] /. se /. e -> .125,

Exp[-t .125], y[t] /. se /. e -> .05, Exp[-t .05]}, {t, 0, 4 Pi},

Frame -> True, FrameLabel -> {"t", "y(t)"}]

se = DSolve[{e u’’[y] + u’[y] + e u[y] == (1 + y)/2, u[1] == 1,

u[0] == 0}, u[y], {y, 0, 1}];

s = DSolve[{u’[y] == (1 + y)/2, u[1] == 1}, u[y], {y, 0, 1}];

Plot[{0, u[y] /. se /. e -> .25, u[y] /. se /. e -> .125,

u[y] /. se /. e -> .05 u[y] /. se /. e -> .025, u[y] /. s}, {y, 0,

1}, Frame -> True, FrameLabel -> {"x", "u(x)"}]
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