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Preface

Making precise approximations to solve equations is an occupation of
applied mathematicians which distinguishes them from pure mathemati-
cians, physicists and engineers. A precise approximation is not a con-
tradiction in terms but rather an approximation with an error which
is understood and controllable; in particular the error could be made
smaller by some rational procedure. There are two methods for obtain-
ing precise approximations to the solutions of an equation, numerical
methods and analytic methods, and this book is about the latter. The
analytic approximations are obtained when some parameter of the prob-
lem is small, and hence the name perturbation methods. The perturba-
tion and numerical methods are not however in competition but rather
complement one another as the following example illustrates.
The van der Pol oscillator is governed by the equation

F+ki(z?=1)+z =0

In time the solution tends to an oscillation with a particular amplitude
which does not depend on the initial conditions. The period of this
limit oscillation is of interest and is plotted in figure 1 as a function of
the strength of the nonlinear friction, k. The circles give the numerical
results obtained by a Runge-Kutta method. The dashed curves give the
first and second order perturbation approximations

2m (1+ &K% + O(k*)) ask—0
k(3—2In2) +7.0143k Y3 4+ O(k™'Ink) ask — oo

At intermediate values of the parameter k, from 2 to 6, the numerical
method is most useful. At extreme values however the numerical method
loses its accuracy rapidly, for example by k¥ = 10 the time-step must
be reduced to 0.01 in order to obtain 5 figure accuracy. The analytic
approximations take over in the extreme conditions. Further they give an
explicit dependence on the parameter k rather than the isolated results

Period = {
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Fig. 1 The period of the limit oscillation of the van der Pol oscillator as a
function of the strength of the nonlinear friction k.

at particular values from the numerical method. But the most important
feature of the figure is the satisfying agreement between the numerical
approximation and the two independent perturbation approximations -
such checks are essential in research.

Obtaining good numerical values for the solution is not the only quest
of a perturbation approximation. One can hope that the analysis will
reveal some physical insights through the simplified physics of the lim-
iting problem. In this book I will however suppress the physics in the
problems discussed.

Finding perturbation approximations is an art rather than a science.
In research it is useful to be responsive to suggestions from the physics.
There is certainly no routine method appropriate to all problems, or
even classes of problems. Instead one needs a determination to exploit
the smallness of the parameter. This book attempts to present many
of the weapons which have been found useful, but they should not be
viewed as exhaustive.

While this book is mathematical, no attempt has been made to make
the arguments fully rigorous. In general I have tried to explain why
the results are correct. Often these reasons can be turned into strict
theorems, albeit with some difficulty in the case of singular problems.
My own opinion is that such superficial rigour rarely adds to the under-

Preface xi

standing of the problem, and that of greater use is a numerical statement
about the range of applicability achieving some specified accuracy.

This book is based on a course of lectures which I gave for a number
of years to first year graduate students in the University of Cambridge.
In its turn it was based on my own education from a course of lectures
by L. E. Fraenkel and from the book on the subject by M. Van Dyke.
These two inspiring teachers asked many interesting questions which I
have attempted to answer in this book; questions such as why are some
results convergent whilst others only asymptotic, why is matching pos-
sible, what selection criterion should be used with strained co-ordinates,
and what characterises problems to be tackled by multiple scales.

While no previous knowledge of perturbation methods is assumed,
some previous experience is probable. The students who attended my
lecture course would have seen several examples (small friction on projec-
tiles, perturbed energy levels in quantum mechanics, adiabatic invariants
in Hamiltonian systems, Watson’s lemma, and viscous boundary layers
in fluid mechanics) usually presented in an informal way relying heavily
on physical insight. They would not however have seen a formal and
organised approach to a perturbation problem.

The eventual goal of this book is to present the method of matched
asymptotic expansions and the method of multiple scales, progressing
to an advanced level in considering the more difficult issues such as the
occurrence of logarithms and the occurrence of more than two scales.
Tackling differential equations with such singular perturbation problems
is certainly not easy. Fortunately many of the essential concepts can be
presented in the simpler context of algebraic equations and later with in-
tegrals. Thus issues such as iterations and expansions, singular problems
and rescaling, non-integral powers and logarithms will be presented well
before the difficult singular differential equations are encountered. Fi-
nally I should observe that most of the chapters follow the basic method
with an advanced application whose understanding is not essential to
the following chapters — thus §§ 1.6, 3.5, 5.3, 5.4, 5.5, 5.6, 6.3, 7.3, 7.4
and 7.6 should be viewed as optional.

E.J. Hinch
Cambridge, 1990
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Matched Asymptotic Expansions

We now tackle some singular differential equations. There are two dis-
tinct types of singular behaviour, which will be studied separately in this
chapter and chapter 7. That considered in this chapter typically (but
not always — see §5.2) involves a small parameter multiplying the highest
derivative. The highest derivative can thus be ignored, so leading to a
singular reduction of the order of the equation, except in thin regions
of rapid change where the high value of the derivative cancels the effect
of the multiplying small parameter. Often these regions of rapid change
occur near to the boundary of the domain, and for this reason they are
known as boundary layers.

0.0 0.5 x 1.0

Fig. 5.1 The solution of the problem in §5.1 with h(z) = e™*. As ¢ decreases
through the values 0.2, 0.1, 0.05 and 0.025 a thin boundary layer of rapid
change develops near z = 0.

5.1.1 The ezact solution 53
5.1 A linear problem

We start with a simple linear ordinary differential equation, which can be
solved exactly. This enables us to probe the structure of the solution and
so develop the method of solving asymptotically such singular equations.
This model problem is due to Friedrichs. Let f(z,¢) satisfy
€feg + fo=h, in0<z<l1
with f(0,¢) =0 and f(l,e) =1
where h is a given function with NV continuous derivatives on [0,1]. We

are interested in the behaviour as € tends to zero through positive values,
ie. e\, 0.

5.1.1 The exact solution

By direct integration of the differential equation, we have

f(z,e) = l/Ie(“’)/‘h(t)alt +

€Jo
1 1 1-— e—z/e
-z (t-1)/¢ .
(1 . /0 elt=1/ep () dt) =
We can obtain an asymptotic expansion by integrating by parts M (<

N) times,

-1
= 1+ Y (-9" (kM@ -h™W) + R, + Ry,
0

where
M-1 —z/€ -1/e
= - —e\? (n) —_ (") € —€
R, <1+ EO:( €) (h (0) — A (1))) T
T
R, = —(-eM™! / et~ ep (M) (ydt  +
0
M-1 l(t—m)/eh(M) 1—e /e
(=€) /Oe (1) dt——;

For € \, 0 with ¢ # 0 fized, R;; is O(e™) by using a bound on A(M),
while R; is exponentially small and so certainly O(¢™). Thus we have

M-1
fo~ 1+ Y (=9 (M) - ()
0
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an asymptotic series which might diverge if M = oo.

The expansion above is not uniformly asymptotic in z, because the
e~%/¢in R; is not o(eM~1) on the whole interval 0 < z < 1. Near £ = 0
we need to have € very small [< z/((M+)In(1/z))], ie. a disaster at
z = 0. Some singular behaviour of the boundary value problem could
have been anticipated, because the equation reduces from second order
for € > 0 to first order for € = 0. Thus in the limit we must abandon
one boundary condition.

While the above expansion breaks down at £ = 0, there is an alterna-
tive expression which is asymptotic there. For € \, 0 with £ = z/¢ fived
(€ is sometimes known as the boundary layer co-ordinate)

fle€e) ~ 1 —e¢ +

= Z (-
3 (=or (h<"’(0)[z o —e'f]+h("’(1)(e" —1)>

k=0

obtained by retaining the appropriate parts of R;, expanding h(™(e)
and rearranging. This new asymptotic expansion also breaks down, this
time when e£ = ord(1) due to the ¥ ¢*.

Thus we see that one function can be represented by two asymptotic
expansions. Each expansion is limited by some non-uniformity in the
asymptoticness, as £ — 0 and £ — oo respectively. The two expansions
do, however, take a common form in the common ground where z is
small but not too small and where ¢ is large but not too large, i.e.
€ € T = €€ K 1, as they must because they represent the same function.

We now try to obtain the above solution for f(z,e¢) by solving ex-
actly some approximate problems, rather than approximating the exact
solution.

5.1.2 The outer approximation

We start by naively treating the problem as a regular perturbation prob-
lem, even though we know it is not. In this way we produce what is
known as the outer approximation, which will often be referred to as
the ‘outer’. Thus we formally pose a Poincaré expansion with P < N,

P
f@e ~ Y

n=0
Substituting into the governing equation and boundary conditions and
comparing coefficients of €" yields

5.1.8 The inner approzimation (or boundary layer solution) 55

at % fo=N, fo(0) =0 & fo(1) =1

ate™ fi=—fr_1, f.(0)=0 & f,(1)=0forn>1

Both boundary conditions cannot be satisfied in general, because the
problem is not really regular. In order to satisfy the boundary conditions
we will need one or more boundary layers in which the above outer
approximation is not appropriate. We postpone until §5.1.7 a discussion
of where the boundary layers might be. Here we use our knowledge of
the exact solution to decide that there will be a boundary layer at z = 0
and none at z = 1. Thus the above outer must satisfy just the boundary
condition at z = 1. Hence

fox) = h(z)-h(1)+1
falz) (@ (A @) - A1) forn>1

A special feature of our model problem is that the outer is now com-
pletely determined. Normally one would have some undetermined con-
stants of integration in the outer solution at this stage.

5.1.3 The inner approximation
(or boundary layer solution)

The singular reduction of the equation from second order to first order
is not appropriate if there are large gradients in thin regions. From the
exact solution we know that there is such a thin region near z = 0 with
a width €. In §5.1.6 we examine how the width of the thin region can be
determined. The thin region is studied by introducing a rescaling with
a stretched co-ordinate '

§ = z/e
The governing equation then becomes when M < N
1 1
;fgg + ;‘fg = h,(ef)

M én—l
Zen—lh(n)(o) (n — 1)' + O(CM_lﬁM_l)
n=1 :

We seek a formal expansion of the Poincaré form for € \ 0 at fixed ¢
with Q@ < N,

Q
flme) ~ > €g.(8)
0
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We substitute into the governing equation and boundary condition at
z = 0. Note that the boundary condition at z = 1 cannot be applied,
because it is not an accessible point for fixed ¢ as € \ 0. Comparing
coefficients of €" yields

at e~ 1: 90 +90 =0, 90(0) =0
at e=1+n. o+ = h(n)(o)(g‘_;l‘w 9,(0)=0forn>1

with solutions

9 = A(1-e)

9. = A,(1-¢%) + (‘)“h(n)(O)i (—f')’c
k=1

7 forn>1

with constants of integration A,. These constants will be determined
in the next subsection by applying in some way the other boundary
condition at z = 1, which is not immediately accessible to this thin
inner region.

2
e ememe— .
f '~..:.:>')‘_/:;’—
PR
/ ~ -
/ ~ \
1t / I
/ ~
y ~
~
~
0.0 0.5 1.0

X

Fig.5.2 The outer and inner approximations for A(z) = e~ and € = 0.1. The
continuous curve is the exact solution. The leading order outer approximation
is given by the dotted curve, while the dashed—dotted curve includes the first
correction. The leading order inner approximation is given by the short dashed
curve, while the long dashed curve includes the first correction.

5.1.4 Matching 57
5.1.4 Matching

We now have two asymptotic expansions for the solution, one for fixed
z and one for fixed £. We now will see that these two expansions are of
a similar form in an overlap region which has both z small and £ large,
ie. € € z = € <€ 1. Forcing the two expansions to be equal in the
overlap determines the unknowns - here just the A,. This process is
called matching.

We express both the outer and the inner in terms of an intermediate

variable
n =/ = (™ with0<a<1

We then take the limit ¢ \, 0 with 7 fixed, which makes z — 0 and
& — oo. To help organise the terms of differing sizes, it is useful to think
of some particular value for a, say % In the overlap region the outer
becomes
[A(0) — A(1) + 1] + ek’ (0) + 2e2*n2R"(0) + L3*n3R"(0) + - - -
+€[h' (1) — B'(0)] — e2**nh"(0) — e2+22n2h""(0) + - - -
+€e2[h"(0) = " (1)) + -
+ .o

where the successive rows come from the successive f,,. In the overlap
region the inner becomes

Ay + EST.
+e*nh'(0) + €A, + E.S.T.
+3622n?h"(0) — e!t2nh"(0) + €24, + E.S.T.

+ P

where the successive rows come from the successive g,, and E.S.T.
stands for Ezponentially Small Terms, e.g. Agexp(—-n/e!~*). Com-
paring the two expressions, we see that they are identical if we set

A, = h(0)-h(1)+1
A, = K(1)-K(©)
and A, = A"(0)-h"(1)

which fully determines the solution.

Note that some terms have jumped their order, e.g. the term ¢*nh’(0)
comes out of the ord(e) term eg,. To stop the first ignored term in the
inner O(eQ+1¢Q+!) being larger than the last retained unknown term
eQAq, it is necessary to take a > Q/(Q+1). This is permissible because
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we only need 0 < o < 1. Thus in the above displays, Q = 2, and so we
should have chosen a > % However from the structure of the a and 7
dependencies of the terms, it is clear that nothing has been overlooked
by our book-keeping with a = 3.

The order jumping term e£h’(0) in eg, becomes as large as g,, i.e. the
inner loses its asymptoticness, when ¢ = ord(1). This tells us that
h(z), which was considered a small correction in the equation governing
the inner problem, can no longer be considered a small correction at
z = ord(1), i.e. there we need a new balance — the outer.

Exercise 5.1. The function y(z;e¢) satisfies
ey +(1+e)y+y =0 in0<z<1

and is subject to boundary conditions y =0 at z =0 and y = e~ ! at
z = 1. Find two terms in the outer approximation, applying only the
boundary condition at z = 1. Next find two terms in the inner approx-
imation for the boundary layer near to £ = 0, which can be assumed
to have a width ord(e), and applying only the boundary condition at
z = 0. Finally determine the constants of integration in the inner ap-
proximation by matching.

5.1.5 Van Dyke’s matching rule
Matching with an intermediate variable n can be tiresome. Van Dyke’s

rule usually works and is more convenient.
First we introduce some notation for our two limit operations.

Epf = outer limit (z fixed, € \ 0) retaining P + 1 terms
P
= ) fulx)
0 .
Hgpf = inner limit (£ fixed, € \, 0) retaining Q + 1 terms
Q
= ) €g.(8)
0

With this notation Van Dyke’s matching rule is

In words this means the following. First one takes the inner solution
to Q + 1 terms and substitutes z/e¢ for £. The outer limit of z fixed as

5.1.5 Van Dyke’s matching rule 59

€ \, 0 is then taken retaining P + 1 terms. This produces the left hand
side of the above equation. A similar process with the inner and outer
interchanged produces the right hand side. Requiring that the left and
right hand sides of the equation are identical then determines some of
the constants of integration.

e For example for P=Q =0

EHyf = E, {Ao(l - 6—5)}
= B - )
= AO

HyEyf = Hy{h(z)—h(1)+1}

= Hy {h(e€) - h(1) + 1}

= h(0)—h(1)+1
And so the constant A, is determined to be h(0) — h(1) + 1.
e For example for P=Q =1

E\H\f = E, {A(1-€%) +e[A;(1-e%)+R(0)¢]}
= E {Ao(l — e/ 4 [A,(1—e /) + h’(O)x/e]}
=  Ay+zh'(0)+eA,

H\E\f = H {h(z)-h(1)+1-¢h'(z)-Rr (1)}

= H, {h(e€) — h(1) + 1 — €[R'(e£) — h'(1)]}
= h(0) — k(1) + 1 + €£R'(0) — eh'(0) + €h'(1)

Because the zh/(0) in E,H, f is equal to ¢£h’(0) in H, E, f, the matching
rule is successful and the constants are correctly determined as

A, = h(0)=h(1)+1 and A, = K'(1)-h(0)

Van Dyke’s matching rule does not always work — see §5.2.5. Moreover
the rule does not show that the inner and outer are identical in an overlap
region.

We have determined the integration constants by matching. A cruder
method is to patch, in which the value of the inner is set equal to the value
of the outer at some particular z. If there is more than one constant to
be determined, several £ can be used or several derivatives of f at one z.
In numerical work it can be difficult to implement a proper matching,
and then one uses the unsatisfactory patching method.

Exercise 5.2. Try P = Q = 2 and the off diagonal case P = 0 with
Q=1
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Exercise 5.3. Show that Van Dyke’s matching rule will work for gen-
eral P and @ with the above outer and inner solutions of the particular
model equation.

5.1.6 Choice of stretching

In §5.1.3 we used the exact solution to decide the appropriate stretching
of the thin region near z = 0. In general one has to examine all the
possible stretching transformations, as in the rescaling of the singular
algebraic equation in §1.2.

Consider the transformation

z = €%y

This will expand the region near z = 0 if @ > 0. If « is not an inte-
ger, the expansion sequence for f will include non-integer powers of e.
The iterative method is therefore more appropriate until the expansion
sequence becomes clear. Sometimes a more general stretching than >
is needed. In a nonlinear problem, one may also have to stretch the
dependent variable, here f, possibly differently in different regions.
Substituting into the governing equation, we have for M < N

61—20fm’ + f_afy, — hz(e"‘n)
M-1 n
— Z fnah(n+l)(0)_7l_ + o(ea(M—l))
n!
n=0
We now scan all possible a > 0, starting with large a and then de-
creasing.
e If a > 1, ie. a finer scaling than the known boundary layer, the
above equation can be rearranged placing all the small correction terms
on the right hand side of the equation:

fnn — _6a—-1fn+62a-—1hz(ean)
Solving iteratively, we find
f = A+B (77— lea—lp2 4 %62(a~1)n3 _ i1263(01—1)774 +)

+ €2 1p/(0) (%772 _ %e""ln" + %62(01-1),,74_{_._.)
+ 63a—1h//(0) (én3 - 2_14_601—1174 + .. )
+ e

5.1.6 Choice of stretching 61

Further terms horizontally come from iterating again through the small
correction term on the right hand side of the governing equation
—ea! fy» while further rows come from further terms in the expansion
of h, about z = 0. The constants A and B are available at every order.

Applying the boundary condition f = 0 at £ = 0 yields A = 0 at
all orders. The constant(s) B are not determined by this boundary
condition.

We now find that the solution cannot be matched to the outer solution
by any method. Applying Van Dyke’s rule at the leading order, i.e. with
P = Q = 0, one cannot match the inner’s linear term B7 to the outer’s
approximately constant term h(z) — h(1) + 1 (unless by chance h(0) —
h(1)+1 = 0). The mismatch is worse at higher orders. When attempting
to match in an overlap region with an intermediate variable, it becomes
clear that one cannot break through the barrier n « !~ because at
€~ = ord(1) an infinite number of terms - all those on a horizontal
line — become the same size.

The solution for a > 1 is not entirely spurious. It can be matched to
our inner solution, because the above expression can be written

(A=0)+ Bel™@ (1 - e"a_l") + h'(0)e (e“a_l" -1+ ea‘ln)
+h”(0)62 (_e_ea—l,, +1- €<:1-—11,’ + %62(01—1),,}2) 4.
which is of course the inner. Hence the solution for a > 1 is simply an

expansion of the inner on the finer length scale.

e If o = 1, then we have the inner scaling of §5.1.3 which we know
works.

e If0 < a<1,ie. acoarser scaling than the known boundary layer,
the governing equation can be rearranged placing all the small correction
terms on the right hand side of the equation:

fn=€hg(e®n) — 7 f,
Solving iteratively again, we find
f = A+ €nh'(0)
+ 2e2n2R"(0) — e**1nh" (0)
+ E51_6.'3017’3’]'”!(0) _ %€2a+1n2hlu(0) + €a+277h/”(0)
+ .

The terms on each horizontal line come from iterating through the small
correction term e}~ fpn On the right hand side. Note that this produces
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only a finite number of terms for each row. Further rows come from
further terms in the expansion of h; about z = 0. The constant A is
available at every order.

Applying the boundary condition at = 0 yields A = 0 at all orders.

We now find that the solution cannot be matched to the outer solution
by any method. The leading order terms €“n and h(z) — h(1)+1 cannot
be matched either by Van Dyke’s rule or by an intermediate variable in
an overlap region.

The solution for 0 < a < 1 is also not entirely spurious. It can be
matched to the outer if we do not take A = 0, i.e. we forgo applying the
boundary condition which was the very reason for having a boundary
layer at z = 0. If instead of A = 0, we take

A~ [R(0) = h(1) + 1] + €[h(1) — K'(0)] + €2[h"(0) — R (1)]
then we recover the form of f found earlier in §5.1.4 in the overlap region.

From examining all the possible values of a > 0, we conclude that it is
only possible to match with the outer if a < 1, while it is only possible
to include the ef_, as a main term and so satisfy the boundary condition
if a > 1. As the inner must have the two properties, we conclude that
the inner must have the scaling of a = 1.

It is interesting to watch the relative importance of the terms in the
equation as a varies.

€f$3 + fa: = hz
a=0 ... balance...... the outer
0<axl dominant the overlap
a=1  ...... balance...... the inner

1 < a dominant the sub-inner

The reason that the inner expansion (governed by one equation) can
be matched to the outer expansion (governed by a different equation at
leading order), is that there exists an intermediate expansion in an over-
lap region. The intermediate expansion is governed by an intermediate
equation which at leading order is the common terms of the leading or-
der of the equations for the inner and the outer. It is the lack of any
common terms between the sub-inner (with @ > 1) and the outer which
makes it impossible to match them with an intermediate variable.

The potentially interesting scalings of the equation (rescaling both
dependent and independent variables in a nonlinear problem) are those
which produce a balance between two or more terms in the equation.
Such scalings are sometimes called distinguished limits.
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Exercise 5.4. Find the rescaling of z near z = 0 for
ex™y +y=1 in0<z<1l  withy(0)=0
when 0 <m <1
Exercise 5.5. (Stone) The function y(z;e) satisfies
ey +x¥/%' +y =0 in0<z<1

and is subject to boundary conditions y = 0 at = 0 and y = 1 at
x = 1. First find the rescaling for the boundary layer near z = 0, and
obtain the leading order inner approximation. Then find the leading
order outer approximation and match the two approximations.

5.1.7 Where is the boundary layer?

We simplified §5.1.2 by assuming that the boundary condition at z = 1
could be applied to the outer and that no boundary layer was needed
there. We now see what would have happened if we had tried to put an
unnecessary boundary layer near z = 1. From this study, we shall learn
how to anticipate where boundary layers will be needed.

We expand the region near z = 1 by using a stretched co-ordinate
z = 1- €%, with a > 0 for a stretching and n > 0. The governing
equation then becomes

el=2a m—€ “fy = h(1-€%)

As in §5.1.6, the choices 0 < o < 1 and @ > 1 do not give useful balances
in the equation. So we look at o = 1:

S~ (e
I =dy =3 T o)

with M < N.
Solving iteratively, and applying the boundary equation at z = 1, i.e.

n=0,

f o~ 14+A(e"-1)—enh’'(1) + €2 (3n? +n))R"(1)

with the constant A available at all orders.
The above inner solution near z = 1 has to be matched to the outer
solution to which no boundary condition has been applied, i.e.

f ~ B+h(z)-eh'(z) + €*h"(z)
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with the constant B available at all orders.
Matching by Van Dyke’s rule or by the intermediate variable is suc-
cessful and determines the integration constants

A=0 and B~1-h(1)+€h'(1)-€n"Q1)

With A = 0, the inner solution becomes merely a re-expression of the
outer in terms of the stretched co-ordinate. This is quite different to the
boundary layer at z = 0 which through terms like [A(0) — h(1) + 1]e~¢
deviates from the outer (re-expressed in terms of the stretched co-
ordinate there).

The difficulty in trying to place a boundary layer at z = 1 is that
the additional solution of the equation, which enters when the stretched
co-ordinates restore the order of the governing equation to 2, blows up
exponentially away from z = 1 (and so must be zero), while it decays
away from r = 0. To have a non-trivial boundary layer one needs some
extra solutions for the inner which decay into the outer region. They do
not, however, have to decay exponentially.

e Example 1. Consider
ef'—f=-1 in0<z<1 with f=0 atz=0and1

For the stretchings € with a = 1, this equation has exponentially de-
caying solutions for x increasing and for z decreasing. Thus boundary
layers are possible both near z = 0 and near z = 1, and both layers are
needed.

f ~ 1- e~%le _ e(z-l)/e

e Example 2. Consider
E€f'+f=1 in0<z<1 with f=0 atz=0and]1

While the same stretching ¢* with a = 1 produces a possible equation
for the inner, there are however no decaying solutions in either direction.
Hence it is not possible to add any boundary layersat z = 0and z = 1 to
help the candidate for the outer f ~ 1 satisfy the boundary conditions.
The exact solution is

fo= 1= sin(z/e) + sin((1 — z)/e)

sin(1/¢)

which shows that the boundary scaling is applicable all the way across
the domain.
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e Example 3. Consider
Ef"+2f(1-f)=0 in -1<z<1
with f=-1 atz=-1 and f=1 atz=1
The solution is
f ~ tanh(z/e)
which has a thin region of high gradients in the middle of the range near
z = 0. The example demonstrates that the boundary layers are not
always near to boundaries.

Exercise 5.6. Find two terms in € in the outer region, having matched

to the inner solutions at both boundaries for
2. m

ey —y'=-1 in -l<z<1
withy=y" =0 atz=-landl

Exercise 5.7. (Cole) The function y(z,€) satisfies
e/ +yy -y =0 in0<z<1

and is subject to the boundary condition y = 0atz =0 and y =3
at z = 1. Assuming that there is a boundary layer only near z = 0,
find the leading order terms in the outer and inner approximations and
match them.

Exercise 5.8. (Cole) Reconsider the equation of exercise 5.7 but now
apply boundary conditions y = —3 at z =0 and y = § at z = 1. The
boundary layer has moved to an intermediate position which is deter-
mined by the property of the inner that y jumps within the boundary
layer from —M to M, for some value M. Find the leading order matched
asymptotic expansions.

5.1.8 Composite approximation

Now the outer expansion breaks down as z — 0 because it lacks the
e~¢ terms, while the inner expansion breaks down because it expresses
h(™)(e€) as a power series in €. Thus by correcting either of these two
faults we can construct a uniformly valid asymptotic approximation

flz,e) ~ 1 —e®/<4

i(—e)" {h(")(x) ~h™(1) - [h(")(O) - h(")(l)] e”’/‘}
0
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This is called a composite approximation. Because it is not of the
Poincaré form, it is not unique.

In general composite approximations can be formed by adding the
inner and the outer and then subtracting their common form in the
overlap. So with Van Dyke’s matching rule we can form a composite
limiting operator

Cpof = Epf + Hof — EpHyf

Note that, if either the outer or the inner operators are applied to the
composite, then we recover the outer or inner respectively:

EpCpqof =Epf and HoCpof =Hyf
When using Van Dyke’s rule to do the matching, it takes little extra
effort to form the composite. Thus using §5.1.5 we have for P=Q =0
Coof = [h(z)=h(1)+1]+[h(0) - h(1) +1] (1 - e7¢)
— [A(0) = A(1) + 1]
h(z) — h(1) + 1 — [A(0) — h(1) + 1] e~*/*

2 -
f
1 -
0 " i - A A I A J
0.0 0.5 1.0

X

Fig. 5.3 The composite approximations for h(z) = e™% and € = 0.1. The con-

tinuous curve is the exact solution. The leading order composite approxima-

tion Co,of is given by the dotted curve. The dashed curve, which is virtually

glpe;imposed on the exact solution, gives the higher composite approximation
11f
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Composite approximations are often quantitatively better, i.e. with
numerical values for z and ¢, than either the inner or the outer. Com-
posite approximations are also useful when proving the asymptoticness,
because they should satisfy the governing equation and boundary con-
ditions to ord[e™"(PQ)]. Some variations of the methods of matched
asymptotic expansions seek from the outset a composite approximation.
As some way is needed to avoid the non-uniqueness of the non-Poincaré
form, these variant methods are restricted to special classes of problem.

Exercise 5.9. Find the composite C, , f.
Exercise 5.10. ShOW that EPCP,Qf = Epf and HQCP,Qf = HQf.

Exercise 5.11. (Van Dyke) Calculate three terms of the outer solution
of

(1+ez%y =e((1-€zy* —(1+e)z+y° +26%) in0<z<1

with y(1) = 1. Locate the non-uniformity of the asymptoticness, and
hence the rescaling for an inner region. Thence find two terms for this
inner solution.

Exercise 5.12. (Van Dyke) Consider the following problem which has
an outer, an inner and an inner-inner inside the inner (called a triple
deck problem)

2y = e((l+ez+2?%)y? in0<z<l

with y(1) = 1 —e. Calculate two terms of the outer, then two of the
inner, and finally one for the inner-inner. At each stage find the rescal-
ing required for the next layer by examining the non-uniformity of the
asymptoticness in the current layer.

5.2 Logarithms

We now progress to a more advanced topic in matched asymptotic ex-
pansions. This involves logarithms. While we will find that there are
two regions, each with its own asymptotic approximation which must
be matched together, the governing equation no longer gives an immedi-
ate hint of the existence of the two regions, because the small parameter
does not multiply the highest derivative.
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5.2.1 The problem and initial observations

We consider a model problem which looks like a problem for heat con-
duction outside a sphere with a small nonlinear heat source. With €
small and positive, let f(r,¢) be governed by
fort¥fi+eff, =0 inr>1
with f=0atr=1
and f > lasr — o0

First we try naively a regular perturbation expansion for f with r
fixed as € \, 0. We therefore pose formally

f(rie) ~ fo(r) + €f(r)
Note that f, has been omitted, because I know that this problem is not
straightforward. Substituting into the governing equation and compar-
ing coefficients of €” yields a sequence of problems.
At e’ fi+2fi=0 with f,(0) =0 and fy - 1asr — 00
with solution

1
=1-=
fo=1-1

Atels fY+2f;=—fify with £,(0)=0and f, — 0 as r — oo
The governing equation for f, can be rearranged to

1 2 / 1 1
AR = 545
with a solution satisfying the boundary condition at r = 1;
1
fr = -lr-="44, (1—1)
r T

There is clearly trouble here, because the condition at infinity cannot
be satisfied by any choice of the free constant A,.

At this stage one might doubt that the problem has a solution: al-
though the linearised problem is known to be well-posed, there is no
supporting general theory which says that the nonlinear problem must
have a solution. In a totally new problem one would probably retreat to
a numerical solution of the problem, and only proceed with an asymp-
totic analysis when there is some evidence that a solution does exist.

The trouble with our naive expansion is that it is not uniformly asymp-
totic at large 7. When r is large, we note that the main term in the
equation fy' ~ 2/r3 while the small nonlinear ¢ fofo ~ €/r?. Thus the
nonlinear term cannot be viewed as a small correction at r = ord(e™?).
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The difficulty at large 7 can be examined by introducing a rescaling
p = er. Further when r = ord(¢~!), our naive expansion suggests that
f=1+ord(eln %) + ord(e), and so we try the asymptotic sequence 1,
elnlande.

5.2.2 Approximation for r fixed as ¢ \, 0

It is tempting to call this the outer approximation, because it is the
solution for the unstretched variable. Unfortunately this region is inside
the region with the stretched variable p = er fixed as € \, 0. The names
outer and inner will therefore not be used in this problem.

We formally pose a Poincaré expansion in the unstretched variable,

s~ (1-7) + emAe) + o)

where the obvious leading order term from §5.2.1 has been substituted.
The next function, f,, satisfies the linearised equation. The solution
satisfying the boundary condition at » = 1 is therefore

1
s oa(3)

The constant A, cannot be determined by applying the condition at
infinity directly, because that is outside the region of r fixed as € \ 0.
Instead this unknown will be determined by matching with an expansion
valid in the region p fixed as € \, 0 to which the condition at infinity

can be applied.
The second correction f, is the same as that found in §5.2.1 with the
constant A, to be determined now by the matching.

5.2.3 Approximation for p = er fixed as ¢ \, 0

With this stretched variable the governing equation becomes
fpp"'%fp"'ffp =0

This strictly nonlinear equation is tractable only because f is very near
to 1 at large r. Thus we can formally pose a Poincaré expansion

f(rie) ~ 1+ elnig (p) + egy(p)
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Both g, and g, satisfy the same equation
g"+(%+1)g' =0
ie.
(p’e’g’) = 0

Thus applying the condition that g — 0 as p — oo, we find

ooe—f
) = B, / dr
P

T2

with constants B, and B, to be determined by matching. The integral
above can be expressed in terms of the exponential integral; it is E,(p)/p.

In preparation for matching, we need to know the behaviour of the
integral in g;(p) for small p:

®e-T 1
/ = dr ~ p + (Inp+y-1)-3p+o(p) asp—0
P

in which « is the Euler constant 0.57722.

5.2.4 Matching by intermediate variable

Introducing the intermediate variable n = €@r = p/e!~® with0 < a < 1,
we re-express the r-approximation and the p-approximation in terms of
7n and then take the intermediate limit of n fixed as € \ 0.

€Q
r-approximation = (1 - ;)
1 e
o
+e[—aln%‘lnn+Az"aln%‘€'n‘—ea———lnn;;-Az]+~~
p-approximation = 1
a—1
+eln%Bl[€77 +(a—l)1n%+lnn+’y-—1+--~]

ea—l
+ €B, [—n——+(a—1)ln%+lnn+‘¥—1+~--] +--

These two expressions have the same form, and by forcing them to be
identical we determine the constants of integration. Matching at sequen-
tial orders we find
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at €%: 1=1, i.e. we started the r-approximation correctly
ate*Ing: 0= B}, ie. By =0
at €*: —% = Bz-,l;, ie. By =-1
atelnl: A —a=B,(a-1), ie. 4, =1
at e —Inn+ A, =By(Inn+~v-1), ie Ay=1-7

Note in the last but one equation that once the constants A, and B, are
determined for one value of a then the equation becomes true for all «,
i.e. true for all intermediate limits.

We have now determined the solution. For r fixed

P (18 wam (1=2) e[ -2 (1)

while for p fixed

o0
L e
f~1+0€ln;-—e/p Tsz

5.2.5 Further terms

To understand the correction terms to the above solution, it is necessary
to review where the present terms have come from. The leading order,
ord(1), term in the r-region forces through the small nonlinear term
in the governing equation the correction ord(e). This term contained
an unmatchable Inr, which called for the introduction of the p-region.
In the p-region, the forced ord(¢) term behaved like Inp as p — 0.
Matching then required the introduction of an ord(e ln%) term in the
r-region. Note that this unexpected ord(eln %) term in the r-region is
not directly forced by the field equation there — it is a homogeneous or
eigensolution of the linearised equation. Such a term which is forced by
the matching is sometimes called a switchback. These logarithmic terms
naturally occur in particular integrals of differential equations,

ord(%) dr
-/otd(l) r

Now turning to the correction terms. The eln% term in the r-region
will force through the small nonlinear term in the governing equation
a correction €2 ln% which must have a Inr behaviour at large r, just
like the ord(1) term of which it is a copy. The process of matching will

then require an ord(e?In 1) term in the p-region with a Inp behaviour
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at small p and thence an €*[In1]? term in the r-region. Thus we can
expect corrections ord(e[In ]?), ord(e?In 1) and ord(e?).

5.2.6 Failure of Van Dyke’s matching rule

If we take the E operator for the r-limit and the H operator for the
p-limit, then Van Dyke’s matching rule works at P = @ = 0 and at
P = @Q = 2. It fails, however, at P = Q = 1, i.e. when retaining the
terms ord(1) and ord(eln 2).

HE\f = Hl{(1_%) beln! (1_%)}
- nff )

= 1l+elnl
EH,f = E [1+eln%0]
= 1

The trouble is that the eInr term changes its order. Consider a Inr
term on its own. Let

Inr Inp
€ = 0+ = 14+ —
wlre) ln% ln%

Then Van Dyke’s matching rule with the asymptotic sequence 1, [In 1]~1
will work for this function for (P,Q) = (0,1), (1,0) and (1,1), and it
fails for (0,0). A more general term (In7)" will lead to some failures
near to the diagonal where |P — Q| < n. A term like 1/Inr or Inlnr
leads to more serious trouble.

When applying Van Dyke’s rule, good advice is to match only at a
break where the power of ¢ changes, if that is possible. Thus in our
problem with the asymptotic sequence

. 1 .. .2qn 112 27,1 2.
L; eln2,¢ €[lng]®, e lng, e

it is wisest to match with P and @ corresponding to the semicolons.
Moreover, because ln% is rarely large for typical small values of ¢, it is
always necessary to calculate all the terms which only differ by a factor
ofIni

€
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5.2.7 Composite approximation

Because Van Dyke’s rule fails for P = Q = 1, there is no composite
C,,1f. But the other composites exist.

1

CO,Of = 1--

r
o0 _—71 1
Coof = 1—5[/C 67-2 dr + ;—(ln%+1—7+lnr)]

r

Exercise 5.13. The function f(r,¢) satisfies the equation
e+ 2, +301-f) =0 inr>1
and is subject to the boundary conditions
f=0 at r=1 and f—=1 as r— o0

Using the asymptotic sequence 1, ¢, e2Inl, €2, obtain asymptotic ex-

pansions for f at fixed r as € \, 0 and at fixed p = er as € N\ 0. Match

the expansions using the intermediate variable n = €*r with 0 < o < 1.
You may quote that the solution to the equation

2 6-2::
Yoz + zYz — Y = z2
subject to the condition y — 0 as z — oo is
e~ % 1 o ,—z—t __ -3t
y = A— 4+ — | "¢ "4
T 2z J, t

with A a constant. Further as z — 0
2A+1In3

5% +Inz-A+y+1n3-1

Exercise 5.14. The function f(r,¢) satisfies the equation
feet 2fo+eff, =0 inr>1
and is subject to the boundary conditions
f=0 at r=1 and f—1 as r— o

and with ¢ > 0. Obtain an asymptotic expansion for f at fixed r as
€ — 0 in the asymptotic sequence 1, ¢!/2, ¢Inl, ¢ and an asymptotic
expansion for f at fixed p = er as ¢ — 0 in the sequence 1, €!/2 ¢, Match
these expansions.
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The general solution y(z) with y — 0 as z — oo of
/ [e ]
(z3/2ezy’) = Eypz) = / t=3/2¢~t gt
T

is y(z) = BE;,,+ F(z) with B an arbitrary constant, and that as z — 0,

y =B (210"1/2 —2ym+ 2% + O($3/2)) + (4 Inz+C+ O(wl/z))

where C is a numerical constant.

5.2.8 A worse problem

This second model problem is like heat conduction outside a cylinder
with a small nonlinear heat source. With € small and positive, let f(r, ¢)
be governed by

f"+-}f,+eff, =0 inr>1
with f=0atr=1
and f > lasr — o0

First we try a regular perturbation expansion for r fixed as ¢ \, 0,
i.e. we pose formally

f(rie) ~ folr) +efi(r)
At ord(e®) we find that
fo(r) = Aglnr

satisfying the boundary condition at » = 1. But the condition at infinity
cannot be satisfied with any choice of the free constant A,. If we were
to continue to ord(e!), we would have a worse problem satisfying the
condition at infinity with

fi(r) = —A2 (r‘lnr -2r+2)+ A, Inr

At this stage one might wonder whether the problem for f is well-
posed and a solution exists. The linearised problem is certainly ill-
posed. It happens that the nonlinear problem does have a solution; see
figure 5.4.

First we note that the rescaling p = er is applicable to the new equa-
tion because it only differs from the previous equation in a numerical
factor. The troublesome condition at infinity is then in the region p
fixed as € \, 0. Now as f must be something like the above f, in

5.2.8 A worse problem 75

157
1.0

0.5

0.0

Fig. 5.4 The solution of the problem of §5.2.8 with € = 0.05. The continuous
curve gives the exact solution obtained numerically. The dashed curve is the
leading order approximation of the r-fixed region, while the dotted curve gives
the approximation for the p-fixed region of the leading order unity plus one
correction term.

the r-region and it must also be ord(1) in the p-region, we see that

- A, should be ord([ln ]=!). This suggests an asymptotic sequence 1,

[In ]71, In 1]-2,... with no leading order term in the r-region.

Approzimation for r fized as € \, 0

We now start again with the new, less obvious asymptotic sequence.
Thus we pose formally a Poincaré expansion

09~ pTh() + GIEht)

Then each f;(r) satisfies the same linearised equation, with solution
satisfying the boundary condition at r = 1

fi(r) = A;Inr

Approzimation for p fized as € \, 0
In terms of the stretched variable p = er the governing equation becomes

fpp+71:fp+ffp =0
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Posing formally a Poincaré expansion
1 1
f(rie) ~ 1+ @91(/’) + @92(!’)

we find at ord([In 1]~!) that g, is governed by

gi+(2+1)a = 0
with a solution satisfying the condition at infinity g, — 0 as p — oo,
0 o7
9 = B / T dr = BE(p)
P

in which B, is a constant and E, is the exponential integral. At
ord([In ]=2) we find that g, is governed by

00 =T
(g =B} [ dr
P T
with solution satisfying the condition g, — 0 as p — o0,

92 = ByE;(p) + B} (2E,(2p) — e™"E, (p))

In preparation for matching, we need the behaviour of the g; as p — 0.
Now

Ei(p) ~ -Imp—v+p
2E,(2p) — € PEi(p) ~ —Ilnp—y-Ind—plnp+(3-19)p

Matching by intermediate variable

With 7 = €*r = p/el~® with 0 < a < 1, our r-approximation becomes

(alnl+nn) + —554, (elni+Inn) +

In 1

while our p-approximation becomes

[in 1]2

1+1nlBl[ (@=1)ni-Inp—v+-..]
[1,,1]232[ (@-1)lni-lnp-—vy+ -]
lln‘lsz[ (@-1lg-lnn—y—lnd+-]+--

Comparing terms of sequential order
atlnl: ad, =1-B(a-1)
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This is true for all «, i.e. for all intermediate limits which means the
entire overlap region, if
At[Ini]-: A lnn+ad; =-B;Inn-By-(a—1)B,—(a—1)B?

Substituting the known A, and B,, and again requiring the matching
to work for all intermediate limits gives

A, =7 and B,=-1-4

Thus all the unknowns have been determined without proceeding to
ord([In 1]72).

Matching by Van Dyke’s rule

This fails when P = @, as explained in §5.2.5. Thus if we take E for the
r-limit and H for the p-limit, we find

EyHyf =1 and HyEf =0, which is impossible
EH,f=1+B; and H,E,f =0, i.e. B, = —1 correctly
E Hyf=1 and HyE, f = A,, i.e. A, =1 correctly

E\H,f =1+ B, +[ni]"'B(~Inr - )
and H,E\f=A +[n}]"'4,lnp=4, -1+ [n}| " Inr
In this last case if we put A; = 1 and B; = —1 then the ord(1) terms

match and the Inr dependence of the ord([ln 1]~!) matches, but the
constant term at this order does not match.

Exercise 5.15. Check that Van Dyke’s rule works for (P, Q) = (0,2),
(1,2),.(2,1) and (2,0), but fails for (2,2).

5.2.9 A terrible problem

This third model equation is unusually difficult. The function is some-
thing like In(1+In7/In %) For this function Van Dyke’s rule fails for all
values of P and Q. The intermediate variable method of matching also
struggles, because the leading order part of an infinite number of terms
must be calculated before the matching can be made successfully. It is
unusual to find such a difficult problem in practice.
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With € small and positive, let f(r,¢) be governed by
fotifi+fi+eff, =0 inr>1

with f=0atr=1

and f - lasr — o

The new extra nonlinear term appears to be an ord(1) disruption to
the equation studied in §5.2.8. In the r-region, however, f was small,
ord([In1]71), and so this quadratic term would be smaller than the
first two linear terms. And in the p-region f was very nearly 1 with a
.deviation, and hence gradient, of order [In %]’1. Thus we can anticipate
that f has the same asymptotic scalings in this new problem despite the
new term.

Approzimation for r fized as € \, 0

We start by posing a Poincaré expansion in inverse powers of In % which
starts with the first power

f09 ~ GTh() + EImht) + mIEht)

Substituting into the governing equation and the boundary condition at
r = 1, and comparing coefficients of [In %]‘", we find
at Ini]7: fr+1lff=0withf,=0atr=1
with solution f;, = A, Inr
sl ff43fy=—f2= Mefj) = Atk
with solution f, = A,Inr — 3 A%In’r
at Ind]=3:  fi+1fy=-2ffj=-A2 (A28 1+ 4,1)
‘with solution f3 = AzInt + 343 In®r — A, 4, 1n?r.

From the structure of the above problems we can see that the general
term f, will have leading order behaviour as r — oo

fo ~ ()" (-2ATIn"r+A7724,In" 'r)

This can be checked with an induction argument. Note that these lead-
ing order parts of the f, can be summed to

4, 4,
ln[1+ (ln% + [In%]2+ )lnr]
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which satisfies

ft i+ fi=0

Approzimation for p fized as € \, 0
In terms of the p variable the governing equation becomes
fpp+%fp+f3+ffp =0
We formally pose a Poincaré expansion
1 1 1
T€) ~ 14+ — + — —

Substituting into the above stretched form of the governing equation,
and comparing coefficients of [In 1], we find

at [In )% g + 291 + 9] = Le~P(pergl) = 0

Integrating and imposing the condition that g9; — 0 as p — oo yields
00 =T
91 = Bl/ —dr = BE(p)
o T

At[Ing]™ gy + 205+ g5 = —g2 — g0}, ie.
-p o0 _—T
(pe’gs) = -B? (e—- | df)
p P

T

with solution satisfying the condition at infinity
92 = ByE(p) + Bf (2E1(2P) - %Elz(l’) - e"’El(p))
In preparation for matching, we need the behaviour as p—0,
91 ~ Bi(=Inp-»)
92 ~ By(=Inp=7)+ B} (-3’ p~ (y+1)Inp— 4% — v — In4)
We note that the leading order behaviour in gp comes from

B2
97+ 395 ~ —g ~ —p—;
Hence the leading order behaviour in the following g5 will come from
In
95+ 295 ~ 29195 ~ —2B;°'-;’7" - (2B{(v+1) + 2B, B,) iz
P
and so

93 ~ =3B’ p— (B}(v+1) + B,B,) In%p
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Again it can be shown that the leading order behaviour as p — 0 of the
general term g, (p) is

9a(p) ~ —LBiIn"p— (BF(y+1)+ By *B,)In""!p

Matching by intermediate variable

With n = €@r = p/e! =2 fixed as € \, 0, we have

1
r-approximation ~ FAI [@lnl +Inp)
€

+ [lnlllz{_%Af[aln%+ln,7]2+A2[aln%+lnn]}
€

+ [lnllls{éA‘; [alnd +Inn]® - 4,4, [aln} +lnr]?
€

+ A [aln%+ln7)]}

[1,111]4 {‘%Af [alnl+Inn]* + A24, [alnl + ng)® +--- }
€

4+ ...
and

1
p-approximation ~ 1 + ln_lBl [-—(a -~l)lnl-Inp-—y+. ]
€
1
+ G| ~B(3 (e - Dt +10r)'~(r+1) (@ - Dind + 1
€

+%72+7+ln4+---) + B, [—(a—l)ln%—lnn—'y-l----]}

1
+ W{—Bi’% [(@—1)Inl +lnr)]3 - Bi(y+1)x
€
[(@-1)Ini +1n17]2 - BB, [(a-1)In! +lnn]2+--- }
+ coe
Comparing coefficients of [In 1]°, we find

Aja—jA%a? + 3A%0% - LAtet +.-. =
1-Bj(a-1)-3B¥a-1)?- 1B} (a-1)3+--.
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The two sides of the equation are well known infinite series which con-
verge for 0 < a < 1, yielding
In(1+4,a) = 1+In[1-B)(a—-1)] = In(e[l - By(a - 1)])
Requiring the matching to work throughout the overlap region, i.e. for
all intermediate limits, i.e. all values of a, gives
A, =e-1 and B, =—(e-1)/e
Comparing coefficients of [In %]‘1 in the - and p-approximations in the
overlap region, we find
Inn (4, - 34120 + }A33a% — 1 A%4a® +..)
+ (Aza - A1A2a2 + A?Azas + i ')
= Inn(-B,-3Bf2(a-1)-}B}3(a-1)+...)
+ (Byy-Bi(v+1)(a-1)-Bi(y+1)(a=-1)%+--")
+ (=Byla=1)=B;By(a—-1)*+---)

Again summing, this is

By Bi(a—1) _ _By(a-1)
The In7 terms balance with the previously determined A, and B,. The
constant terms give

A2 — BZ
T = 7-Bla-D+Fa-1

Requiring this to be true for all a, we find
Ay =v(e-1) and B,=(e—1)(e—-1- 'ye)/ez

Note that in the matching an infinite number of terms jumped their
order. It was therefore necessary to have obtained the leading order
behaviour of the general terms f, and g,,.

5.3 Slow viscous flow
The model problems of §5.2 contain the mathematically difficulty in

finding the small inertial corrections to the viscous flow past a sphere and
past a cylinder. These two problems are known as the Stokes—Whitehead
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paradoxes, and their resolution was influential in the development of the
method of matched asymptotic expansions.

5.3.1 Past a sphere

Axisymmetric flow past a sphere can be described by a Stokes stream-
function ¢ which satisfies the Navier-Stokes equation in the form

¢ (Qgg_a¢a+2 a2 _ 23’”)021/)

r2sind \ 90 or or 06 or a0
= D?D% inr>1
with 11)=%:-/‘)-=0 onr=1

and Y — %rzsinzﬂ as r — 0o

2 .
in which D? = 36—2- + %25% (551_0};9_0)
Approzimation for r fized as € \, 0
We formally pose an expansion
P(r,05€) ~  Po(r,0) + ey (r,0)
The lowest term is governed by the equation
D*D*p, = 0

and is forced by the condition at infinity. Looking for a solution propor-
tional to sin? 6, we find possible radial dependencies %, r? rand r-1.
Satisfying the boundary conditions on r =1,

Yo = %(21‘2—3r+%)sin29

Substituting this into the left hand side of the governing equation pro-

duces
2 3 1
9
—€3 (r2 3 + = )sm 0 cosf

‘to force ;. Again we look for a solution proportional to sin? 6 cos8. To
the particular integral (which is made to satisfy the boundary condition
on r = 1) we must add a homogeneous solution, which turns out just to
be a multiple of 1,. (Other homogeneous solutions can be added, but
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during the matching they will be found to have zero coefficients.)
1 1
—_23 2 2
Y=-3% (2r -3r+1- ;+;5)sm 6 cosf
+ A, (21'2 -3r+ %) sin? @

But no choice of the free constant A, enables the condition at infinity
to be satisfied at all 6.

Approzimation for p = er fized as € \, 0
Now in the far field at large 7 the above r-approximation has
¥ = ir?sin?@ + ord(r,er?)

corresponding to a uniform flow plus the disturbance from a point force
together with some inertial corrections. This suggests an expansion in
the p-region

P(r,0;¢) ~ é%pzsin20+ %\Ill(p,0)

The equation governing ¥, is the Oseen equation in the form

1) sinf 8
2 —_— — 2 =
(D‘o cos0ap p 60)D v, 0

where D? has been modified with p replacing r. The homogeneous
solution we need turns out to be that corresponding to a point force

¥, = B;(1+cosf) (1 - e-%p(l-coso))

which can most easily be obtained in Cartesian co-ordinates by Fourier
transforming the linear Oseen equation. This derivation also gives an
immediate connection between B, and the drag. In ¥, the (1 + cosé)
factor corresponds to a source flow, while the exponential describes a
wake concentrated in a region pf? = ord(1); the source being needed to
remove a mass defect in the wake.

Matching by intermediate variable
With n = €*r = p/e!~ fixed as € \, 0
r-approximation = (26"2" 2 -3+ ) sin? 0
— €35 (2€7%n? + ... ) sin’ G cosh + €A, (26729 + - ) sin®
+ “ee
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and
o 1, ., .
p-approximation = —3e?72*p?sin’6

o

1
+ =B, (1 +cos8) (3! 7n(1 — cosf) — e~ 2*n%(1 — cos6)® +---)
+ cee
Comparing terms of sequential order we find

at e2¢:  1n?sin’f = In?sin®6 — just uniform flow

at e~ —3nsin?6 = 1B,n(1 —cos?6), ie. B, =-3

at el=2*:  —Zn?sin’ G cos b + 24,7° sin? 6
= —%Bm2 sin?0(1 — cosh), ie A, = 33—2

The fact that the value of A, is 3 times the § in ¢, leads to an enhance-
ment in the drag on the sphere by a factor (1 + %e). In effect at this
order the r-region sees a uniform flow (1 + %e). The next order terms
are ord (¢21n 1) and ord(e?).

5.3.2 Past a cylinder

For this two-dimensional flow we use a streamfunction ¢ which satisfies
19y 0 18y 0 2 22 .
e AP e A = >
6(raaar rarao)v”’ V'V inrzl
oY _

with ¢ = — = ~onr=1

or

and ¢ — rsinf as T — 00

Approzimation for r fized as € \, 0

Now the lowest order term must be governed by V2V24, = 0. Looking
for a solution proportional to the forcing siné, we find possible radial
dependencies 3, rInr, r and r~!. It is not possible to satisfy the con-
ditions on r = 1 and r — oo: the least unpleasant solution at infinity
satisfying the boundary conditions at r =1 is

1) .
f.(r,0) = (rlnr —3r+ —2?) sinf

As in §5.2.8, we expect this solution not to apply when p = er = ord(1),
and so we need to multiply the above f, by [In %]‘1 to reduce the mag-
nitude correctly. This leads to an expansion in powers of [In %]‘1. All
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the terms in the r-region must then be proportional to the above f,.
1

1
P(r,0;¢) ~ l-n-—%Alf.(ryo) + WAZf‘(T’G)

Approzimation for p = er fized as € \, 0
In this region the flow is the uniform flow plus a small ord([ln i]~1)
correction,

L

1
)0; ~ —psinf
¥(r.Bie) 6psm + eln%

¥,(p,06)
The equation governing ¥, is Oseen’s

(Vf, - coseaip + s_n;_0_6%> Vig, = 0
Again we need the homogeneous solution corresponding to a point force
which can be obtained by Fourier transforming (but see also the hint for
the exercise at the end of the section). The inversion for ¥, cannot be
expressed in closed form, although the vorticity V2¥, and the velocity
V¥, can be. From the Fourier transform, one can extract the behaviour
of V;as p— 0

¥, ~ Byp(lnp-Ind4+~v-1)sinb

Matching by intermediate variable
With n = €*r = p/e}~* fixed as ¢ \{ 0

.. 1 .
r-approximation = 0+ E—IAle""nsmO (elni+lnn-3+-)
€

1
+ —[ln l]zAze-anSine (aln-i— + ]n17 - % + ,._)
€

+
and
p-approximation = %el"“n sinf
1 o .
eln%Bl (e nsinf [(@—-1)ln +lnn—Ind+y-1]+--)
+ .-

Comparing terms of sequential orders,

at e~ aA,nsind = nsinf + B,(a — 1)nsind
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which is true for all intermediate limits if

A =B, =1

At e=[Ini]"%: A, (Inn-1)nsind + ad,nsing
= By(Inn—In4++v - 1)ysinf + By(a — 1)nsind

in which B, is the coefficient of a similar homogeneous solution at
ord(e™![In ]=2) in the p-region, which happens to dominate the par-
ticular integral. Again matching for arbitrary intermediate limit, we
find

Note that because ln% is rarely large numerically, some people com-
bine [In1]-'A, and [In1]724, when they occur in the drag to form
1/(In(4/€) — v + 7). At higher orders there are alternative methods of
improving the convergence of a series - see chapter 8.

Exercise 5.16. Consider the heat transfer from a cylinder in a weak
potential flow. Thus solve for T'(x, €) which satisfies

eu-VT = VT inr>1
withT=1onr=1

andT —0asr — o0

whereu = U (1+l2) —xM
r rd
Then calculate
oT
—dA
-/r‘=1 an

Hint: The substitution ¢ = e*/2 turns the Oseen equation governing ¢

a 2
(%‘V)*"

into the simpler equation

(i-9%)9
Exercise 5.17. Now try the case of weak potential flow past a sphere,
with
_ 1 3(U-x)
u = U (1 + 27‘3> XTE—
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5.4 Slender body theory

The method of matched asymptotic expansions is used in problems
which have two (or more) naturally occurring length scales; asymptotic
expansions being made for each of the scales, the expansions then being
matched in order to determine some constants of integration. In the
problems considered so far, the governing equation generated the sec-
ond length scale; that of the thin boundary layer in §5.1 and that of
the far field in §§5.2 and 5.3. It is also possible for the basic geometry
to have more than one natural length scale. Long slender bodies con-
sidered in this section have the scales of their width and their length.
Thus on the smaller scale the bodies appear to be nearly infinitely long,
quasi-uniform, finite diameter cylinders, while on the longer scale they
appear to have a finite length, but to be vanishingly thin. Other prob-
lems whose geometry has more than one natural length scale include the
interaction between greatly separated particles (with the scales of their
size and their separation — see exercise 5.18 at the end of this section)
and waves scattering off small scale inhomogeneities (with the scales of
the inhomogeneities and the wavelength).

For simplicity we will only study slender bodies with straight centre-
lines, although in §5.4.1 we will have non-circular cross-sections. Let

.€ be the (small) slenderness; then in cylindrical polar co-ordinates the

surface of the body may be taken as

r=¢R(#,z) in|z|<L1

5.4.1 Electrical capacitance

We must solve for the potential ¢(r, 8, z; €) which satisfies
V3 =0 outside the body
and is subject to boundary conditions
¢ =1 on the body and ¢ — 0 at infinity

The capacitance can then be evaluated as

Op
-/-a—n-dA
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Approzimation for p = r/e fired as e \, 0. In this scaling the governing
equation becomes

10 (0 1 8% 8% .
;%(at)Jf 2602+ €5z = 0 mp2R0:)

This suggests an expansion in e2. Here we look at just the leading
order term in such an expansion; a correction term will be calculated
for the problem in the following section. For the leading order term,
the variable 2 does not occur in the field equation. We therefore have
to solve a two-dimensional potential problem, i.e. at this order and in
this scaling the cylinder appears to be infinitely long. The shape of
the cylinder is specified by R(6,2) in which we must view z just as a
parameter. Applying the boundary condition on the surface, we have a
general solution

1 oo
eo(rbz) = 1+ Q(z) (g In RL(Z) +3 B2 nB)
* n=1

where R,(z) and the B, (z) depend on the local shape R(6, z) and where
Q(2) has to be found from matching. The matching effectively applies
the condition at infinity which cannot be applied in the strictly two-
dimensional potential problem.

The quantity R, is known in two-dimensional potential theory as the
effective or equivalent radius of the cross-section.

e For a circular cross-section R(6, z) = R(z),

R,(z) = R(z2) and B, =0.

e For an elliptical cross-section with semi-diameters a(z) and b(z),
R,(2) = }(a+b).
This can be derived using the conformal map
¢= %peio + % p2e2i0 — g2 4 b2

which takes the ellipse into the circle [(| = 1(a + b). Hence the complex
potential is

26
1+-—Q1 ==

But as p — o0, ¢ ~ pe® {1 - 1(a? - b%)e~2%p~2}. Substituting this
into the potential yields R, = 3(a+b) and B, = 0 and B, = }(a® - b?).
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e For a cross-section which is a star composed of n points of zero width
and length a,

R,(2) = a(2)27¥"

This can also be derived using a conformal map. This time use ¢ =
p"e™ to map the star into a degenerate ellipse with b = 0.

Approzimation for v fized as € N\, 0. In this scaling the body has a
finite length, but nearly no thickness. We thus see the body as a line of
distributed charges Q(z), with weaker higher order poles B, (z). Thus
we try as a first approximation in this r-region

6, 2:¢) /1 Q(Z';€)d7
olr bz —14m /12 + (2 - 2')?

In preparation for matching, our r-approximation takes the form

1
o(r.0,26) = —Z-I;Q(z)ﬂn-r- +0(Q) asr—0

Matching with an intermediate variable n = r/e* = €' ~%p fized as € \, 0.

r-approximation = £Q(z)(-alnl+lnn+0(1))+---
p-approximation = 1 + -.L,l;Q(z)((l —a)lni
+ lan +€e"*Bn"'cosh + - ) +
Thus at leading order Q(z) = —2[In 1]=! with an error of order [In ]2.
If we expand @ in a series of inverse powers of ln%

1 1
Q(z€) ~ —111—127r+ [l—ni']—.;Qz(z)

then from the earlier solution of the integral equation in §3.5 we have in
the r-region
1 1,.41-2%) 1
nl2 " 12 [mipPdr

So matching again

Q2 (2 In-+ 0(1)) ast — 0

r-approximation = — (-alnl+Inp—In4(1 - z?))

Ini
1 1
.[TI.ITP..Z_;Q2 (—aln%.}....).’....

p-approximation = 1

+
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+ %(“[ml%]? = 1] Q2(z)) ((l—a)ln%+lan*+---)+"'

we find that at leading order @ =1 -1+ @, and at [In 1]~! matching is
successful if

\/1 22
"R,(z)

The electrical capacitance of the slender body can now be evaluated:

/a"DdA = -—/_IIQ(z)dz

4r 2m /1 1112\/1-z§
Inl In 1]2 R,(2)

This expression shows that the capacitance depends only weakly on the
shape, involving just the logarithm of the slenderness at the leading
order, and in the correction just an integral of the cross-section.

We note that prior to the matching the asymptotic theory had error
terms ord(e?). During the matching it was necessary to introduce an
expansion in powers of [In %]’1, which is rarely small in practice. Now
the matching is equivalent to solving the integral equation

' Q(2')dz
-1 V/€R,(2)? + (z — 2')?
i.e. in the r-region the body appears to be a circular cylinder of radius
R,. To avoid the expansion in logarithms, this integral equation can be
solved numerically (for particular values of ).

For slender bodies with centre lines which are not straight, the form
of the solution in the p-region will not be changed by the curvature
until ord(e?). In the r-region the body will be represented by charges
Q(z) distributed along the curved centre line. In the evaluation of this r-
region integral for matching, the leading order term of the In % expansion
is found to be unaffected by the curvature, but the correction, [In %]‘1

smaller, does depend on the global shape of the centre line. Thus Q,
would be different.

Q(2) = 2rln

dz

1 =

5.4.2 Axisymmetric potential flow

For simplicity we now restrict attention to a circular cross-section. Ir-
rotational incompressible flow can be described by a velocity potential

5.4.2 Azisymmetric potential flow 91

@(r, z; €) which satisfies
Vip =0 outside the body

with -g—(e- =0 on the surface of the body
n

The condition at infinity corresponding to a uniform flow in the axial
direction is
p—2
Before we start, we need to note that the normal (not a unit normal)

to the surface r = eR(z) is (1, —e¢R’), where the prime denotes differen-
tiation with respect to z. Thus the boundary condition on the surface
of the body becomes

Oy Oy

— —eRF=X= =0

or oz

Approzimation for p = r/e fized as € \, 0. In this scaling the field
equation and boundary condition become

10 ( 9¢ 20%p .

- = — = >R

p6p< 8p) + € £ 0 in p > R(2)
a(p €2 ,Op _ _

and Bp R — r Pl 0 on p = R(2)

These suggest an expansion in €2, the first term corresponding to an infi-
nite cylinder, while the second term includes some effect of the tapering
(R’ #0). In the leading order term, there is just a constant (which may
depend on the parameter z), because the boundary condition rules out
a Inp. The € correction term is forced by the field equation and the
boundary condition. Thus

o(r,zie) ~  Ag(z) + € ( 1450 + Ay(2) + By(2) Inp)
where
B, = R(A R + 1AQR)

Approzimation for r fired as € \, 0. In this scaling the body appears as
a line distribution of sources 2me? B,(2), i.e.

1 e2B,(2')d?’
(p(T,Z) ~ z — ‘/_1 —2 ,__7___rz+ z__.z/)z

Preparing for matching, this r-approximation takes the form

@ ~ z — €By(2) (ln% + 0(1)) asr —0
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Matching with an intermediate variablen = r/€® = pe! ™ fized as e \, 0.
r-approximation = z + B,(2) (—aln% +Ilnn+ 0(1)) + -

p-approximation = Ay(z) + € (% — AJe*2n? + Ay(2)

+ B,(z) (—(a—l)ln%+lnn)) + -

Matching at ord(1) we find
Ay=2z andso B, = RR'

The ord(e2®) term therefore evaporates. At ord(e?Inl) we find A, must
be slightly larger than expected, with A, = B, In 2 plus O(1) corrections.
However B, remains unchanged up to ord(e?In 1).

The value RR’ = (1R?)’ for B, can be interpreted as follows. The
volume flux of the undisturbed flow across the cross-sectional area of
the body is me2R2. The internally distributed sources 2me2B, ensure
that there is no flow into the body. These sources are needed where the
cross-sectional area changes.

Exercise 5.18. Another problem where the geometry presents two
length scales is that of the electrical capacitance of a pair of thin parallel
wires. Let the wires have radii ¢ and be centred at z = :i:%, i.e. have
surfaces

(zx3)P2+y2 =€

Then outside both these surfaces one needs to solve V2p = 0 for the
potential ¢ subject to the boundary conditions that ¢ is a constant,
V (¢), independent of position around the boundary on one of the wires,
and —V on the other. If the charge on the wires is taken to be F1 per
unit length, then the capacitance is 2V.

Now at leading order the electrical charges are uniformly distributed
around the surface of each wire, i.e.

1 1
p ~ —i;ln,/(:c-—%)2+y2+ Er-ln\/(z+%)2+y2

Examine the potential in the neighbourhood of one of the wires by ex-
panding the above potential to ord(e?) using the stretched variables
T = -;— + €€ and y = en. Now construct an improved approximation
for the potential by adding dipoles (like (z + 3)/[(z £ 3)? + y?]) and
quadrupoles (like [y? — (z £ 3)?)/[(z + 3)? + y?]?) of appropriate mag-
nitudes to ensure that the potential is constant around the surfaces to
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ord(e?). (The magnitude of the monopoles is the total charge which does
not vary from unity.) Hence find the capacitance 2V (€) to ord(e*).

5.5 Moon space ship problem

In the Grand Tour space mission, a space craft passed the major planets
in sequence, receiving much of its kinetic energy with respect to the Sun
from being redirected as it flew past each planet. Very high accuracy was
needed in predicting the path of the space craft in order that it would fly
closely past the second and subsequent planets. Integrating the primitive
equations of motion for the space craft in the gravitational field of the
Sun and its orbiting planets does not produce sufficient accuracy on the
largest computers. Lagerstrom and Kevorkian showed in 1963 that the
problem could be tackled with matched asymptotic expansions based on
the smallness of the mass of the planets compared with that of the Sun,
and that the desired accuracy could then be achieved in the calculations
using a small computer. The idea is that the space craft moves along a
classical elliptical or hyperbolic orbit around the Sun until it comes near
to a planet. It then orbits the planet and on leaving the planet it sets
off on a new orbit around the Sun. The matching involves extracting

. from the old orbit the energy and impact parameter for the new orbit.

Here we study very briefly a model problem in which the space craft
moves in the gravitational field of the Earth at (z,y) = (0,0) and an
e-mass Moon which is fixed at (1,0), starting the space craft at ¢t = 0
from the Earth with its escape velocity (i.e. potential plus kinetic energy
is zero) in nearly the direction of the Moon, dy/dz along the path is ek
with k a constant. The governing equations are

i = - T e -1
@+9)*?  (@-1)2+92)%?

. Y

y = - L 3z ¢ 372
(2 +y?) ((z =12 +y?)

Approzimation for orbit about the Earth. In the ‘outer’ approximation
we pose an expansion

z(t,€) ~ z4(t) + ez, (t) and y(t,e) ~ 0+ ey,(t)

in which er, is the first effect of the Moon, and the ey; term does not
in fact feel the Moon but is small because there is little motion in the
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0.05

—1r 0.00

| —0.05
0.95
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0

Fig. 5.5 The trajectory of the space craft for ¢ = 0.02 and ¥k = 1. The
continuous curve is the exact solution obtained numerically. The approximate
orbits around the Earth are given by the dotted and the dashed curves. The
inset gives the fine details in the neighbourhood of the Moon at z = 1 and
y = 0, with the dashed curve being the approximate orbit around the Moon.

y-direction initially. For the leading order approximation, we have

iy = — !
0 w(z)
with the first integral
1
12 -
2%0 Z 0

choosing the constant of integration to be zero by the initial condition
that the space craft sets out with precisely its escape velocity. Integrat-
ing again

zp = (§)"°e

As claimed above, y, is not affected by the Moon since it is governed by

s _

31 :1:3
with simple solution

Y1 = kxy(t)
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i.e. the space craft keeps going in the same direction as its initial direction
(conservation of angular momentum). The equation for z, is

2z, 1

T G T Tnr

Ast /'t, =V?2/3, 2, / 1 and the above equation gives
T, ~ —3In(t, —-t)

and so the orbit about the Earth breaks down as the craft approaches
the Moon. A complete solution for z; can be obtained most easily by
recombining z, and ez, into Z, their recombined equation being twice
integrable to

1+ /2 ,
2~3/2 1 ~1/2 1~3/2 —
3.’17/ —e(ilnl_—ﬁﬁ—x/ -3 / = \/it
and so
1/2
-1/2 14z
T, = %zo/ln———‘l’/z—l-—§xo
1—1:0

Approzimation for orbit around the Moon. The scaling for this ‘inner’
region is found from the requirements that the velocity Az /At = ord(1)
in order to match to the above outer and that the acceleration is due to
the € mass Az/(At)? = ord(e/(Az)?). Thus Az = Ay = At = ¢, so we
rescale

z=1+¢, y=e€n and t=1t, +er

producing governing equations

_ § 2
E‘r‘r - (62 + 172)3/2 €+ 0(6 )
= " 2
Nrr - (62 + 172)3/2 + ()(€ )
i.e. the Moon'’s attraction dominates and the Earth gives rise to a rela-
tively small (the e term) uniform gravitation acceleration in the neigh-
bourhood of the Moon. At lowest order, we have a classical central orbit

problem with solution

) N2 bsina
(€% +n%) " cosa + cos(a — tan~1(n/€))
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with impact parameter b and deflection 7 — 2a, which are related to the
velocity at infinity v, by
tana
v? = p
At higher orders we would find that the constant acceleration from the
Earth leads to a switch-back eln1 term.

Matching. As we approach the Moon, the orbit around the Earth has
iy~Vv2 and oy, ~k ast /t,

while as we start the orbit about the Moon
E ~v, and n~b as 7\, —00

Hence b = k and v, = v/2. The deflection angle for the orbit around the
Moon is then © — 2tan™!(2k). At higher orders there is a time delay
ord(elnl).

Second orbit around the Earth. This starts from near z = 1 and y =
0 with a velocity at the end of the orbit around the Moon v, in the
direction 2a. Thus we need a central orbit around the Earth through
z =1 and y = 0 with energy %vf —1 = 0 and angular momentum
V2sin2a = 4v/2k/(1+4k?). Note that the energy is unchanged by the
encounter but the angular momentum is increased. (The energy with
respect to the Earth would have been increased if we had considered a
moving Moon.) The desired second orbit about the Earth is then

32k?

2242 =
( v) (1+ 4k2)% [1 - cos (tan™! £ — 4tan~1(2k))]

Exercise 5.19. Solve for a(t,¢) and r(t,€) which are governed by

a = —a(l—e'rz)
a
r(-l——erz)—l
a
witha=r=1att=0.

Find the leading order approximation for when a, 7, t = ord(1). Note
that this approximation breaks down when ¢t = 1—ord(e) with a = ord(e)
and r = ord(e~!). With the rescaling a = ord(e), r = ord(e~!) and
At = ord(e™!), find the new leading order approximation and match
crudely. [The tough part of this problem is to match properly through
a transition region with a = ord(e), r = ord(¢™!) and At = ord(e).]

,,'.
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5.6 van der Pol relaxation oscillator

This problem is typical of one of the more complicated applications of
the method of matched asymptotic expansions. To make the details look
simpler the formal matching with an intermediate variable is abandoned.
Along with the less formal approach, however, there is the new idea
of examining the way one expansion breaks down in order to find the
rescaling appropriate for the next region.

The van der Pol oscillator is governed by the equation

i+ pi(z®-1)+z =0

This oscillator has large nonlinear friction which is negative in |z| <
1 and positive in |z] > 1. As a result the trivial solution z = 0 is
unstable, while large amplitudes are damped. Thus all solutions tend
to a finite amplitude oscillation, which balances energy losses in |z| > 1
with energy gains in |z| < 1. We now try to find the form of this so-
called relaxation oscillation or limit cycle as g — o0o. Setting p = oo in
the equation shows that this problem is singular. From computations
(see figure 5.6) it is found that the oscillation consists of fast phases with
At = ord(p~?) in which the large friction or anti-friction is balanced by
inertia and slow phases with At = ord() in which the large friction

‘balances the restoring force. We now briefly construct a solution for this

25
I
X
0.0
3 S S S S

0 10 20 ¢ 30

Fig. 5.6 The relaxation oscillation of the van der Pol equation with 4 = 10.
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relaxation oscillation by matched asymptotic expansions. Without loss
of generality we may start at ¢ = 0 with z = 1, because the relaxation
oscillation must pass between the damping |z| > 1 and the anti-damping
|z| < 1.
Slow phase. Rescaling with t = uT, the governing equations become
[J,—zzTT + .’IJT(:B2 - 1) +z =0
This suggests an expansion
z(t,p) ~ Xo(T) + p~2X,(T)

At pO: Xo(X3-1)+X,=0 withX,=1atT=0
with implicit solution

T=InX,-3(X3-1)

As T / 0, this solution breaks down because the right hand side is
negative, with
Xo~1+(=T)Y* asT /0
At u~% X1(X3 - 1) +2X{ XX, + X, = =XV

This can be solved in the form X; = f(X,), but here we need only the
behaviour of the particular integral as T 0, because it is the particular
integral which breaks the asymptoticness of the expansion and calls for
another balance in the equation. (This particular integral represents the

effect of inertia which was neglected in the first approximation to the
slow phase.)

X, ~ Y-T)"' asT 0

Matching forwards, we reconstruct our slow phase solution as it ap-
proaches its breakdown at T' = 0 using the original time variable (rather
than properly using a general intermediate time variable)

z o~ (1+(_p—1t)l/2+...) + )T )
The correction term is as large as the leading order term minus 1
(which is the important measure) when ¢t = ord(u~1/3) where z =
1+ ord(u~2/3). The trouble is that as T / 0, z \, 1, so the coef-
ficient of friction (22 — 1) drops, so the velocity increases, and so the

inertia is no longer negligible. In fact with the above scaling, all three
terms in the governing equation are ord(1):

-2/3 -2/3
g il — 1) - - K . B -2/3) .
Z:opz(z®-1):z =7y “#—1/3 (u ) 01
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Transition phase. With the rescaling suggested above, t = p~*/3s and

z =1+ p~?/32, the governing equation becomes
2+ 22,2+ 1+ p (2,22 +2) = 0
which suggests an expansion in a revised sequence
2(t 1) ~ 1+ u 232, (s) + u™32y(s)
Matching backwards into the slow phase, we find
2 o~ (=)Y24+l(-s)7t  ass\ -0
At p=3: 2422z, +1=0

This can be integrated once choosing the constant by matching back-
wards:

Zi+224+s5=0

This Ricatti equation can be turned into the Airy equation with the
substitution z; = ¢'/¢:

"+s¢=0

The general solution can be expressed in terms of K,,; and I,,; for
s < 0. Matching backwards rules out I, /3, so for s <0

¢ = (=0)""Ky 5 (3(-9)")

This solution continues into s > 0 in the form

%(3)1/2 [J1/3 (%33/2) + J_ys (%33/2)]

Because z = (’/(, there is trouble with 2 \, —oo as s / 5, = 2.34, the
first root of J; 3+ J_,/3 = 0. From the equation for ¢ we find

1
30“‘3

z; o~ = + 350(s9 — 5) as s / s

Matching forward, we reconstruct the above solution in the transition
phase in terms of the original time variable as it approaches its break-
down:

u1/3

1/31, (,=1/3, _
Vi a— + w/T3s0(n "8 — )

T o~ 14pu7%3 [—

The asymptoticness is broken when p~1/3s, —t = ord(u™!) where z =
ord(1).
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Fast phase. With the scaling suggested above, t = u~1/3s) + u~17, the
governing equation becomes

T, +z,(22-1)+p"2z=0
Matching backwards into the end of the transition phase

T ~ 14771431 5% as 7\, —00

This suggests an asymptotic expansion

o(t,p) ~  zo(1) + w32y (r) + p 2y (7)
At 0z +zh(z2-1)=0
Integrating the equation once and choosing the constant of integration
by matching backwards to zy ~ 1+ 77! as 7 \, —00

3 2
$0+3$0—3}'0 -3

Integrating again and matching backwards yields an implicit solution

2+ 1z + 1

ln
-z, 1-z,

= -7

The fast phase ends when 7 co where
Ty ~ =2+ 373!

At p=3: 4 xi(@2-1)+ 2z4T,75 = 0

Integrating and matching backwards to z; ~ —3so7 as 7\ —o0
Ty + 3,38 — 1, = -3,
This linear equation can be solved, but we only need the form as 7 /" oo,
In this limit the equation becomes
Ty + 3z, = —s,

and so z; ~ —1s;as 7 /" c0.

At p™% oy +3h(zd - 1) + 227,30 = —x,
Again we need only the form of the solution as 7 * co. In this limit the
equation becomes

Ty + 37y =2

and 80 £, ~ 27 as T /" 0.

Matching forwards we reconstruct our solution in the fast phase
in terms of the original time variable as it approaches its breakdown
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as 7 / oo:
-4/3
xr ~ [—2+...]+u 4/ [_%so.}....]
+u? [%M(t—u'”aso)*"“] + -
The asymptoticness is thus broken when t — 34~%/3s) = ord(u); bro-

ken by the particular integral in the correction term (the effect of the
restoring force, neglected in the lowest approximation of the fast phase).

Second slow phase. Following the fast phase there is a repetition of the
slow phase with r reversed in sign and time shifted by half the period,
%T . At the lowest approximation we therefore have a solution

T-p 1T = In(-X,) - (X2 -1)

Matching backwards into the fast phase which ends near z = —2, this
second slow phase solution has

Xy ~ -2+3[T-uTNT- ln2+§]

So comparing with the end of the fast region, we see that the period of
the relaxation oscillator is

T ~ ,u(l’,--21n2)+3u’1/3.~10 as g — oo

The first term in the period comes from the slow phase, and in some

“sense 2p~!/3s, comes from a delay in the transition phase, while the

other p~1/35; comes from overshooting z = —2 slightly.
From our solution we can see that the maximum displacement of the

relaxation oscillation is at the end of the fast phase near z = —2:
max|z| ~ 2+4p7%31s;  asp- oo

And the maximum velocity occurs in the fast phase near z = —1:
max|&| ~ §u+u_1/3so as pu — 00

Higher order terms in the expansion can be obtained with some effort.
The next term is just larger than the indicated =2 - it is = 2Ilnp
followed by pu—2



