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1. Quick Questions In few words and few formula :

1.1 Scale of pressure for Stokes flow.

1.2 Order of magnitude of drag on a cylinder at small Re.

1.3 Self similar solution of heat equation.

1.4 0’Alembert equation : write the equation and the generic solution of it in 1D and 3D.
1.5 Solution of V2p = 0 in upper half domain (Vz and y > 0) with —9p/dylo = f'(x) and p(co) — 07
1.6 In which one of the 3 decks of Triple Deck is flow separation ?

1.7 What are Shallow Water Equations ? Main hypothesis ?

1.8 What is the KdV equation ? What balance is it 7 Link with Saint-Venant ?

1.9 What is the Biirgers equation ? Link with Saint-Venant ?

1.10 RATP references to Asymptotics and/or Mechanics ?

2. Exercice
Consider the following equation (of course ¢ is a given small parameter)

2

(E.) 52% + % ¢ with u(0) =0 u(1) = e.

We want to solve this problem with the Matched Asymptotic Expansion method.
2.1 Why is this problem singular ?
2.2 What is the outer problem and what is the possible general form of the outer solution ?
2.3 What is the inner problem of (E.) and what is the inner solution ?
2.4 Suggest the plot of the inner and outer solution.
2.5 Composite expansion.
2.6 What is the exact solution for any e.
2.7 Compare composite expansion and exact solution.

3. Exercice )
d d
Let us look at the following ordinary differential equation : (E;) dTg + 8% + 7%y =0, valid for any

t > 0 with boundary conditions y(0) =1 and y'(0) = 0. Of course ¢ is a given small parameter.

We want to solve this problem.

3.1 Solve with Feynman averaging method.

3.2 We want to solve this problem with Multiple Scales Analysis. Introduce two time scales, tg = ¢ and t1,
what is the relation between ¢, ¢t; and €7

3.3 Compute 9/0t and 9?/0t?

3.4 Solve the problem.

3.5 Suggest the plot of the solution.

3.6 What is the exact solution for any e, compare.

4. Exercice
Solve with WKB approximation the Airy problem

ey’ =y,

Hint : show that Sp = & [ \/|z|dz and Sy o In(|z|)
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Multiscale Hydrodynamic Phenomena

This is a part of ”low and instability of a viscous current down a slope ” by Herbert E. Huppert, Nature
Vol. 300 2 December 1982.

We consider a broad band of viscous fluid, initialy uniform in depth across a slope (so 2D plane), released
so as to flow down a constant slope of value a. This is a model for avalanche flow of more complex rheology,
here the flow is viscous and newtonian (viscosity p and v = p/p). The flowing layer is thin and long (e is
the ratio of depth by length), the flow is slow. Figure 1 shows the experimental flow down an inclined plate
(flow from rear to front), we see a "front” of fluid flowing toward us. A sketch is on figure 2. The height of
the flow is h(z,t), see the paper for notations (note that direction normal to the plane is z).

As all the results are more or less in the paper, be careful and rigorous to prove the results. Question 1.
2. 3... are a bit independent. Numbers refer to equations in the papers (Eq. X) or questions (Q. 1.X).

1.1 Write incompressible full NS equations for oil (pay attention to projection of gravity).

1.2 Over the free surface, the influence of air is supposed to be negligible, pressure is supposed constant
Patm, What are the small parameters which allow those aproximations ?

1.3 Write boundary conditions at the surface (using hypotheses of Q 1.2), note that surface tension maybe
present, comment the Bond number.

1.4 In a "boundary layer spirit” use hg the scale of the depth of the oil (z is scaled by hg), use L = hy/e
(L > hg), write NS without dimension (say that IT the scale of pressure, define a scale Uy for velocity, time
etc.)

1.5 From transverse momentum (along z) show that as ¢ is small the pressure is hydrostatic (value of I17).
1.6 From the slow flow thin layer analysis we are doing, show that the final equation is (Eq. 1) indeed (but
of course without dimension). Comment the dominant balance done here.

1.7 Show that if « small then % comes back in the game.

1.8 Comment the scale of the t:gtal derivative of velocity (longitudinal acceleration), introduce a number
without dimension with g,v and hg. If we want to keep this term, what relation should we write between
this number without dimension (with g, v and hg) and 7

1.9 As a summary, write all the hypotheses used to establish (Eq. 1).

1.10 As a summary write all the scales used to settle (Eq. 1).

2.1 Boundary conditions for @ ?
2.2 Solution of (Eq. 1) is half a Poiseuille flow (or Niigelt film flow), show it

2.3 From the half-Poiseuille solution compute Q = foﬁ udz, compute a—qf\o as function of Q and h. Write
z

them with dimensions.
2.4 What is Lubrication theory ?
: - : oQ oh .
3.1 From incompressibility find a relation between T and e Establish (Eq. 2).
z
3.2 Link with Shallow Water (Saint-Venant) equations ?

4.1 Starting from equation (Eq. 2), comment (Eq 3).

4.2 Explain with your words (Eq. 4), (Eq. 5), (Eq. 6) and (Eq. 7).

4.3 We propose here an alternate method to solve (Eq. 2) : self similarity. Using streching invariances of
(Eq. 2), show that the selfsimilar solution is such that h = £~ Y/3H(z/t'/3). Write the equation for H issued



from (Eq. 2), solve it and show that H(n) = \/(n).
4.4 Check that this self similar solution is the same than (Eq. 7).

5.1 The solution of (Eq. 2) is (Eq.7), plot the depth h as function of x at different times.

5.3 This solution has a jump (a discontinuity) at the front. This shows that a new scale must be found to
describe this. Explain then equation (Eq. 8).

5.4 Comment the proposed choice of separated variables and check (Eq. 9)-(Eq. 11).

6.1 As said, solution (Eq. 7) has a jump at the front. Another way to look at this singularity is to reintroduce
the pressure gradient in (Eq. 2) (we looked at this in question Q 1.6 and Q 1.7). This is the right regularisation
process for avalanches as the length of Q 5.3 is small.

Do the analysis and show that the equation (counterpart of Eq. 2 and Eq. 8) with dimensions is now

oh g 0., . Oh, 3
o + 378—:8[(sma —cosaa—x)h ]=0

oh
6.2 We have a new problem : (Eq. 2) with an extra 9 with a small parameter in front (if & = O(1)). Explain

that it is a singular problem. Show that the outer pfoblem is the one we have solved with Huppert (Eq. 7).
Introduce the inner problem with a change of scale in . What is the length of the transition region 7 Write
the inner problem. Which matching shall we do ?

6.3 With more algebra the problem can be solved exactly. To your feeling : plot the shape of the front (as

Q.5.1).

After this, from this base flow, Huppert looks at the destabilisation of the front in several ”fingers”, that
is another story...
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Fig. 2 A sketch of the flow and coordinate system.
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Flow and instability of
a viscous current down a slope

Herbert E. Huppert

Department of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge CB3 9EW, UK

If viscous fluid is r d on a hori | surface it rapidly
takes up a circular plan form as it spreads. This form is obser-
ved"? to be stable to any small disturbances which are initiated
on the front due, for example, to irregularities in the horizontal
surface or to chance perturbations. Alternatively, if some fluid
is released onto a sloping surface—for example, some liquid
detergent on a slanted plate—a quite different plan form occurs.
One, two or more extended regions of fluid develop downslope,
as shown in Fig. 1a, b. A situation intermediate between these
two is now discussed. Consider a broad band of viscous fluid,
uniform in depth across a slope, released so as to flow down a
constant slope. By following the motion, which is initially
independent of the cross-slope coordinate, the speed of advance
and the depth of the flow before it breaks up into a series of
waves of ever increasing amplitude can be determined. I present
an expression for the wavelength of the front, which is deter-
mined by surface tension and is independent of the coefficient
of viscosity.

With the coordinate system depicted in Fig. 2 and use of the
approximations of lubrication theory®, the y-independent,
down-slope momentum equation can be written as

O=gsina+wvu,, 1)

In deriving equation (1) we have neglected both surface tension,
the effects of which will be analysed below, and contact line
effects*, which are negligible’ under the assumption that the
Bond number B = pgl*>/T » 1, where p is the fluid density, [ a
representative length scale of the current and T the surface
tension. Use of the equation of continuity then leads to

h,+(g sina/v)h?h, =0 (2)

as the nonlinear partial differential equation for the unknown
free surface h(x, t). To equation (2) must be added the global
continuity equation

xZS
.— Ekgaaxn\» 9
0
where xn(t) is the value of x at the front of the current and A
is the initial cross-sectional area. The particular solution of
equations (2) and (3) is sought in the range 0<x < x5 (f).

Equation (2) shows that 4 is constant along characteristics
given by

& 3 2

MHQ sina/v)h 4)
Thus if initially & = f(x), say, the equation of the characteristics
is given by

x =xo+ (g sin a/v)f*(xo)t 5

where x, is the initial value of the characteristic. The solution

of equation (2) is thus

h=[r(x—xo)/g sina]/?*""* (6a)
> (v/g sin )22 7/? (x »xo) (6b)

independent of the initial conditions. When combined with
equaton (3), in order to evaluate the length of the current,
equation (66) proves that some time after the initiation of the
current, no matter what the initial shape, the solution takes the
form

B =(v/g sin a)2x 21
0<x<xy=(9A% sin a/d4v)"*t""?

7
Expressed alternatively, equation (7) represents the unique
similarity solution of equations (2) and (3). The profile of the
predicted current ends abruptly at x =xyx with A =hx(1)=
1.5A/xx there. The profile can be smoothed off at xy by includ-
ing the effects of surface tension. This will be done below after
a discussion of an experimental investigation of the validity of
the truncated profile expressed by equation (7).

Some 30 experiments were conducted using a pentagonal
sheet of Perspex. The longest side was 101.7 cm and from it
two sides of length 82 cm emanated at right angles. The remain-
ing two sides were 60 cm. The sheet was surrounded by a
Perspex wall 5 cm high to make a tray which was firmly attached
to a rigid, flat board. Before each experiment the board was
tilted by raising the 101.7-cm long side by the required amount.
A removable Perspex gate was fitted 5.0 cm from the back edge
of the tray and fluid poured into the space behind the gate.
Three different fluids, whose physical properties are listed in
Table 1, were used. After the fluid behind the gate had been
left a sufficiently long time that it had become quite stationary,
the gate was raised and the fluid proceeded to pour down the
slope.

At first the motion was virtually independent of the cross-
slope coordinate except near the walls where viscous drag
retarded the flow. This form of motion is clearly evident in Fig.
1c. Observations of the length of the current as a function of
time were taken and some typical results plotted in Fig. 3. It
can be seen that the agreement between the experimental
observations and the theoretical prediction (7) is good. The
agreement justifies the neglect of both surface tension and
contact line effects in predicting the temporal development of
the two-dimensional current.

After the two-dimensional motion had continued for some
time, the flow front seemed spontaneously to develop a series
of small amplitude waves of fairly constant wavelength across
the slope, as seen in Fig. 1d. The amplitude of the waves
increased in time as the maxima (points furthest down the slope)
travelled faster than the minima, as seen in Fig. le. The
wavelength remained unaltered. The long-time shape of the
flow front was different for the two fluids used. Both silicone
oils developed the form shown in Fig. 1f. This consisted of a
periodic, triangular front with tightly rounded maxima. The
maxima were connected by very straight portions at an angle
to the slope to extremely pointed minima. The glycerine
developed the form shown in Fig. 1g. This was also periodic,
though with much less tightly rounded maxima. These were
again connected by extremely straight portions, but in this case
they were almost directly down slope and connected to very
broad minima.

Table 1 The fluids used, their viscosity and surface tension

Viscosity Surface tension
at17°C at17°C
Fluid Aniwmiv (dyn em™)
Silicone oil MS200/100 1.15 20.6
Silicone oil MS200/1000 12.8 22.0
Glycerine 9.8 60.2

Fig .1 flow of MS200/1,000 oil down an inclined planel2° 80s
after release showing the broadly two-dimensional front

(...)

Experiments with silicone oils whose coefficients of viscosity
differ by an order of magnitude, although their surface tensions
are almost equal, indicated that the wavelength of the instability
is independent of the coefficient of viscosity. Experiments with
the two fluids of comparable viscositv vet different surface
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Fig. 2 A sketch of the flow and coordinate system.

tensions indicated that the wavelength is a function of the
surface tension. Finally, observations taken during experiments
using the same fluid but with amounts differing by up to a factor
of 10 indicated that the wavelength is weakly dependent on
the initial cross-sectional area A.

The form of the quasi-steady, two-dimensional tip, which is
determined by including surface tension and by matching the
tip onto the main flow given by equation (7), can be easily
determined. The addition to equation (2) of the terms due to
surface tension T leads to

he+(g sina/v)h*h, —1/3(T/pv)h>heexs =0 (8)

In the tip the dominant balance is between the second and third
terms of equation (8), the solution to which can be written as

h=he(VH(E)  £=(pgsina/Thy)(xn—x)  (9)

where H (¢) satisfies

HH"+H*=1 (10)

H@ 1/4 4
m.'Amv £ €-0) 11
-1 (£ »0) (12)

The length scale of the tip is thus given by (Thy/pg sin )"/,

(--.)



Laplace, Maison des Examens (et aussi rue Cauchy & Arcueil)

Madame du Chatelet (and Schrodinger Equation by Pierre-Yves Trémois)
Gare du Nord (Equations de Manabe Prix Nobel 2021 avec Hasselmann et Parisi)
Pierre et Marie Curie ligne 7 du métro de Paris,

Place Monge
Réaumur
e correction Ex 2

here there is a trap, = 6% gives by dominant balance § = 2

se = DSolve[{e u’’[y] + u’[y] == E7y, ull] == E, u[0] == 0},

s = DSolve[{u’[y] == E~y, ul1] == E}, ulyl, {y, 0, 1}];

Plot[{0, uly] /. se /. e => .25, uly] /. se /. e => .125,
ulyl /. se /. e =>

FrameLabel -> {"x", "u(x)"}]

correction Ex 3

e—x+1

ece

e

(ef—1>—el_Tz+e%+x—ex—|—1

(e+1) (eé - 1)

250
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FIGURE 1 —

Solution with e = 0 is y = Acos(nt), and ¢y = —wAsin(nt),.

Mean value

1 2 1 1 27
< sin?t >:/ sin? tdt = = < cos’t >:/
27T 0 2 27T 0

0.8

ulyl, {y, 0, 1}]1;

.05, ulyl] /. s}, {y, 0, 1}, Fram

1

2
tdt = -
cos 5

hence as the period is now 2, y = Acos(wt), < y*> >= A?/2 and v = —7wAsin(nt), < y'? >= 72 A42/2

Energy

y = Acos(rt), < y? >= A%/2

y = —mAsin(rt), < y? >=72A2%/2

the 7 disappears

dt

d

dt

A? = —cA?

d
5 < Y22+ 2P 2 >= —e < y? >

d (m2A%/2 4+ 12 A% )2) = —em? A2



correction Ex 4

Airy
ey’(z) = zy(),
WKB expansion
(€/6%)Sg° + (2¢/8)S5S1 + (/0)Sg =,

s0 § = \/ et S = x this is the ”eikonale” ( phase)

Sozzi:/ V |x|dx

next order
Si+25)S1 =0
writes S| = —(1/2)5( /S|, c’est aussi S; = (—1/2)LogS|, or S = \/|x| we have S; = —(1/4)Log|z| solution
is superposition
1 T -1 rz
y(x> _ ’x‘71/4<cleﬁf |z|dz _|_026ﬁf Iw\dw)
Cy et Cy from BC (not given)

For © — > )
Ai(z) = Ca~ Ve 577

(on peut montrer par ailleurs C' = 1/(2/7).
for x - —o0

Ai(z) = Crz~ 4 cos %(—x)g’/2 + Coz™ Y sin ;(—x)?’/Q



1.1

1.2 air pressure small, density and viscosity of air small, small surface tension... pyir/(pgho) < 1, pair / pwater <

17 ,uair/ﬂwater < 1, B«1

1.5 Transverse pressure il large due to a 1/hg, the transverse velocity terms are small (like in BL Theory),

we do a balance with the gravity, so with II = pghg dominant part of transverse momentum

0= —(%) —cos

this gives hydrostatic pressure after integration
p=cosafh — %)

1.6 dominant part of longitudinal momentum

~ 25
0= ~(pgho/T)(32) + (U /R3) (53) + pya

viscous/ gravity balance (brake/motor) in a small slope sin « ~ «, but not so small

vUo/h3 = ga
so that o5 o
P
(/) (5D) + (F5) +1
if & > ¢ this is Eq. 1 of paper :
0= (20 4
- 9z2

1.7 as cosa ~ 1 and Uy = gh%a /v, the longitudinal momentum with pressure is

24
0= (/o)) + (2241

if slope is large enough, the pressure term is not present in the equation, as proposed by Huppert and just

seen before. If a ~ ¢, we have the three terms : pressure comes back in the game...

1.8 compare inertia UZ/L and viscous vUp/h3, full longitudinal equation is :

(91 ) (ho /L)' = ~(c/ ><ah> 2 gx“
333333
% g; f O " i 5 25~ 2
e (?)u gu o5 = —2?; ( g; gy )
Remarquons que le terme Ga = F'r %55



