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Method of multiple scales

This is a general method applicable to a wide range of problems. The
problems are characterised by having two physical processes, each with
their own scales, and with the two processes acting simultaneously. This
should be contrasted with the method of matched asymptotic expansions
which also has two processes with different scales, but with the processes
acting separately in different regions.

7.1 van der Pol oscillator

We return to the oscillator which was introduced in §5.6 now to consider
the case where the nonlinear friction is a small perturbation to the linear
simple harmonic oscillator. It is convenient to study the initial value
problem

i+ex(z?—1)4+z =0 int>0withe\0

subjectto z=1landz=0 att=0
Treating the problem as a rogular one yields the approximation
z(t,e) ~ cost+e[3(tcost—sint) — F;(sin3t — 3sint)]

This expansion is asymptotic for fixed t as € \, 0, but breaks down
when t > ord(e~!). (It is however possible to prove that the expansion
converges!)

The trouble with the naive approximation is that the e-damping
changes the amplitude of the oscillation on a time scale e~! by the slow
accumulation of small effects. Thus the oscillator has two processes act-
ing on their own time scales. There is the basic oscillation on the time
scale of 1 from the inertia causing the restoring force to overshoot the
equilibrium position. There is also the slow drift in the amplitude (and
possibly the phase) on the time scale e~! due to the small friction. We
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recognise these two time scales by introducing two time variables.
T =t - the fast time of the oscillation

T =€t - the slow time of the amplitude drift

The slowly changing features will then be combined into factors which
are functions of T', while the rapidly changing features will be combined
into factors which are functions of 7. Thus we look for a solution of the
form

z(t;ie) = z(,T;e)

As real time ¢ increases the fast time 7 increases at the same rate, while
the slow time T increases slowly. Thus

4 _ (8) 4 (L
aa - \orJ, T \or)

&=z, +2z,+ETpp

and so

We now seek an asymptotic approximation for z allowing in the lead-
ing order for the possibility of changes over the long time scale. Thus
we pose

z(tie) ~ zo(r,T) + exy(7,T)

with the requirement that the expansion be asymptotic for T' = ord(1).
Substituting into the governing equation and comparing coefficients of
€™, we find a sequence of problems.

At €%
with zyo=1 and z,, =0 att=0

Integrating with respect to 7, treating T as an independent variable held
constant, we obtain a general solution

zy = R(T)cos(r+6(T))
in which the amplitude R and the phase 6 are constant as far as the

rapid T variations are concerned, but are allowed to vary over the long
T time. The initial conditions give

RO)=1 and 6(0) =0

Except for this information, R and 6 are unknown in the leading order
analysis. Knowing that the amplitude is controlled by the action of the
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small friction over a long time, it is quite clear that we must proceed to
the next order.

At €
Tipr+Z = T (Tg—1)—20o,p Int20
2ROy cos(T -+ 0) + (2Ry + 1 R® — R) sin(r + 6)
+ 1R%sin3(7 +6)
from the (partially) known z,. The initial conditions are
z,=0 and z,, =-Tor=-Rpy att=0

Again we integrate with respect to 7 treating T as a constant. The
sin 3( + @) forcing term will induce a sin 3(7 + 6) bounded response in
z,, but the resonating forcing terms sin(r + 6) and cos(t + §) would
induce a response in =, growing like 7 which would break the asymp-
toticness when t > ord(e~!). Thus to maintain the asymptoticness of
the expansion we must exploit the freedom in the undetermined R(T)
and 6(T') in order to insist that the potentially resonating terms vanish
identically. This leads to the so-called secularity or integrability or
solubility condition of Poincaré,

6 =0 and Ry = iR(4-R?
Using the initial conditions on R and 6, we therefore have
§=0 and R=2(1+3T)7""

Thus eventually the amplitude of the oscillator drifts to 2. Note that
the amplitude and phase of the leading order term are fully determined
in the next order problem by asking that the correction term does not
break the asymptoticness; it is not necessary to find the correction term.

The correction term can however be found, and is

z, = —3R%sin3r + S(T)sin (7 + ¢(T))

with new unknown amplitude and phase functions, S(T) and ¢(T),
which satisfy the initial conditions

¢(0)=0 and S0)=-3

These new amplitude and phas: functions will become determined by
the secularity condition in the z, problem.

At higher orders one can find that a resonant forcing is unavoidable:
there can be insufficient freedom in the undetermined functions. The
asymptoticness is then lost. This is in fact the situation with our van
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der Pol oscillator when proceeding to find z to ord(e) for ¢ of ord(e~?).
This difficulty can be overcome by introducing an additional slow time
scale T, = €t.

A simple example which illustrates the need for such a super slow time
scale is a linearly damped oscillator

E+2ex+zxz=0
with solution
a:=e"“cos( 1 —ezt)

The amplitude drifts on the time scale e~!, while the phase drifts on
the longer time scale e=2. Of course in this example there is not much
amplitude left by the time that the phase has slipped significantly.

In general when working to ord(e*) on a time scale ord(e¥~") one must
expect to have a hierarchy of n slow time scales. Some may be essential,
representing genuinely different processes. Some however may simply
be adjustments to a previous process, e.g. adjustments in the frequency,
which are better tackled with something like a co-ordinate straining.

Fig. 7.1 The continuous curve is a numerical solution z(¢;€) of the initial
value problem for a van der Pol oscillator with ¢ = 0.1. The dashed curves
give the asymptotic predictions for the amplitude, i.e. £R(T"). The agreement
is good at even larger values of the small parameter, as is typical of this class
of asymptotic analysis.



120 7 Method of multiple scales

Exercise 7.1.  Obtain an asymptotic approximation for z to ord(1)
which is valid for ¢ = ord(e~!) to the solution of

F+el+z =0 fort >0
with z=1 and z=0 att=0

Exercise 7.2.  Obtain equations for the drift in the amplitude and
phase in the solution to

+ex(x? — 1)+ (1 +ek)z = ecost

with £ = ord(1) as ¢ \, 0. [The tough part is then to show that a
slave oscillator will lock onto the forcing from a master if the slave is
not detuned too much, i.e. if |k| < k, then R tends to an equilibrium,
while if |k| > k_ then R oscillates (the free oscillations beating with the
forced response).]

Exercise 7.3. Find the leacing order approximation to the general
solution for z(¢;¢) and y(t; €) satisfying

d*z dz
7l + 263/5 +z =0
% = %e Inz2
which is valid for ¢ = ord(1/¢) as ¢ — 0. You may quote the result
27
— Incos?0df = —In4
2r 0

7.2 Instability of the Mathieu equation

This is a simple example where the slow time is not et. Now the Mathieu
equation describes the small amplitude oscillations of a pendulum whose
length changes slightly in time. If the length changes at a frequency
which is near a multiple of half the oscillator’s natural frequency, then
the amplitude of the pendulum will grow in time, a phenomenon called
parametric excitation. [This is how a child’s swing works, with the
length of the pendulum shortening as one raises one’s feet at the lowest
point of each half cycle.] We study the case of the length changing with
roughly the same frequency of the natural oscillations:

F+(1+ke +ecost)z = 0
with k = ord(1) as e — 0.

7.2 Instability of the Mathieu equation 121

Now in the leading order approximation, z will just contain the first
harmonic. Iterating, this will force a correction with zero and second
harmonics. Iterating again, we would find a second correction forced by
first and third harmonics. The resonant forcing has to be removed by a
slow drift in the amplitude and phase, which therefore occurs on a time
scale ord(e~2). Hence we introduce a slow time scale T = €2t (with the
fast time 7 = t unchanged) and pose an expansion

z(tie) ~ zo(1,T) + exy(1,T) + ezy(r,T)

to be asymptotic when T = ord(1). Substituting into the governing
equation and comparing coefficients of €, we find in the usual way a
sequence of problems.

At €0
Torr + Ty = 0
with a general solution
zy = A(T)cost + B(T)sinT
At €l:
TirtTy = —zgycCOST
= —3A-1}Acos2r — 1Bsin2r
This forces a response in z,,
gy = —3A+ }Acos2r + Bsin2r

The homogeneous solution can be omitted as we are not tackling a par-
ticular initial value problem.

At %

Torr + Ty = —2Zo,p — kxy — 2, COST
= (2Br + (k~ $)A) cos7 + (247 — (k + £)B) sint

— f3Acos3r — L Bsin3r

As anticipated, the drift in amplitude and phase is determined at ord(e?)

by the secularity condition that the asymptoticness is not lost when
T = ord(1),

Br = 3(5-k)A and Ap = i(L+k)B

The solution of this pair of linear equations has either exponentially
growing (and decaying) or stable oscillatory solutions according to
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whether
(1—52-—k) (F+k) >or< 0

i.e. the oscillator is unstable if - < k < 5.

Exercise 7.4. The equations governing a satellite orbiting the Earth
and experiencing a small frictional force proportional to the square of
its velocity may be written in the form

Ugg +u = h2

hy = en L4t

w2
Writing the leading order solution
u(B,¢) ~ h%(ef) [1 + e(eh) cos(6 — a(eh))]

with e < 1, obtain the drift equation

W' = (f)/h
e = —2{(e+cosy)f)/h®
o = —2(singp f) /h%

where f = /1 + 2ecosp + €2/(1 + ecos p)? and the angle brackets de-
note an average over 0 < ¢ < 2m. .

Deduce that as the satellite falls to the Earth (r = 1/u), its angular
momentum h increases, its eccentricity e decreases, and the direction of
the perihelion o does not drift at this order. .

If the eccentricity e is small initially, find an approximate solution for
the drift in A and e.

[You may assume that ((e + cosp)f) >0for 0 <e< 1]

Exercise 7.5. Find the leading order approximation valid for times ¢

of order e~! as € — 0, to the solution z(¢;€) and y(t; €) satisfying
it+eyt+z = y°

j=e(l+z-y-y°)

subject tor =1, =0and y=0att=0.
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Exercise 7.6. Find the leading order approximation which is valid for
times t = ord(e¢™!) as € — 0, to the solution z(t;€) and y(t; €) satisfying

dz

7 +z%ycost = e(z -2.1:2)

dy _ sint
#= (%)

withz=1landy=0att=0.

7.3 A diffusion—-advection equation

An essential feature of problems requiring the method of multiple scales
is that there is some quantity which is preserved at leading order, but
which can drift through the accumulation of small disturbances. In the
first two sections, we had a conservative oscillator which preserved the
amplitude at leading order. Over a long time, however, the amplitude
drifted through respectively the accumulated effect of the ¢ damping
term and the ¢ work done on the oscillator by changing the length of
the pendulum. Our next application of the method of multiple scales is
to a partial differential equation describing advection around a periodic
domain 0 < @ < 27 with some small diffusion. Thus at leading order
information is preserved as it is advected around. While over a long time
this information changes from the initial data through the accumulated
effect of weak diffusion.

We consider the initial value problem for f(0,¢;¢) with € \, 0

2
%{-+a%(w(9)f)=e-g?§ int>0and0<6<2nr

with f=F(@) att=0

where w(6) is given over 0 < 6 < 2, periodic and positive.

The two processes acting simultaneously are advection on the fast
time scale 7 = ¢ and diffusion on the slow time scale T = et. Thus we
pose an asymptotic expansion

f(01t; 6) ~ fo(e,T,T) + €f1(9,T,T)

to be asymptotic at T = ord(1). Substituting into the governing equa-
tion and comparing coefficients of €*, we obtain in the usual way a
sequence of problems.
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At €0:
U 4 D) = o0
ie.
s (Z+vg) e = o

This equation says that an observer movingat a speed w will see the quan-
tity wf, remain constant (on the fast time scale, only). It is therefore
necessary to find out where an observer moving at w has progressed to
after a time 7. Let O(t) be the solution of the initial value problem

6 =w@®) int>0 with 6=0att=0

Because w(#) is positive and 27-periodic, ©(t) modulo 27 must be peri-
odic, say with period P.

We now transform from the co-ordinates 6 and 7 to the Lagrangian
co-ordinates s and 7 with

0(s,7) = O(r —3s)

The variable s is the time delay since  was zero, and this is more useful
than the usual Lagrangian variable of the initial angle. The variable is
a periodic variable, with period P. Restricted to this period, there is an
inverse

s = S(6,7)

To recast the differential equation in terms of the new co-ordinates s
and 7, we first note

68 = w(8)(67 — 6s)
(3) =w0 = (3) --o5
Thence ’ f

(@)= @), (@) + (7). ().~ () +(
(@)= (@), ).+ (@), (&)= (z),

Thus the controlling differential equation at €® becomes

(%) (wfy) = 0

so that
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with solution
Ao(s’ T)
w()

This expresses formally the idea that on the fast time scale w f;, remains
constant, moving with an observer at velocity w, the observer being la-
belled by his value of s. This constant is, however; allowed to drift on
the slow time scale. The initial value of the ‘constant’ is given from the
initial conditions

fo(a’ T, T)

Ay(s,0) = F(O(-s))w(6(-9))

At €l
ofy L 0fy O _ %
T T T = o

In the transformed co-ordinates, and with the partially determined f,,
this becomes

194y 190 _ O L(B)1(2) 4
w T + w (61'), Wh) = w (63),,(4) <83>, w

with now w = w(O(7 — 8)), a P-periodic function of both s and 7. Thus

04, 0
o+ (o),
1 9%A o (1) 0A 9 (1
5w g () 5+ taa ()
Now the right hand side of the equation is P-periodic in 7 with a non-
zero average. In order to maintain the asymptoticness of the expansion
of f to T = ord(1), we must keep wf, bounded as T increases. Thus
the average with respect to 7 of the right hand side must be removed
by setting it equal to dA4,/0T. Note that the second and third terms
on the right hand side have zero averages, because they are derivatives
with respect to s of functions of w and so derivatives with respect to 7
by w = w(O(7 — 3)). Hence

94, _ 1 /P dr 84,
T =~ P J, w?(O(r—3)) 0s2

Our result is that the amplitude function A,(s,T) satisfies a simple
diffusion equation with an effective diffusivity < 1/w? >. As this dif-
fusivity is constant, the equation for A; can be readily solved for any
particular initial condition F using Fourier Series over the P-periodic
variable s.
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The result < 1/w? > for the effective diffusivity can be explained as
follows. At lowest order f is conserved moving with speed w. Thus
where w slows down, adjacent moving points crowd together with sep-
arations proportional to w. This leads to the density of the conserved
[ increasing like 1/w as seen in the result for f;. Now the steepen-
ing of the spatial gradients lile 1/w enhances the diffusion like 1/w?.
This enhanced diffusion acts € slowly while f is being advected rapidly
around the 6 space. We thus need an average of the enhanced diffusivity,
weighting with the time spent at each location.

7.4 Homogenised media

So far the differential equation has generated the two scales of interest.
In this and the following sections the two scales are specified by the
geometry. In this section we are concerned with the effective properties
of a medium with some fine scale structure, e.g. the effective elastic
moduli of a composite materia! with carbon fibre strengthening. Rather
than the vector problem for the elastic displacement, we look at the
simpler scalar problem of heat conduction,

VkVT = Q

with k and @ given functions vhich have a fine scale structure described
by the short scale variable £ = z/e. We pose an expansion which is to
be asymptotic on the long scale z = ord(1):

T(:E,C) ~ TO(E"’”) + CTl(f,:L‘) + 62T2(§ax)

Substituting into the governing equation and comparing coefficients of
€™ produces a sequence of problems.
At e 2
9 4.9
¢~ o€
with a solution
Ty = To(x)

Thus at leading order, the temperature does not vary on the microscale.
At e 1:
8 , oT, 0 , 0T,

k=l = - Z.g.20

ot~ aE o " Oz
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Thus T, will be linear in the forcing which is proportional to 0T,/ oz,
with a coefficient of linearity which depends on the details of k(£), ie.

— aTO
Tl(gvx) = A(f) '%
At €0;
9 .9 _ _ 0,0, 98 0T 9 9T
set e T QD - mhe T m b e T mh

To ensure that the expansion is asymptotic on z = ord(1), it is necessary
to insist that the right hand side of the equation has a zero average
over the fine scale details, otherwise T, would grow ord(¢%). Thus the
secularity condition is
a ,, 0T, _ .
w" e @
with
. 0A .
k= (k(€)+ k(£)~-6—€— and Q" = (Q({ x))

where the angled brackets denote an average over the &-microscale.
Note that our asymptotic analysis has shown that at leading order
the temperature is constant over the local microstructure, and that to
leading order the temperature satisfies a standard heat conduction equa-
tion with an effective heat conductivity k* and heat source strength Q*.
Higher order corrections will find that there is a correction to the heat
flux which is non-local, i.e. the heat flux at one point depends on the
value of the temperature gradient in the neighbourhood of that point.

7.5 The WKBJ approximation

While everyone agrees that Messrs W, K, B and J did not invent this
method, there is little agreement over who did. Certainly the following
were all involved with important developments: Liouville 1837, Green
1837, Horn 1899, Rayleigh 1912, Gans 1915, Jeffrey 1923, Wentzel 1926,
Kramers 1926, Brillouin 1926, Langer 1931, Olver 1961 and Meyer 1973.
The problem is to obtain an asymptotic solution to the equation

Z+ f(et)z = 0

We will tackle the problem with the method of multiple scales. Note
that a more general equation

U+ ea(et)y + bet)y = 0
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can be transformed to our canonical form by the substitution
t
Yy = Texp (%e/ a(et’) dt’)

i+ (b- 1e%a’ — %ezaz) z =0

resulting in

7.5.1 Solution by multiple scales

First we consider the case of f > 0, so that we may put f = w? with
w real and positive. Then the obvious solution is a fast oscillation with
a local frequency w and a slowly drifting amplitude and phase. In the
notation of the method of multiple scales, with fast time 7 = ¢t and slow
time T = €t, we expect a solution at leading order of the form

R(T) cos [w(T)r + 6(T)]

Unfortunately the secularity condition, which is found in the problem
for z,

9T = —wTT

is unacceptable because of the occurrence of the fast variable in the drift
equation, with the other factors depending only on the slow time. The
failure of our attempted solution does, however, suggest a cure. If the
phase 6 had been much larger, ord(e~*) rather than ord(1), then we
could have multiplied the above equation by € to produce an acceptable
equation, which only involved the slow time T'.

We thus start again with a leading order solution of the form

zo(1,T) = R(T)cos®  with 8 = €10,(T) + 0,(T)

It is not immediately apparent that this solution does oscillate on the
fast time scale. Note however that the time derivative of the phase is

9t = @OT +6@1T

which is order 1. Thus for an order 1 change in time ¢, there is a
small relative change in the slowly varying ©,(T'), but this small relative
change of a large object results in an order 1 absolute change, and for the
arguments of trigonometric functions it is the magnitude of the absolute
change which is relevant. It was this consideration which also required
the third unknown function ©, term to be included in the leading order
term for z(t,€).
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Evaluating the time derivatives of the above z, we have

T, — ROypsind + €[Rycosf — RO, sinf)
— RO%rcosf + € ~ (2R;Ogr + ROypr)sin

To

Substituting into the governing equation yields at leading order
O = w
At the next order, the secularity conditions associated with the equation
for z, are
2ROr + ROypr = 0
2ROyO,7 =0

with solutions

R?>w = constant

©,; = constant

Note that it is not the energy E = 1R%w? which is conserved over
the long time scales, but rather the action E/w (sometimes called an
adiabatic invariant).

Note that once the secularity conditions are satisfied, then there is
no forcing in the equation for z,, although there is some forcing for z,.
Thus if one were to satisfy the boundary conditions with z; to order
instead of just to order 1, then the error of z, would be only O(e?).

Returning to the original canonical equation, we now have a solution
when f > 0 for z which is asymptotic to ¢ = ord(e~!). This solution is
often expressed as

z(t,€) ~ [f(et)]—l/4 (acosf + bsinf) with 6 =/t [f(et')]l/2 dt’
0

with constants a and b. Similarly when f < 0, the solution takes the
form

z(t,€) ~ [—f(et)]—1/4 (Ae® + Be) with ¢ = /t [—f(et/)]l/Z dt'
0

with constants A and B.
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7.5.2 Higher approximations

To obtain higher approximaticns it would be necessary to introduce a
hierarchy of super slow time scales T, = ¢™t. Here we avoid these and
instead use a method particular to the WKBJ problem. The first order
asymptotic theory suggests a transformation

z(t,e) = Re {r(et, €) exp [i /t o(et',€) dt'] }

with 7 and o required to be real quantities. Then dropping the real part
sign

T = iroexp + €rpexp

i = —rofexp + €i(2rpo + ror)exp + €2rpp exp
Substituting into the governing equation and comparing real and imag-
inary parts, we find
2rpg+rop = 0

Erpp--r(f-0%) =0

The first equation can be integrated to give the general result

r20 = constant

The second equation is then . nonlinear differential equation for the
amplitude r. To solve it we expand in powers of €2

o(Tye) ~ oo(T) + €20y(T)
r(Tye) ~ ro(T) + €*ry(T)

Substituting into the nonlinear differential equation and comparing co-
efficients of €™, we obtain

0,0 = f1/2
ro = kf~'% withk a constant
o, = Jlar _ pp[B% 1"
2047 32f3 82
r = - D%
1 20,

Exercise 7.7. Use the transformation at the beginning of §7.5.2 to
obtain solutions of the WKBJ type to the fourth order equation

Tk f(et)r = 0
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7.5.3 Turning points

Our solutions in §7.5.1 work well while f > 0 or f < 0, but there
is trouble at f = 0 where the frequency vanishes and the amplitude
becomes infinite. Without loss of generality we can move the point
where f vanishes, the so-called turning point, to the origin. Thus we
have f(0) = 0. We start with the case f'(0) > 0, and leave other cases
to the end of this section.

Now far from the origin, where et = ord(1), we have the solutions
given at the end of §7.5.1; the trigonometric solutions being applicable
in t > 0, and the exponential solutions in ¢ < 0. The aim of this section
is to produce a solution which is valid near t = 0, so that we can provide
a connection between the constants a and b in the trigonometric region
to the constants A and B in the exponential region. We are thus involved
in a problem of matched asymptotic expansions.

Now near to the origin, where |et| <« 1, we can approximate the
governing equation by

F+etf'(0)z = 0
If we introduce the rescaling

r=—t(ef'(O)"*
we recover Airy’s equation

T, —7T =0

with a general solution
z = aAi(r) + BBi(7)

in which a and 3 are constants and Ai and Bi are Airy functions. The
asymptotic behaviour of Ai at large (positive and negative) arguments
was evaluated in §3.3 by the method of steepest descents. The second
Airy function Bi can be treated similarly.
Matching for negative times as 7/ 400 in the inner and as t /' 0 in
the outer
inner = 1 (%aexp(—%*rs/z) + ,Bexp(%r3/2))

Ti/4/m

—

outer (Aexp(p) + Bexp(—y))

[~et(O)"/*
where p = —2 [ef'(0)]"/? (—t)%/?
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The matching is successful if we take for the constants
2w VT
—_—A d = ———B
ot 2 2T opn

Now matching for positive times as 7 \, —oo in the inner and as ¢ \, 0
in the outer

inner = (77—_#—\/—; (asin® + Bcos®)
where © = %(—7’)3/2 + 4
outer = B (0)]1 L (acos@ + bsinf)

where 8 = 2[ef'(0))Y/%3/2
The matching is again successful if we take for the constants

(2 Temiz Tem)iz
Thus we have obtained the important connection formulae
a+b a—>b
2V2 V2

So if = is exponentially small in ¢t < 0, i.e. B = 0 (because ¢ < 0), we
emerge into ¢t > 0 with a ~ b, i.e. with a solution

t
24§~ 4 sin (/ 2 + -’5)
0 1

showing a phase shift of 7/4 for coming through the turning point.

We have studied above the case with f’(0) > 0. The case with
f'(0) < 0 just requires a reversal of the ¢ co-ordinate. For higher or-
der turning points with f ~ k2t" as t — 0, one has a governing equation
in the inner region

F+ k%" =0

which has solutions in terms of Bessel functions t'/2J (2kvt!/?*) where
=1/(2+n).

If the details of the solution in the neighbourhood of the turning point
are not required, there is an alternative way to derive the connection
formulae. It is possible to go from the region where f < 0 to the region
where f > 0 avoiding the point where f = 0 by making a detour on the
complex t-plane. Caution is needed because of a Stokes phenomenon in
which different asymptotic expansions are restricted to different sectors
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in the complex ¢-plane. The origin of the /4 phase shift is however seen
as the analytic continuation of (—f)~1/4e® to (f)~1/4e~4(6-7/4),

7.5.4 Examples

Example 1 is to find the high energy eigensolutions of Schrédinger’s
equation for a simple harmonic oscillator. The problem is to solve

V' + (E-2%)y =0
with vy = 0 as z — oo

when the eigenvalue E is large.

Now when E is large, there will be an oscillatory solution in z? < E
with a wavelength ord(E~1/2) which is short compared with the scale
on which this wavelength changes, ord(E'/?). Thus we have a WKBJ
problem. There are turning points at £ = +E'/2) and we want the
exponentially decaying solution beyond these turning points.

Then by our WKBJ theory we have in 22 < E

1 : ? 2\1/2 m
P (E—-z2)1/4sm(/;\/§(E z*) dat:+4

. using the turning point connection formula for the decaying solution

in £ < —VE. Requiring the solution to decay also in z > VE via a
connection formula at £ = VE, we have

VE
/ (E—:c"’)l/:"da:+-7£ = nr-2
—VE 4 4

the minus sign coming from the reversing of the z-coordinate at the
second turning point. The above equation determines the eigenvalues to
be

E=2n-1

which happens to be exact for all n, rather than just asymptotically true
for large E. Our WKBJ solution also easily gives the behaviour

2
Y~z e /2 asz o o0
as well as the behaviour in z2 < E.

Example 2 is to find the large eigenvalue solutions of the Legendre’s
equation. The standard form of Legendre’s equation (to be solved for
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the solution which is regular at z = —1 and 1)
[(1-2?) y’]l +Ay =0

can be transformed into our canonical WKBJ form by setting

y = Yexp (/(‘{”}E) =Y(1-z2)"1?

to give

A + 1
1-—2z2 (1-—2z2)2
As in the first example, the solution has a short scale oscillation when A

is large. Thus in the oscillating range —1 < z < 1 our WKBJ solution
gives

Y“+[ ]Y:O

z
Y ~ k(1 -z%)"4sin [)\1/2/ (l—wz)'l/zdx+9]
-1

with the phase 6 to be found from a turning point analysis.

Note that the wavenumber [A/(1 — z2)]'/2 is singular at the ends
z = %1, although in an integrable way. This singular behaviour, plus
the more singular correction (1 — z2)~2 in the wavenumber squared,
calls for a modified turning point analysis. The regular solution with
y(—1) = 1 has a solution near r = —1

Y ~ v2(1+ )2, ([2A(1 + x)]l/z)
Matching this to our solution away from the end z = —1, we find the
ubiquitous phase shift § = 7/4 and also the constant k = 2(2w\)~1/4,
Applying a similar analysis at 22 = 1, we obtain the eigenvalue condition
Mlr 4+ lr = (n4+ D — im

ie. A = n(n+1)+3
i.e differing from the exact result through the error of 1/4.
Exercise 7.8. Find the large eigenvalue solutions of the equation

v +A1-2%)% =0

subject to y = 0 at z = *1.

At the ends z = %1 you will need to use turning point solutions like
(1-22)*/23, ,(AY/2(1~22)?/4), and then use J1/4(2) ~ (2/72)*/2 cos(z—
37/8) as z — oo.
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7.5.5 Use of the WKBJ approximation
to study an exponentially small term

Consider the matched asymptotic expansion problem for y(z; ¢)

ey’ —a(z)y + b(x)y =0 in —1<z<1
with y(-1)=A and y(1)=B

with the function a(z) such that @ > 0 near £ = 1 and @ < 0 near
z = —1. This restriction on the behaviour of a is crucial to the structure
of this problem. To simplify the analysis we require additionally that
a>0inz>0and a<0inz <0, and that at a(0+) = —a(0-) and
b(0+) = —b(0-).

Simple use of the method of matched asymptotic expansions produces
an outer solution for the interior —-1 <z <1

T

y ~ kexp / M dz
o a(z)
with corrections ord(e). Note that the additional restrictions on a and b
make y and ¥’ continuous at z = 0. In order to satisfy the two boundary
conditions, inner solutions are required, and these are possible near both
boundaries because of the restriction on the sign of a. The inner near
z=-1is

-1 —
y ~ A+(kexp/ gdz—A) l-expg(—niﬂ]
0

while the inner near z = 1 is

1 ~
y -~ B+(Icexp/ -Z-dx—B) 1—exp
0 L

a(1)(1 - z)]

There now appears to be a paradox: the above matched asymptotic
solution appears to be valid for all values of k, whereas the original
equation had a unique solution. Proceeding to higher order corrections
does not help to determine k.

The resolution of the paradox comes from realising that the second,
rapidly decaying solution of the differential equation near to z = —1
is related to the second, rapidly decaying solution near to z = 1. One
is therefore not at liberty to pick the amplitude as (kexp—A) at one
end and as (k exp —B) at the other end. To find out how the amplitude
of this second, rapidly decaying solution is related from one end to the
other, we use the WKBJ approximation.
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The rapidly varying (decaying) second solution of the differential equa-
tion is for z # 0

y o~ (exp/:?-(eizdx’)-Itlz—I (exp- ozz—g%dz')

This needs modifying in the neighbourhood of £ = 0 in order to make
' continuous there.

We can now conclude that there is an inner solution only near z = —1
or only near z = 1 according to whether

1
/ a(z')dz’ S 0

-1

7.5.6 The small reflected wave
in the WKBJ approximation

Consider waves propagating in one dimension through a medium whose
properties vary slowly with position, i.e.
Y = (C(fx)zyz)z
Then the WKBJ solutions are
y ~ Ac~V/2¢it=i | B.—1/24it+i6

T dx!
where 6 = ‘/0‘ m

The A-term and B-term represent waves travelling respectively to the

right and to the left. The variation of the amplitude like ¢=1/2 means

that the flux of energy for each wave, c®y,y,, is constant. Thus when
a single right-moving wave is incident on a region where the medium
varies, c(ez), all of its energy is transmitted and there is no reflected
wave, to leading order.

Now if ¢ has a discontinuity (where it is not slowly varying), then
equating y and c?y, on the two sides of the discontinuity yields a reflected
wave with a relative magnitude ord(Ac/c).

Now if ¢ is continuous but ¢, is discontinuous, then equating y and
c?y, on the two sides of the discontinuity yields a smaller reflected wave
ord(eAc’).

Using the higher order solutions of §7.5.2, one can show that if c(ex)
has a discontinuity in its n** derivative, then there will be a reflected
wave of order €".
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If all the derivatives of c(ex) are continuous (a C* function), then the
reflected wave is exponentially small. This exponentially small reflected
wave can be calculated by making a transformation

y(z,t;e) =  A(z)c 2t + B(x)cm 2t
Following the method of variations of parameters, this transformation

yields equations for A and B, the energy amplitudes of the transmitted
and reflected waves,

A, = ie’g (A + Be??)
B, = —ie’g(B+ Ae™™)
with ¢ = (" +c?/2c)/4

A further transformation A = a(z)e*’® and B = b(z)e~*’% with ¢ =
foz g(ex’) dz' yields

. .o 2
bz = —262906 2i0+i2¢“p

In this equation one may take a to be a constant when the reflected
wave b is small (b < a). The integral for the change in b can then be
evaluated by deforming the contour on the complex z-plane. The major
contribution will come from the complex singularity of c¢(ex) at ez = X,
which has the smallest real part of

1 % dx
I(Xt) - ',Z [) C(X)
If the nearest singularity is a pole of ¢, the reflected wave is found to be
b(—o0) = —ieae~2(X.)/e [1‘41 + 0(61/2)]

7.6 Slowly varying waves
7.6.1 A model problem

We consider a model problem due to Bretherton which describes waves
propagating with some dispersion, with a small nonlinearity, and in a
slowly varying medium.

Pt + (a‘pzz)zz + (ﬂ‘pz)m + TP = €p

where a, 8 and ~ are given functions of a slow space variable X = ex
and a slow time T = et. The solution will clearly be a wave with
a local frequency and a local wavenumber, and with a slowly varying

3
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amplitude. Now the basic oscillation of the wave has an order 1 change
in the basic phase. In order to produce this order 1 change and also to
have derivatives which vary only slowly in space and time (the slowly
varying wave number and frequency), we rescale the phase to be very
large and allow this large phase to have only slow variations. Thus we
pose

¢(z,t;€) ~ a(X,T)cosf with 6 = ¢ '0y(X,T)+©,(X,T)
The local wavenumber is then k(X,T) = 6, ~ Oy and the local fre-
quency is w(X,T) = -0, ~ —O,,. Note that this is the appropriate
generalisation of the integral [ "w(et') dt’ in the WKBJ method.
With the assumed asymptotic form of the solution for ¢, various time

and space derivatives can be evaluated, e.g.

Pozzzz = ak*cosf + €[(4axk® + 6ak’ky)sing

+4ak®0, x cosf] + O(€?)
Substituting these into the governing equation yields at € just the dis-
persion relation
w? = ak® - Bk ++

At next order, the need to avoid a resonating forcing like sin # requires

(2arw + awp) + a(daxk® + 6ak’ky) + 20yak®
And avoiding a resonating forcing like cos  requires

2a0w0 ;1 + adak’O, x — f2akO, = 3a°

We have at this stage to assume that the third harmonic cos 3(kz — wt)
is not also resonant, which it can be for some dispersion relations — see
the exercise below.

To make some sense out of our secularity conditions, we introduce the
group velocity ¢ = Ow/0k. Differentiating the dispersion relation with
i'espect to k, we have

2we = 4ak® — 208k

We can now recognise the cos 6 secularity condition as

0 9] 3a?
(?ﬁ +°'a7?) % = 5%

i.e. the extra phase ©, drifts as in Duffing’s equation, as seen by an
observer moving with the group velocity.
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Multiplying the sin@ secularity condition by a and regrouping, we
have

é% (azw) + BiX (ca®w) = 0

i.e. moving with the group velocity the quantity a?w is conserved. Note
that this quantity is (energy = a?w?)/w and is known as wave action.

We now have relations for the drift in the amplitude and extra phase.
To complete the description we need how the wave number and fre-
quency vary as they obey the dispersion relation. If we differentiate the
dispersion relation with respect to time, we find

wwp = (4ak® — 2Bk)kp + apk? — Brk? +p

Now k = Oy, so that ky = Oy = —wy. Thus we have

0 0
(‘a_T + C‘é‘f) w = (aTk4 - ,BTkz + ’YT)/2UJ

i.e. moving with the group velocity the frequency changes due to slow
time changes in the medium. Similarly differentiating the dispersion

relation with respect to space and using again wy = —kp, we find
o . o N
—_ _ = - — Bk
<8T + caX)k (axk® = Bxk® +vx)/2w

i.e. moving with the group velocity the wavenumber changes due to slow
spatial variations in the medium.

Our model can be generalised to a moving medium with a slowly
varying velocity U(X, T), by replacing the partial double derivative with
respect to time 82 with the self-adjoint advected double derivative (6, +
0,U)(0, + Ud,). Thus in the governing equation the term ¢,, becomes

P t+ 2U¢zt + Uz‘pxz + € [UX‘pt + (UT + 2UUX)<pz] + 0(62)

The effect of this modification on the dispersion relation is to turn w?
into w? — 2Uwk + U%k?, i.e. (w— Uk)2. Hence we find in the moving
medium

w = Uk +wt(k)
where w™ is the intrinsic frequency of the stationary medium. Thus
the group velocity becomes ¢ = U + ¢*, where c* is the intrinsic group

velocity of the stationary medium. The moving medium changes the
term 2apw + awy in the sinf secularity condition to

(207w + awp] + 2U [—agk + axw + 3(wx — kr)]
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+ U?[~2axk — aky] + Uyaw — [Ur + 2UUx|ak
= %[[az(w —Uk)]p + (a®(w - Uk)]x]

Adding this to the remaining unmodified term (a?w*c*), /a yields
0
D (@w*) + oz (cat®) = 0

i.e. the wave action a?w™ is conserved moving with the group velocity.
Similarly one can show that the drift equation for the extra phase ©,
is modified by replacing w by w* on the right hand side, and that the
wave number and frequency drift equations are modified by a similar
replacement of w by w* together with additional terms —Uxk and Urk
added to the right hand sides.

Exercise 7.9 on two waves resonantly interacting. Two possible solu-
tions of the partial differential equations

5¢tt + ¢:cxa;z + 4¢ =0

are the waves cos(z — t) and cos(2z — 2t).

(i) Obtain the first order partial differential equations which govern
the slow drift in the amplitudes of these two waves on the space and
time scales of order e~! for the weak interaction between wave packets

governed by
5¢tt + ¢zzxz +4¢ = 6%1"1)3

You may neglect the slower drift in the phases.
(ii) Look for the steady periodic solutions of the equation

5¢tt + ¢xzzx +4y = E'l/}2
which take the form
Acos[(1+ ek)z —t] + Bcos2[(1 + ek)x — t] + O(e)

obtaining relationships between A, B and k.

7.6.2 Ray theory

We now move from the particular model problem with its unpleasant
algebraic details to a general theory of waves propagating through a
slowly varying medium. The first part which describes how the local
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wavenumber and frequency change is variously called ray theory, wave
kinematics or geometric optics.

We consider a scalar wave field ¢(x,t) in three-dimensional space. We
assume that asymptotically it takes the form of a single wave propagat-
ing with a slowly varying amplitude and slowly varying wavenumber and
frequency,

p(x,t;e) ~ a(X,T)cosf with 8 = ¢ 19X, T)

This wave has a local frequency w = —6, = —O, and a local wavenumber
k = 00/0x = 99/0X. Immediately from these definitions we have two
consistency relations — known as the conservation of wave crests in space
and time:

0 ow ok
ﬁ/\k—o and ﬁ+ﬁ—0

Now the local dynamics will produce a dispersion relation
w = QUk,a(X,T))

where the dependence on the medium is shown by a dependence on
the parameter a. (Note that a could also represent the amplitude of
the wave in a nonlinear problem.) The group velocity is defined by
¢ = 0Q/0k. Differentiating the dispersion relation with respect to time,
we find '

by _ 90k 000
T =~ 0koT = 0adT
Using the consistency relation for kr, this becomes
bu 8 _ 000a
or X =~ 0OadT
Exercise 7.10. Derive the similar result
0k 0 N 0a
ar T (°'5i)k = T %adx

7.6.3 Averaged Lagrangian

The second part of the general behaviour of waves propagating in a
slowly varying medium concerns the conservation of wave action, which
gives how the amplitude varies.

In a continuum, the Lagrangian L is expressed in terms of a La-
grangian density £, so L = [ Ldzdt. In this subsection we work in
just one space dimension, three dimensions being a trivial extension.
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The Lagrangian density will depend on the scalar wave field ¢ and
its derivatives, and parametrically on the slow space and time as the

medium varies, i.e. £ = L(p,¢,¢,,¢Pz,-..;X,T). For linear waves L
is quadratic in ¢. In our model problem,
L = 3((p+Up,)? —apl, + Bl — vo? + Lep?)

The field equations for the wave field ¢ follow as the Euler-Lagrange
equations, corresponding to the vanishing of the first variation of L with
respect to ¢, i.e.

."’_5_2(25_)_&(_%>+_3i(_‘95_)+ - 0
Op Ot \ Oy, 0z \ dp, 0z% \ 9y,
We now substitute a solution of a single slowly varying wave
o(z,t;€) ~ a(X,T)cosf with 6 =¢"'O(X,T)
with local wavenumber k = 6, = ©x and local frequency w = -6, =

—Or. " Our Lagrangian density becomes L(acosf,awsiné, —aksin,
—ak?cosd,...; X,T), at least asymptotically.

Now the full Lagrangian L is evaluated by integrating the density £
over all z and ¢. In this integration there is a slow variation with X and
T, and a fast variation in 6. The integration therefore averages over the
rapid ¢ variations, producing an effective averaged Lagrangian density
L

L = ¢ /ZdXdT with £ = -217; /c(a,e; X,T)do
Thus in our model problem
L = 1a®((w-Uk)? —ak* +pk* —y - Fea?)

The dynamics for the wave are derived from Lagrange’s principle that
the first variations of L with resp:ct to the generalised co-ordinates a
and © must vanish. (Note that © enters only through its derivatives w
and k.) The variation with respect to the amplitude a,

oC
da
is the dispersion relation. In our model problem this is

(w=Uk)? = ak* - Bk +~v+ %ea2

=0

In a linear wave theory £ = }a?F(w, k), with F the dispersion relation.
Hence the first variation with respect to the amplitude a gives F = 0.
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This therefore implies that there is an equipartion of energy between the
average potential and average kinetic energies.
The first variation with respect to the phase © gives

_ 0 (8L\ 8 (LN _
T \ dw ox \ek) ~
This is a conservation equation which says that the density —0L /0w
changes due to a divergence in the flux £/0k. Now for linear waves

oL 1 2OF 1 20F (0w oL
7 = 50— = —za°— (= = —-—c
ok 2" Ok 2° ow \ Ok F=0 Ow
Thus the variation with respect to © for linear waves becomes
0A 0
ar *ax (4 = 0

i.e. the wave action A = 8L/0w is conserved moving with the group
velocity ¢ = Ow/8k evaluated on the dispersion relation F = 0.



