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Résumé

This chapter is devoted to ”homogenization” : an asymptotic method
with two scales, the fast scale being averaged.

We consider as a practical example here a body which consists in a local
structure which repeats periodically itself. On the global scale of the body,
the number of small structures is huge. Homogenization is the study of
the relationship between the local structure of a non-homogeneous medium
and its macroscopic behavior. It allows a tremendous simplification : we do
not need to compute all the fields at the small scale of the structure, but
only once on the small scale which will give the behavior at the large scale
of the body. We present ”homogenization” theory as an application of the
”multiple scales” technique. As usually, we propose first a simple example to
understand the problem, next we present the theory in 1-D. Next we present
briefly the more complex example of Darcy law linking the mean velocity
and the mean pressure gradient in a porous media. The technique has been
developed since 1978/80 by A. Bensoussan, J.-L. Lyons, G. Papanicolaou
and Evariste Sanchez-Palencia. It is more used in solid mechanics, it is a
routine tool for composites.

1 Introduction

Up to now, scales were obtained often by the geometry (aspect ratio...)
or then by some dominant balance. Here, there is a fine scale due to a
fine structure in the media. For example, the body is constituted of fibers,
or lamellas, or cells, or grains, of small size compared to the body it self.
This is the case for composite materia, for sand, for agglomarate wood,

grids, and so one. We define of course ε the small relative scale of the
fine structure. Of course, if we solve at the level of these fine details,
the problem is difficult (too many details to consider, think in term of
discretization : it will be a too large problem with too many variables).
We then want to obtain the mean influence of this small structure at the
scale of the body, it means that we want to obtain the macroscopic, or
homogenized or effective behavior. The homogenized system will be as
simple as a homogenous system, which is more simple to solve.

This averaging process is called ”from micro to macro” or ”upscaling” or
”multiple scale”, depending on the people and on their sensibility.

2 A simple example in thermics, ”Homogenisa-
tion for children”

2.1 Chain of composite walls

At first, we will look at a simple problem in thermics, to show the
limit of simple approches but to understand the concept. For example, if
the media is constituted of parallel lamellas of low conductivity kα and
high conductivity kβ � kα, it is clear that the low conductivity (kα) will
rule the solution. The global conductivity will not be the simple mean
conductivity (kα + kβ)/2. Let us show it.

The heat equation in 1D, in a fixed material, with no variations of volume

x = 0

T0 T1

k1 k2 k3 k4 k5

T2 T3 T4 T5

x1 x2 x3 x4 x5

e1 e2 e5e4e3

Figure 1 – A great number n of infinite walls (parallel lamellas) ; T0 in
x = 0 and Tn in x = xn : there are n homogenous slides. We want to
construct the total averaged solution : the ”homogenised solution”.
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is

ρ
∂e

∂t
= −∂q

∂x
,

remember that the variation of energy de = cdT in time t, is the divergence
of the energy flux q, the constitutive law gives Fourier law q = −k ∂T∂x ,
where k is the function of the position, so that the heat equation in 1D is
not ρc∂T∂t = k ∂

2T
∂x2

, but indeed :

ρc
∂T

∂t
= − ∂

∂x
(−k∂T

∂x
).

Let us call ei the distance between wall i and i−1, this slice has thermal
conductivity ki with 1 ≤ i ≤ n.... Let define T0, T1 to Tn temperatures on
the faces. Then, the steady heat equation is

−dq
dx

= 0,

q is then constant in every slice. So, we have the linear solution in each
slice, and the constant flux is the gradient :

q = −k1
T1 − T0

e1

q = −k2
T2 − T1

e2
....

q = −kn
Tn − Tn−1

e
so, we have the following relations for all the temperatures :

0 < x < x1, T = T0 −
x

k1
q and T1 = T0 −

e1

k1
q,

x1 < x < x2, T = T1 −
x− x1

k2
q and T2 = T1 −

e2

k2
q, what

...

xn−1 < x < xn, T = Tn−1 −
x− xn−1

kn
q and Tn = Tn−1 −

en
kn
q,

we see that in each cell
Ti = Ti−1 −

ei
ki
q,

the increment of temperature is − ei
ki
q, if we do the sum, we obtain

Tn = T0 − q(Σn
1ei/ki), with e = Σn

1ei.

2.2 Final effective conductivity

Then, the flux, which is constant, is linked with the total variation of
temperature :

q = − Tn − T0

e1/k + ...+ en/kn
,

it can be identified as q = −kH Tn−T0
e , were

kH =
Σn

1ei
Σn

1ei/ki

the effective coefficient of thermal diffusion is a kind of geometrical average,
it is not the averaged value

Σn1 kiei
Σn1 ei

.

Indeed if k2i = kα and k2i+1 = kβ ; ei = e/n with kβ � kα, kH =
2kβkα
kβ+kα

,

not (kβ + kα)/2. For kβ � kα, we have kH ∼ 2kα.

See section 3.7 for a numerical example.

2.3 Heuristical view

After this simple way to present homogenisation, let us introduce a se-
cond simple approach (quoted by Caillerie [5], said from Sanchez and said
from Suquet 1982 ”thèse d’Etat”, but I did not found it in it). Let us take
a media with periodicity e in which k changes at this period. In the slice
the temperature is T slice(x), the global mean temperature is T (x), so from
one slice to the other, if we forget the small details in the slice, the change
of temperature is more or less the final global gradient :

T slice(x+ e)− T slice ' edT
dx
.

But as well, locally in the slice

dT slice

dx
= − q

k(x)

so by integration over the length of the slice :

T slice(x+ e)− T slice(x) =

∫ x+e

x
− q

k(x)
dx
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compared with the previous expression of T slice(x+ e)− T slice(x) :∫ x+e

x
− q

k(x)
dx ' edT

dx
.

For the overall media, let us define kH as :

q = −kH dT
dx

where kH is the effective heat transfer coefficient we are looking for. Then
as dT/dx = −q/kH , ∫ x+e

x
− q

k(x)
dx ' e q

kH
.

so we find again (if we simplify by q) that the harmonic averaged value of
k gives kH

1

kH
=

1

e

∫ x+e

x

1

k(x)
dx.

We will now look at the full problem with the ”homogenization theory”
and see wether we can find again this results as a particular case of a more
complicated theory. Then, section 3.7 we will compare with a numerical
example.

3 The theory of Homogenisation

3.1 Example in heat conduction

Again, we study the simple model of steady heat conduction in a one D
media.

−∂q
∂x

= 0

with the constitutive relation :

q = −k ∂
∂x
T

where k is a function which varies quickly at the small scale of the fine
structure. It changes at a short scale variable x/ε, in fact, at each beginning
xi of a cell i, the variable is (x− xi)/ε, or with other words the periodicity
is ε. We will follow the Sanchez-Palencia [12, 13] and [11] developements.

ε

O(1)

Figure 2 – a media Ω of size O(1) constituted of small structure (”elementay

cell”) Υ of relative size ε. We look at a mean behavior of the media filtering the

rapid small scale. Note that the small cell definition is not unique, and that it can

be several times the one presented here....

3.2 Developements

There is a change of notation compared to the chapter on ”Multiple
scales”, we wrote with a subscript ; now we put a subscript :

T = T 0(x0) + εT 1(x0, x1) +O(ε2),

so that we can use the tensorial notation thereafter. Most of all, there is a
change of point of view between fast and slow. In the oscillators of the ”Mul-
tiple scales” examples, there was the ”normal” time, at human scale and
then the slow time (secular time, long long time, the time of the planets).
Here the human scale is the slow one (the size of the macroscopic body),
and the local scale is the fast one (”man is the measure of all things”) :

x0 = x and x1 =
x

ε
.

The variables x0 is the ”slow” (macroscopic) scale and x1 is the ”fast”
(microscopic) scale. When looking at the problem at the microscopic scale,
the changes in x1 are so fast that x0 seems to be constant. So the first order
T 0 is a function of x0, not of x1. Scale separation is exploited : x0 and x1

are treated as independent variables :

d

dx
=

∂

∂x0
+

1

ε

∂

∂x1
(1)
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T 0 + εT 1

T 0

Figure 3 – The mean global solution, T 0 and the small scale solution
T 1 (inspired from Sanchez-Palencia sketches), see indeed section 3.7 for a
numerical example chowing those small oscillations at the small structure
size.

so that ∂
∂xi

= ∂
∂x0i

+ 1
ε
∂
∂x1i

for tensors. We start first, for simplicity, with

scalar fields.

3.3 Multiple scale expansion

From the constitutive equation linking the flux and the derivative of
temperature q = −k d

dxT with the expansion T = T 0(x0) + εT 1(x0, x1) +
εT 2(x0, x1) +O(ε3) we have

d

dx
T =

( ∂

∂x0
T 0(x0)+

∂

∂x1
T 1(x0, x1)

)
+ε
( ∂

∂x0
T 1(x0, x1)+

∂

∂x1
T 2(x0, x1)

)
+...

The expression of the energy density flux q is an expansion

q = q0(x0, x1) + εq1(x0, x1) +O(ε2)

with, by identification, q0 and q1 :

q0 = k(x1)
( ∂

∂x0
T 0(x0) +

∂

∂x1
T 1(x0, x1)

)
(2)

q1 = k(x1)
( ∂

∂x0
T 1(x0, x1) +

∂

∂x1
T 2(x0, x1)

)
,

where indeed k changes abruptly with space, so that, the steady 1D energy
equation

− ∂

∂x
q = 0

gives by substitution :

(− ∂

∂x0
− 1

ε

∂

∂x1
)
(
q0(x0, x1) + εq1(x0, x1) + ...

)
= 0,

at order O(1/ε) we have

(− ∂

∂x1
q0) = 0 (3)

this equation corresponds to the microscopic behavior of the media. The
next order O(1)

(− ∂

∂x0
q0 − ∂

∂x1
q1) = 0

this equation corresponds to the macroscopic behavior of the media. As we
will see next.

3.4 Averaging

Let us introduce the definition of an averaged value over a representative
volume Y of length/surface/volume mesΥ, depending of dimension, here it
is a length :

< g >=
1

mesΥ

∫
Υ
g(x1)dx1

so, (− ∂
∂x0

q0 − ∂
∂x1

q1) = 0 is averaged over the small cell in

< − ∂

∂x0
q0 > − < ∂

∂x1
q1 >= 0

but the second
∫

∂
∂x1

q1dx1 is zero by periodicity. So that the first is

− ∂

∂x0
< q0 >= 0

which is a macroscopic relation (as we claimed before) as it depends only
on x0 as < q0 > is a function of x0 only.

This can be interpreted as well as the secularity condition : no forcing
influence.

So, the mean temperature < T 0(x0) > is such that T 0(x0) is constant
at leading order over the local microstructure. We claimed eq. 3 that
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(− ∂
∂x1

q0) = 0 corresponds to the microscopic behavior of the media. In-
deed, from the expression of q0 (from eq. 2) we have :

(− ∂

∂x1
q0) = − ∂

∂x1

(
k(x1)

( ∂

∂x0
T 0(x0) +

∂

∂x1
T 1(x0, x1)

))
= 0

but as ∂
∂x0

T 0(x0) and T 0(x0) do not depend on x1, we write it :

− ∂

∂x1

(
k(x1)

∂

∂x1
T 1(x0, x1)

)
=
∂k(x1)

∂x1

∂

∂x0
T 0(x0).

this is an equation for the unknown T 1 which is periodic in x1. We want
to solve for T 1 and we note that the equation is linear in ∂

∂x0
T 0(x0) so we

guess that we can write :

T 1(x0, x1) = w(x1)
∂

∂x0
T 0(x0),

were w is a fast function which is solution of the problem (the ”cell-
problem”)

− ∂

∂x1

(
k(x1)

∂

∂x1
w(x1)

)
=
∂k(x1)

∂x1
.

This problem is solved numerically in practice. Often with finite elements.
The function w(x1) depends only in the function k(x1) which depends on
the characteristics of the media, at the very small scale x1 of the cell. This
dependence is non-local, the homogenized heat coefficient depends on the
value of the gradients of w. Note that the w can be computed once, as
they do not change with the Boundary Conditions, or they do no change
if we change the total media.

The w is defined at an additive constant, we can impose a mean zero
value. If the zero of x1 is at the center of the cell, w may be interpreted as
the distance (far away from the center of the cell, the temperature is the
distance by the flux :

T 1(x0, x1 →∞) ' x1 ∂

∂x0
T 0(x0).

The w is a kind of correction of a Taylor Mc Laurin expansion.

3.5 The homogenised media

Now, suppose we found w, let us put all the results together, the macro-
scopic equation is

− ∂

∂x0
< q0 >= 0,

with expression of q0 from eq. 2 :

q0 = −k(x1)
( ∂

∂x0
T 0(x0) +

∂

∂x1
T 1(x0, x1)

)
,

which, thanks to the analysis is

q0 = −k(x1)
(
1 +

∂

∂x1
w(x1)

) ∂

∂x0
T 0(x0)

and the average < q0 > is

< q0 >= −kH
∂

∂x0
T 0(x0) with kH =

1

mesΥ

∫
Υ

(
k(x1)+k(x1)

∂

∂x1
w(x1)

)
dx1,

the expression of kH is the ”homogenised constitutive relation”, or effective
constitutive relation :

kH =<
(
k(x1) + k(x1)

∂

∂x1
w(x1)

)
> .

This is the result. It is more complicated than the simple averaged value of
k(x1), there is and extra term which takes into account the details of the
microstructure, those details are in the function w. Again, the dependance
is non-local, the homogenized coefficient depends on the value of the
gradients of w.

Once kH is obtained, the computation is done at the slow scale x0 as
usually (there is no more fast variation in x1).

3.6 Example of application : feedback with ”example for
children”

Look at the ”cell-problem”, in one dimension, we can go further in this
case and obtain a simple expression for w :

− ∂

∂x1

(
k(x1)

∂

∂x1
w(x1)

)
=
∂k(x1)

∂x1
.
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By integration

k(x1)
∂

∂x1
w(x1) = −k(x1) +K,

where K is a constant of integration, so

∂

∂x1
w(x1) = −1 +

K

k(x1)

then, by average, as < ∂
∂x1

w(x1) >= 0

0 = −1 +K <
1

k(x1)
>,

so K is the inverse of the mean value of the inverse of k :

K =
1

< 1
k(x1)

>
,

which is what we found from the simple analysis (Kevorkian & Cole [10] or
E [6]). So, the effective coefficient :

kH =<
(
k(x1) + k(x1)

∂

∂x1
w(x1)

)
>

is then

kH =<
(
k(x1) + k(x1)(−1 +

K

k(x1)
)
)
>= K,

the homogenized coefficient is the inverse of the harmonic average,

kH =
1

< 1
k(x1)

>
,

as expected from the simple analysis presented at first. Of course, in 2D or
3D, one has to solve a more complex system !

3.7 Numerical example

3.7.1 Full solution

In order to check on an example the previous concepts, let us consider
the 1D heat equation with a given heat conductivity which changes on a
small scale ε. Let us give :

k(x1) = .04 + 50 sin(πx1)4,

a priori given function of the microstructure variable x1 (plot on figure
4 left), so it is k(x/ε) with ε = 0.05. We first numerically solve the full
problem

∂

∂x

(
k(
x

ε
)
∂

∂x
T (x)

)
= 0

with

k(0)
∂

∂x
T (0) = 1 and T (1) = 0

and say ε = 0.05 this gives the following figure ( 4 right). The zig zags seen
on figure (4 right, red curve) correspond to the changes in k(x1).

The averaged homogenized result from the previous theory is

kAH =
1∫ x1=1

x1=0 1/k(x1)dx1
,

the numerical value is kAH = 0.3915 so that the homogenized solution for
the temperature is a decrease with a slope 1/kH :

T = (1− x)/kAH ,

it is on figure (4 right, blue line).

3.7.2 homogenization

Let us now follow the procedure of homogenization. The homogenized
problem is (see subsection Averaging) :

∂

∂x1

(
k(x1)

∂

∂x1
w(x1)

)
= − ∂

∂x1
k(x1)

with w(x1 = 0) = w(x1 = 1) = 0.
Then we solve this local problem numerically we obtain w(x1) plotted in

blue on figure 5 left. We obtain as well w′(x1) plotted in red on figure 5
left. From these, we compute the effective coefficient :

kH =

∫ x1=1

x1=0

(
k(x1) + k(x1)

∂

∂x1
w(x1)

)
dx1

whose numerical value is kH = 0.3915 (which is exactly kAH of course).
For sake of final comparison, on figure 5 right, we plot the numerical

solution and the homogenized solution at the first cell T (x) + x/kH −
T [0],−1.ε/kHw(x1), they are indeed superposed.
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Figure 4 – Left the function k. Right Zig-zag : the full solution of the non
homogenized problem, here k(x1) = .04 + 50 sin(πx1)4 and ε = 0.05, line
the homogenized one.
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Figure 5 – Left : blue line the homogenized solution of the homogenized
problem w in x1 variables (betwee 0 and 1), red dashing is the solution
εw′(x1). Right the full solution for 0 < x < ε in which we subtract the
homogenized solution (1 − x)/kH , compared to the local solution (curves
superposed at the small structure size : 0, 0.05).

- MHP homo. PYL 2.7- P.-Y. Lagrée, homo

http://www.ida.upmc.fr/~lagree


4 Other examples

The method is general for elliptic PDEs, we have seen it in heat transfer,
but it can be done in porous media or in electrostatics (see Sanchez-Palencia
papers for various applications).

4.1 Darcy law

4.1.1 Homogenisation

This theory may be applied to create an equivalent media (coordinates
x0

1, x
0
2, x

0
3) for a porous media (scale L). A porous media is a media consti-

tuted of a small structure repeated a lot of time. For exemple, the sand is
a porous media, it is constituted of small grains of size of around 400µm. If
we are interested in rain infiltration, or mechanical properties for construc-
tion of a building on sand, we consider the sand at scale 1 m. at this scale,
we do not see the grains, and consider a mean media. We call ”pores” the
small structure. At this small scale, we guess that viscosity is dominant for
the flow. Looking at the slow flow in the small pores (x1

1, x
1
2, x

1
3) of scale d,

the Stokes equations are relevant, with no slip conditions :

−→
∇ · −→u = 0 0 = −

−→
∇p+ µ

−→
∇2−→u +

−→
f

without dimension, if L is the macroscopic size, x̄i = x/L, ui = U0ūi with
p = µU0/Lp̄ and fi = µL2U0f̄i. Note that in practice Πx the pressure
gradient is given. It is the good quantity so that the characteristic velocity
follows from the pressure gradient : U0 = L2Πx/µ. The Stokes equations :

−→̄
∇ · −→̄u = 0 0 = −

−→̄
∇ p̄+

−→̄
∇2−→̄u +

−→̄
f

notice that d the small scale is such that d = εL, we use this ε for the
development

p̄ = p̄0 + εp̄1 + ε2p̄2 + ...

ū = ū0 + εū1 + ε2ū2 + ...

each function p̄k and ūk is function of both the slow variables x̄0
1, x̄

0
2, x̄

0
3 and

the fast x̄1
1, x̄

1
2, x̄

1
3 The macroscopic media is the ”slow” x̄0 = x̄ and the

small structure is represented by x̄1 = x̄/ε the ”fast” one... By chain rule
derivative

∂

∂x̄i
=
∂x̄0

i

∂x̄i

∂

∂x̄0
i

+
∂x̄1

i

∂x̄i

∂

∂x̄1
i

the gradient will be
∂

∂x̄i
=

∂

∂x̄0
i

+
1

ε

∂

∂x̄1
i

and the Laplacian

∂2

∂x̄2
i

=
∂2

∂x̄02
i

+
2

ε

∂

∂x̄1
i

∂

∂x̄0
i

+
1

ε2

∂2

∂x̄12
i

• at order ε−2, Stokes equation gives 1
ε2

∂
∂x̄1i ∂x̄

1
i
u0 = 0, by no slip boundary

condition on the solid and periodicity, it gives ū0 = 0.

• at order ε−1, Stokes equation gives

0 = − ∂

∂x̄1
i

p̄0 +
∂2

∂x̄12
i

ū1
i , and

∂

∂x̄1
i

ū1
i = 0,

so that again by BC ū1 = 0. We deduce that 0 = − ∂
∂x̄1i

p̄0 = 0 so that

pressure is independent of the fast variable. Pressure is only function of
slow variable : p̄0(x̄0

i ).

• at order ε0 momentum and incompressibility :

0 = − ∂

∂x̄1
i

p̄1 +
∂2

∂x̄12
i

ū2
i + (f̄i −

∂

∂x̄0
i

p̄0), and
∂

∂x̄1
i

ū2
i = 0,

We note that (f̄i − ∂
∂x̄0i

p̄0) is a given source term. Given the periodic test

function v̄, we can integrate to write the weak formulation of the problem :

0 = −
∫

∂

∂x̄1
i

p̄1v̄idτ̄
1 +

∫
∂2

∂x̄12
i

ū2
i v̄idτ̄

1 +

∫
(fi −

∂

∂x̄0
i

p̄0)v̄idτ̄
1.

The integrals correspond to the sum in the fluid part (where the fluid is let
us call it Υf ). Integrating by parts and by periodicity and no slip condition
the pressure disappears

0 = −
∫

∂

∂x̄1
i

ū2
i

∂

∂x̄1
i

v̄idτ̄
1 +

∫
(f̄i −

∂

∂x̄0
i

p̄0)v̄idτ̄
1,
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this allows us to exhibit the w̄ij tensor of the local problem (as the problem
is linear in (f̄i − ∂

∂x̄0i
p̄0)) :

ū2
i = (f̄k −

∂

∂x̄0
k

p0)w̄ik

so that w̄ij is solution of :∫
∂w̄ki
∂x̄1

i

∂v̄k
∂x̄1

i

dτ̄1 =

∫
v̄idτ̄

1.

Once the problem is solved, then the mean value < · > is taken on the fluid
volume of the cell Ῡf :

< ū2
i >= (

1

mesῩf

∫
w̄ikdτ̄

1)(f̄k −
∂

∂x̄0
k

p0).

4.1.2 Result

We write now this with dimension. We note that if we define ϕ = (
mesῩf
V̄

)
where V̄ is the total volume of the cell, then ϕ is the porosity of the material.
It is the fraction of volume accessible by the fluid, it is the ”porosity”. The
”compacity” which correspond to the solid point of view is φ = 1− ϕ.

Coming back with dimensions, L2 an µ appear back, and remember that
the velocity is at order ε2, then

ui =
ε2L2

µϕ
[
1

V̄

∫
w̄ikdτ̄

1](fk −
∂

∂x0
k

p0),

furthermore, here w̄ik is wik ans has no dimension, the dimension of τ̄1 is the
same as V̄ , hence [ 1

V̄

∫
w̄ikdτ̄

1] = [ 1
V

∫
wikdτ

1]. Then, we note that indeed

ui = ufluidi is the velocity of the fluid (the grains are fixed), remember that

the small size is d = εL, so ϕufluidi is :

ϕufluidi =
1

µ
[
d2

V̄

∫
w̄ikdτ̄

1](fk −
∂

∂x0
k

p0).

The integral (d
2

V

∫
wikdτ

1) is a 3x3 tensor (ie a table of real numbers)
corresponding to the integration at size εL, the detail of the small structure.

as d = εL. We define kij the permeability tensor obtained from the local
problem (d is in the bar variables) :

kij = (
d2

V

∫
wikdτ

1)

so that the relation is

ϕufluid = − 1

µ
kij(−fk +

∂

∂x0
k

p0)

The Darcy Law as defined in books is with a qi vector : the flux. The
flux or is defined qi = ϕui (so that it is a homogenous to a velocity in m/s),
Darcy law is then :

qi = − 1

µ
kij(

∂

∂x0
j

p0 − fj)

as the body force is often gravity gi = −δ3ig :

qi = −Kij(
∂

∂x0
j

(
p0

ρg
) + δ3j) with Kij = ρg

kij
µ

permeability k in m2 is permeability, unit D, the Darcy,
the Darcy corresponds 1 cm/s velocity for a pressure gradient of one
atmosphere per cm. Viscosity of water 10−3Pas so 1D= 10−12m2

Some values : Sand k is almost 1D, granite µD, gravels 100D.

Note K is hydraulic conductivity. H hydraulic head ; h pressure of water
in the soil, H = h+ z or H = p/(ρg) + z charge hydraulique

4.2 Mixture

The Einstein law may be reobtained.

4.3 Elasticity

The Homogenisation allows to have effective media... there is a huge
number of applications in Mechanics of solids.
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5 Conclusion

The method of homogenisation is a power full tool used mostly in elas-
ticity (materials with a micro structure, concrete, composites...). But, it is
used in fluid mechanics as well, mainly for porous flows. This method was
developed by various researchers in the 70s with significant contributions
from Sanchez–Palenzia, It is well suited for variational problems and reso-
lution with finite elements that is why it is a routine tool in solids. There
are other methods to do the averaging, like ”mean field method” (which is
not so far in fact), and many others.

Figure 6 – Homogenization for children, ”L’homogénisation ? Un jeu d’en-
fant !” Evariste Sanchez Palencia, ∼ 2010 in Jussieu
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de DEA de Mécanique LMM/UPMC,

[4] A. Bensoussan, J.-L. Lions & G. Papanicolau, ”Asymptotic Analysis
for Periodic Structures” Elsevier, Jan 1, 1978 - 700 pages Google eBook
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