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Résumé

This introduction introduces on the simple free fall case the influence of
ε a small parameter (for example, slow Earth rotation, small friction...).
Note that we do not learn anything more than we have learned at L1 level,
just make it more complicated from an M2 point of view !

1 Introduction : ”simplicity” and ”regularity”

This series of lectures is devoted on some techniques to simplify the
equations of Physics (or at least of ”Mechanics”) and to solve them when
a parameter (coming from the Physics of the problem), the famous, and
up to now mysterious ”ε”, is very small. So we will need some physics to
model the phenomena, some maths to solve the equations. Here we present
the fundamental problem of free-fall : motion of an object whose weight
is the only force acting upon it (for example an iron ball). This is really

an archetype for mechanics. We will remind that the identification of this
regime was a tremendous task (historically), but that now, for a student,
this is the most simple problem in physics at the university.

Then, we will remind that this problem is in fact a simplification of a
more general problem where all the forces of Physics act upon the body.
All the forces are negligible compared to the weight at human scale for
a falling iron ball. The ratio of the magnitudes is the ε. For example a
εaero corresponding to aerodynamic forces, another εes corresponding to
electrostatic forces, another εCoriolis corresponding to rotation... At this
point, it is important to notice that scales are important, and the various
ε are a ratio of scales (geometrical scales or physical scales).

Finally, this introduction serves to explain that we are doing asymptotics
like Monsieur Jourdain is doing ”Prose” (”Cependant je n’ai point étudié,
et j’ai fait cela tout du premier coup”). The reason is that by chance, the
Nature is mostly regular : solving the problem with ε = 0 is a good ap-
proximation of the solution of the problem with ε 6= 0 but small.

But, in fluid mechanics, sometimes, it does not work, and infinitesimal
perturbations may have a huge influence (this is a ”singular problem”).

2 Free fall from Galileo to L1 students

So, as scientists, we want to understand the Nature and to reproduce
it to show to ourself that we have captured it. Hence, the very first step
is the observation. It is the most important. Remember ”Institutions de
Physique” [in fact, this is a book on ”mechanics”] by Émilie du Châtelet
1740 :

Utilité de l’Expérience : � Souvenez-vous, mon fils, dans toutes vos
Etudes, que l’Expérience est le bâton que la Nature a donné à nous autres
aveugles, pour nous conduire dans nos recherches ; nous ne laissons pas
avec son secours de faire bien du chemin, mais nous ne pouvons manquer
de tomber si nous cessons de nous en servir ; c’est à l’Expérience à nous
faire connâıtre les qualités Physiques, & c’est à notre raison à en faire
usage & à en tirer de nouvelles connaissances & de nouvelles lumières �.

One has to observe a phenomena, to reproduce it, to change some
parameters. Then to extract from it some quantitative measurements.
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Then after plotting those measurements, one has an idea of the ”trends”.
Then, at this point, we can write a ”model”, but nowadays we have
powerful tools (issued from the conservation laws and the constitutive
relations) so that we are able to write mechanical models of the phenomena.

It is important here to notice that the methods we will use in
this course suppose that we know all the equations of physics. We are
supposed to know all the forces, we will just say which are important or not.

Let us take some examples.

2.1 Galileo fundamental experiments

As scientists, we want to understand the Nature and to compute
it. That was Galileo wish. He first understood the movement of bo-
dies with help of clever experiments. These experiments were done to
understand the movement of a body in free fall. After throwing balls
from a tower (Pisa, maybe yes, maybe not), he observed that the ”mass”
(m) of the balls was not a pertinent parameter. That is the first observation.

Then, he constructed the inclined plane (of angle α) on which a ball rolls.
From this he observed that the distance was proportional to the ”time”
squared (in fact he heard the regular noise of bells disposed in quadratically
in space along the plane). Galilée, 1638 : ”Discorsi e Dimonstrazioni mate-
matiche intorno a due scienze attenanti alla mecanica ed i movimenti locali”

The other fundamental experiment was the observation of the oscilla-
tions period of a pendulum (he was boring in the church and looked at the
oscillations of a lamp). The period is not function of the amplitude but
function of the length. Note that the time was measured with its hearth
beat, as the clock was invented by Huygens in 1656, based on the principle
of the pendulum).

Then one has to wait to Newton 1687 to settle the fundamental
law of mechanics to interpret those observations (note the new urban
legend : it was during the ”Great Plague” in 1665 and its kind of
”lockdown” that he learned a lot about Physics....) Anyway, this part
which consist to turn observation in equations is very difficult. This is

modelling. This should be done even today if we look at a complex problem.

Galileo had a very difficult task because the concepts of movement,
mass, time and forces were unclear at the time. He invented them (have a
look to Galileo’s life).

2.2 More about Mme de Châtelet

Madame du Châtelet translated Newton in french (1745), she was
involved in understanding the difference between mv and mv2. She was
the first to write a ”text book” for students (her son), in 1740. She
wrote about her ”La Physique est un bâtiment immense qui surpasse les
forces d’un seul homme ; les uns y mettent une pierre, tandis que d’autres
bâtissent une aile entière, mais tous doivent travailler sur des fondements
solides qu’on a donnés à cet Édifice dans le dernier siècle par le moyen de
la géométrie, & des observations ; il y en a d’autres qui lèvent le plan du
bâtiment, et je suis du nombre de ces derniers”. She knew ∂’ Alembert,
and they appreciate each others, he said about her � quelques auteurs ont
tenté de rendre la philosophie newtonienne plus facile à entendre �. She
was in love with Voltaire.
This was the ”siècle des lumières” : ”The Age of Enlightenment, or simply
the Enlightenment, was an intellectual and philosophical movement that
dominated Europe in the 17th and 18th centuries with global influences
and effects. The Enlightenment included a range of ideas centered on the
value of human happiness, the pursuit of knowledge obtained by means of
reason and the evidence of the senses, and ideals such as liberty, progress,
toleration, fraternity, constitutional government, and separation of church
and state.” (wikipedia)

Please do remember that when you vote.
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2.3 L1 Student resolution

2.3.1 Vertical chute

For students, those problems are über trivial, they write the fundamental
law of Newton :

m
dv

dt
= mg,

simplifying by m and by integration :

v = gt,

as initial velocity is zero. They know from Leibniz and Euler the derivative
v = dz/dt and obtain

z =
g

2
t2

as initial position is z = 0.

2.3.2 Pendulum

For the Pendulum it is the same method

m
dv

dt
= −mg sin θ,

with v = `dθ/dt and as θ is small (whow, isn’t it asymptotics ? sin θ ' θ),

`
d2θ

dt2
= −gθ,

which gives for a release at initial angle θ0, with no impulsion :

θ = θ0 cos(2πt/T ) with T = 2π
√
`/g

and thats it.

Anyway, note here that a ”problem” is a differential equation plus the ini-
tial condition. Note that second order differential equations are important
in mechanics.

2.4 Asymptotics ?

Is there some asymptotics in this ?

At first sight, no : z = g
2 t

2 is the exact result of the integration. Maybe
the expansion sin θ ' θ contains a first asymptotic ingredient.

In fact yes, and far more than the simple Taylor expansion sin θ ' θ. For
example :
• the fact the earth is rotating is neglected (Coriolis force and Foucault
experiment 1858),
• the fact as well that the device is small (the gravitation constant is an
expansion of the gravitational force plus the rotation entertainment force
developed at z � R (the radius of the Earth R)
• the fact that the air creates a viscous drag force on the ball (laminar ?
turbulent ?)
• the fact that some electric charge may be present and a Lorentz force
will act
• velocity is small compared to speed of light...

In fact, the asymptotics we will develop consists in looking at all the
phenomena when we write the fundamental law of dynamics.

2.5 The full problem

2.5.1 Full problem with dimensions

We now have all the ingredients, the effective mechanical equation reads,
in the framework or Newtonian dynamics (no Einstein theory here) :

m
d−→v
dt

= − GMm

(R+ z)2
−→e z−mω2R−→e R−2m−→ω ×−→v − 1

2
ρCxSv

−→v +q
−→
E+q−→v ×

−→
B

and we just have to solve it to solve Galileo’s problem.

We will solve it for balls of different size :
• Let solve this problem for the famous french Pétanque game. You have
to launch an iron ball, the winner is the one who has is ball near the small
ball (the ”cochonet” : ”little pig”).
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Clearly it is impossible to solve the problem by hand (but easy with
a computer). But lot of french people can solve it with their intuition
(especially in the south of France).

The good way consists to see whether some terms are negligible or not in
this equation. For example if we look a pétanque ball z remains always small
(even in Marseille), so that − GMm

(R+z)2
−→e z−ω2R−→e R is replaced by −m−→g . The

earth is indeed flat at first order ! Again, for a non relativistic pétanque ball
(v � c), in the Earth magnetic field, mg � qcB. As the rotation of the
Earth is slower than the fly of the ball, mg � 2ωv. As the ball is heavy
compared to the air and as the friction is small mg � SCxv

2.

Finally the Pétanque ball trajectory is governed by :

m
d−→v
dt

= −m−→g .

Suppose that we just look at the free fall problem of Pétanque ball.

At this stage, a good idea is to use variables without dimension, we use
a scale of length L. It characterizes the amplitude of the movement, a time
τ has to be introduced, and we write z = Lz̄ and t = τ t̄, hence

L

τ2

d2z̄

dt̄2
= g or

d2z̄

dt̄2
=
gτ2

L

for a given L, it is then a good idea to take τ =
√
L/g. With this choice

we have both terms in the equation and

d2z̄

dt̄2
= 1.

We will call that ”Dominant Balance” (or ”distinguished limit”), it means
use the scale to obtain the equation with most physics in it. Any other
choice simplifies too much the physics.

Integrating d2z̄
dt̄2

= 1 gives z̄ = t̄2

2 or coming back in the physical space

(remember z̄ = z/L and t̄ = t/
√
L/g) the expected

z =
gt2

2

is recovered.

Note at this point that if we take a smaller time scale we will obtain,
d2z̄
dt̄2

= ε, and if we take a larger time scale we will obtain, εd
2z̄
dt̄2

= 1.

2.5.2 Full problem without dimensions

In fact, the real full problem is

d
−→̄
v

dt̄
= −−→e z − 2εω

−→e N ×
−→̄
v − 1

2
εvv̄
−→̄
v + εE

−→e E + εB
−→̄
v ×−→e B

were εω, εE and εB are small parameters εω = ωτ , εB = (q/m)τB....
The influence of those small εs is supposed to be negligible on the mo-

vement. We note that the ε are ratio of scales, and that the fundamental
scales are dictated by the experimental observation.

• for a satellite (the Spoutnik), it is better to measure from the center of
the Earth (not from the soil), and not to use a rotating frame, the dominant
terms will be :

m
d−→v
dt

= −GMm

r2
−→e r

and if we take a scale L for the length (r = Lr̄), the good scale for the time
t is τ2 = L3/(GM) (Kepler law !).

d
−→̄
v

dt̄
= − 1

r̄2
−→e r −

1

2
εvv̄
−→̄
v + εE

−→e E + εB
−→̄
v ×−→e B

again the influence of those small εs is supposed to be negligible on the
movement.

• at atomic small scale, the picture will be different, the dominant terms
are

m
d−→v
dt

= q
−→
E + q−→v ×

−→
B,

and the total equation is, if we take a scale L for the length (r = Lr̄), and
time t = τ t̄ with τ2 = mL/(qE) :

d
−→̄
v

dt̄
= +−→e N + (L/τB/E)

−→̄
v ×−→e B − εg−→e z − 2εω

−→e N ×
−→̄
v − 1

2
εvv̄
−→̄
v
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were εω, εg and εv are small parameters but (LB/(τE)) is a parameter.

• So depending on the scale the problems are different, some terms are
important, other small... and remember that we deal here with classical
mechanics with v/c as a small parameter.

Of course, from the observations we know which regime is pertinent, and
which scale we have to take into account.

The general method consists to introduce several numbers without
dimension, our job is to identify those parameters and decide which one
are small or not depending on the physical observations (the experiments).
In most of the examples, a small ε produces a small influence on the result.
So that neglecting it does not change the result.

In fluid mechanics, we will see that in some cases, it is impossible to
solve the problem when ε = 0.

Before this, let us look a simple example in classical mechanics where a
small ε produces a small influence on the result. So that neglecting it does
not change the result. We will speak about ”regular problems”.

2.6 Exemple of regular expansion : Est deviation

2.6.1 The problem

In this part, we solve the free fall case with Coriolis force. This is an
example of problem that we are able to solve with exact solution. We
construct first the full solution of this problem, without approximation.
Then we construct the approximate solution of the same problem, for a
small parameter (εω). Then, we check that the full solution when expanded
for the small parameter is indeed the solution of the approximate solution,
for the small parameter.
This is an example of a ”regular problem”.

If we suppose that we are in a configuration where εω = ω
√
L/g is small

but larger than the others, the x̄ is in the direction of Est, z̄ is downwards
to the center of the Earth, ȳ is grossly from N to S (North to South), so

Figure 1 – Free fall in a rotating frame, x is in the direction of Est, z is
downwards to the center of the Earth, ȳ is grossly from North to South. Projection
of the rotation vector with the latitude λ (0 at equator).

that gravity (0, 0, 1), the rotation vector is (0,−εω cosλ,−εω sinλ) so that
the Newton’s second law is :

d2x̄

dt̄2
= 0− 2εω sinλ

dȳ

dt̄
+ 2εω cosλ

dz̄

dt̄
,

d2ȳ

dt̄2
= 0 + 2εω sinλ

dx̄

dt̄
,

d2z̄

dt̄2
= 1− 2εω cosλ

dx̄

dt̄
.

(1)

This is our problem, say Eεω = 0.

2.6.2 Full solution of the problem

Fist, we solve it exactly (for any value of εω, small large or of order one).
We take the derivative of the first line to obtain x̄′′′ and replace ȳ′′ and z̄′′

by their values in the second and third line. As cos2 λ+ sin2 λ = 1 we have

(x̄′)′′ = −4ε2
ωx̄
′ + 2εω cosλ,

we solve it with cos and sin and a trivial solution :

(x̄′) = A sin(2εω t̄) +B cos(2εω t̄) + (2εω)−1 cosλ,

as x′(0) = 0 and x(0) = 0 we integrate and remove the constants :

x̄full = −cos(λ)(sin(2t̄εω)− 2t̄εω)

4ε2
ω

,

and find by substitution :

ȳfull =
sin(2λ)

(
2t̄2ε2

ω + cos(2t̄εω)− 1
)

8ε2
ω

- MHP intro. PYL 0.5- introduction

http://www.ida.upmc.fr/~lagree/COURS/M2MHP/index.html


the final one is more complicated, after algebra we obtain (well, I confess I
used Mathematica) :

z̄full = −−2 cos(2λ) + 4t̄2ε2
ω cos(2λ)− 4t̄2ε2

ω)− 2

16ε2
ω

−

−cos(2t̄εω − 2λ) + cos(2(λ+ t̄εω)) + 2 cos(2t̄εω)− 2

16ε2
ω

.

This is the full solution z̄full, x̄full, ȳfull of Eεω = 0 for any εω.

2.6.3 Simplified solution of the problem, asymptotic sequence

Taking again Eεω = 0, we can solve

d2z̄

dt̄2
= 1− 2εω cosλ

dx̄

dt̄

at dominant order, it is simply

d2z̄

dt̄2
= 1,

hence

z̄ =
t̄2

2

from
d2x̄

dt̄2
= 0− 2εω sinλ

dȳ

dt̄
+ 2εω cosλ

dz̄

dt̄

we guess that x̄ = O(εω), then from

d2ȳ

dt̄2
= 0 + 2εω sinλ

dx̄

dt̄
,

we guess that ȳ = O(ε2
ω), and next (as ȳ is εω times x̄)

d2x̄

dt̄2
= 0− 2εω sinλ

dȳ

dt̄
+ 2εω cosλ

dz̄

dt̄
= 2εω cos(λ)

dz̄

dt̄
+O(ε2

ω),

and hence by integration :

x̄ = εω cos(λ)
t̄3

3
+O(ε2

ω).

This displacement is the famous Est small deviation (λ is the latitude, 0 at
the equator) due to Coriolis force.

From d2ȳ
dt̄2

= 2εω sinλdx̄dt̄ it induces a small south deviation :

ȳ = ε2
ω cos(λ) sin(λ)

t̄4

6
+O(ε3

ω).

Note that : 
z̄ = z̄0(t) + ε2

ω z̄2(t) + ..., ,

x̄ = εωx̄1(t) + ...,

ȳ = ε2
ωȳ2(t) + ...

(2)

so that we have an expansion in powers of εω, each other term may be
obtain by subsitution. For example, the next term in z̄ is just

z̄ =
t̄2

2
− 2ε2

ω cos2 λ
t̄4

12
+O(ε3

ω),

and so on...

2.6.4 Comparing

Coming back to the full solution, z̄full, x̄full, ȳfull of Eεω = 0 for any εω.
We expand it for small ε :

x̄full
εω→0

= −cos(λ)((2tεω)− (2tεω)3/6 + ...− 2tεω)

4ε2
ω

= εω cos(λ)
t̄3

3
+O(ε2

ω),

we reobtain the simplified expansion for x̄. We do the same for ȳ :

ȳfull
εω→0

=
sin(2λ)

(
2t2ε2

ω + 1− (2tεω)2/2 + (2tεω)4/24...− 1
)

8ε2
ω

=
sin(2λ)t̄4ε2

ω

12
+O(ε6

ω),

and finally for z̄, after some algebra (well, I confess I used again
Mathematica) :

z̄full
εω→0

=

{
t̄2

2
−
(
t4

12
(1 + cos(2λ))

)
ε2 +O

(
ε3
ω

)}
Indeed, the expansion in εω of the full solution is exactly the expansion of
the approximate solution. This problem is said to be ”regular”.
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2.7 Exemple of regular expansion : fluid laminar friction

2.7.1 The problem

In this part, we solve the free fall case with laminar viscous friction
(−6πµRv acting on the ball). This is an example of problem that we are
able to solve with exact solution. We construct first the full solution of
this problem, without approximation. Then we construct the approximate
solution of the same problem, for a small parameter (ε). Then, we check
that the full solution when expanded for the small parameter is indeed the
solution of the approximate solution, for the small parameter.
This is an other example of a ”regular problem”.

If we suppose that we are in a configuration where ε = (6πµR/m)
√
L/g

is small but larger than the others, z̄ is downwards so that gravity (0, 0, 1),
so that the Newton’s second law is :

d2z̄

dt̄2
= 1− εdz̄

dt̄
with z̄(0) = z̄′(0) = 0

This is our problem, say Eε = 0.

2.7.2 Full solution of the problem

The solution for velocity is
dz̄full
dt̄

=
1

ε
(1− e−εt̄) so that

z̄full(t̄) =
εt̄+ e−εt̄ − 1

ε2
.

2.7.3 Simplified solution of the problem, asymptotic sequence

Taking again Eε = 0, we can solve

d2z̄

dt̄2
= 1− εdz̄

dt̄
with z̄(0) = z̄′(0) = 0

we guess that z̄ = z̄0 + εz̄1 + ..., so that

d2z̄0

dt̄2
= 1, hence z̄0 =

t̄2

2

then
d2z̄1

dt̄2
= −dz̄0

dt̄
hence z̄1 = − t̄

3

6

we found the expansion z̄ = t̄2

2 − ε
t̄3

6 + ...

2.7.4 Comparing

Coming back to the full solution, z̄full of Eε = 0 for any ε. We expand it
for small ε :

z̄full
ε→0

=
t̄2

2
− ε t̄

3

6
+ ε

t̄4

24
+O(ε5),

we reobtain the simplified expansion for z̄ = z̄0 + εz̄1 + ... in the previous
asymptotic sequence. Indeed, the expansion in εω of the full solution is
exactly the expansion of the approximate solution. This problem is said to
be ”regular”.

2.8 Exemple of regular expansion : fluid turbulent friction

As an exercise, the case with turbulent motion is −ρCxSv2/2, the small
parameter ε = (ρCx(SL)/(2m)).

On the one hand, the asymptotic solution of

d2z̄

dt̄2
= 1− ε(dz̄

dt̄
)2 with z̄(0) = z̄′(0) = 0

is z̄ = z̄0 + εz̄1 + ..., so that

d2z̄0

dt̄2
= 1, hence z̄0 =

t̄2

2

then
d2z̄1

dt̄2
= −dz̄0

dt̄

2

hence z̄1 = − t̄
4

12

we guess that z̄ = t̄2

2 − ε
t̄4

12 + ...

On the other hand, we obtain as exact solution

dt̄ = 1/(1− ε(
dz̄full
dt̄

)2) = (1/2)(
1

1−
√
ε
dz̄full
dt̄

+
1

1 +
√
ε
dz̄full
dt̄

)

),
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hence by inversion of tanh−1(x) = 1
2 ln( (1+x)

(1−x)) we have

dz̄full
dt̄

= tanh(
√
εt̄)/
√
ε,

so that z̄full = ln(cosh(
√
εt̄))/ε which gives the previous expansion for small

ε :

z̄full
ε→0

=
t̄2

2
− ε t̄

4

12
+ ...

Again the expansion in εω of the full solution is exactly the expansion of
the approximate solution. This problem is said to be ”regular”.

2.9 Regular problem

In practice, we will have a problem, say :

Eε = 0

to solve, which depends on a small parameter ε and we look at an asymp-
totic approximation of it. When the solution can be obtained by simply
setting the small parameter to zero :

Solution
[
Eε
ε→0

]
=Solution[Eε]

ε→0
, (3)

we say that the problem is regular. In other words, the perturbed
problem for small values of ε is not very different from the unperturbed
problem for ε = 0.

2.10 Not regular problems ?

Are all the problems of mechanics regular ?

No, this is not always the case, even for the very simple free fall. Let
us look at what happens if now friction and gravity are of same order of
magnitude, and mass small. Newton’s law for a mass falling in gravity with
viscous friction is

m
d2z

dt2
= −mg − 6πµR

dz

dt
.

We have for sure a competition between free fall mg and viscous drag. A
natural velocity is the Stokes velocity Vs = mg/(6πµR), this is the terminal
chute velocity. We define the scales z = Lz̄ and t = τ t̄, we have :

Vs
g

L

τ2

d2z̄

dt̄2
= −Vs −

Ldz̄

τdt̄
,

hence we take L
τ = Vs and we identify ε = Vs/(gτ), so that we obtain the

following ODE

ε
d2z̄

dt̄2
= −1− dz̄

dt̄
.

Boundary condition are same : z̄(0) = 0 and z̄′(0) = 0. Indeed, the ratio
Vs
gτ is small if velocity scale gτ of free fall is large compared to the Stokes
velocity. Or when the time scale τ compared to the time scale Vs/g is
large. Or if the mass is small, or if viscosity is small.....

If we put ε = 0, we have 2 BC, but only one degree of derivation , z̄(0) = 0
and z̄′(0) = 0

0 = −1− dz̄

dt̄
.

We are have too many Boundary Conditions, If we take z̄(0) = 0 so that
z̄(t) = −t̄, the problem is in t̄ = 0 where z̄′(0) = −1 6= 0.

This problem is singular for small ε.

The solution may be obtain by matched asymptotic expansion, see next
chapter.
This was in the exam of 2021 http://www.lmm.jussieu.fr/~lagree/

COURS/M2MHP/exam2021.pdf.

3 Conclusion

3.1 ”one of the reasons we got here today”

This regular problem of free fall is maybe, in classical mechanics, the
most important, from history of the concepts to the motion of any body.
Remember that the astronaut David Scott did the Galileo experiment in
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1971 during the Apollo 15 moon mission on the Moon. He let fall at the
same time a hammer and a feather, they arrived on the soil at the same
time, showing that the mass of an object does not affect the time it takes
to fall :

Left photo NASA Wiki, right photo PYL a hammer and a feather.

Verbatim :
167 :22 :06 Scott : Well, in my left hand, I have a feather ; in my right
hand, a hammer. And I guess one of the reasons we got here today was
because of a gentleman named Galileo, a long time ago, who made a rather
significant discovery about falling objects in gravity fields. And we thought
where would be a better place to confirm his findings than on the Moon.
167 :22 :28 Scott : And so we thought we’d try it here for you. The feather
happens to be, appropriately, a falcon feather for our Falcon. And I’ll drop
the two of them here and, hopefully, they’ll hit the ground at the same
time. (Pause)
[Dave is holding the feather and hammer between the thumb and forefinger
of his left and right hands, respectively, and has his elbows up and out
the side. He releases the hammer and feather simultaneously and pulls his
hands out of the way. The hammer and feather fall side by side and hit the
ground at virtually the same time.]
167 :22 :43 Scott : How about that !
167 :22 :45 Allen : How about that ! (Applause in Houston)
167 :22 :46 Scott : Which proves that Mr. Galileo was correct in his

findings.
167 :22 :58 Allen : Superb.

This was the absolute proof of asymptotics as on Moon εv = 0. In fact,
the astronauts were aware of the εE term : because of static charge, the
feather might have stuck to the glove.

Furthermore, all the Earth-Moon flight was calculated using asymptotic
methods, from the all orbits up to the reentry problem (astronauts came
back, alive, to testify).

3.2 Final remark

This curse of asymptotic necessitates some remarks. Some people may
find it not useful now as computers are so powerful... Neglecting terms in
equations is no more useful, of course, but we will see that the point of view
of asymptotics helps a lot in the understanding of the problems and that a
small parameter introduces difficulties in the numerical resolution.
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The web page of these files is http://www.lmm.jussieu.fr/∼lagree/COURS/M2MHP.

/Users/pyl/ ... /intro.pdf

3.3 Annex : Technical requirement

The ”master” equation that we will sove through all the course will be something
like

my′′ = −αy′ − ky,

or

ρv0
∂u

∂y
= −∂p

∂x
+ µ

∂2u

∂y2
,

as we have acceleration (second order derivative in time), or we will have viscosity
(second order derivative in space) so we need to know how to solve those equations :

ay′′ + by′ + cy = 0.

The reader of this course is supposed to know that solutions are ert with

r =
−b±

√
b2 − 4ac

2a
...

photo pyl
Raymond Subes ”Sans Titre” 1961 (entrée de Jussieu Quai Saint Bernard)
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