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Résumé

Free surface flows of water are clearly ubiquitous on Earth. As viscosity is small,
the inviscid equations of water flow are presented. First, the case of small ampli-
tude perturbations in small depth is presented, so linearized, this leads to the
”?d’Alembert equation” or "wave equation”. Second, the case of small amplitude
perturbations in any depth is presented, this allows to explain the dispersive beha-
vior of water waves. This is called ” Airy wave theory”. Third the ”shallow water
theory” is presented, this corresponds to significant perturbations of the height
of water, which is small compared to the length of the waves; the equations are
non linear (”Saint-Venant” equations). Then, if one considers in this latter fra-
mework small amplitude waves, and the first correction due to depth, one may
have a balance between "non linearities” and ”dispersion”, or a balance between
”steepening” and ”spreading”. This leads to the solitary wave solution of "KdV
Equation” : the ”soliton”. The KdV (Korteweg—de Vries) equation is presented as
an application of multiple scale analysis.

1 Introduction

1.1 Observations of the soliton

First observed by John Scott Russell in 1834, the ”soliton” is a wave which
has always the same shape even if it is not in the small perturbation regime.
Russell was an engineer and scientist, he experimented Doppler effect with
trains. He engineered and designed the ”Great Eastern” the largest boat at
the time in 1860. But, before he did many experiments on models. During one
of those experiments, in 1834, on the Glasgow-Edinburgh channel, a wave was
generated during the abrupt stop of the boat (drawn along a narrow channel
and powered by horses). The wave moved with constant shape. He took his
horse to follow it on several miles (see the text from Remoissenet [16], on
page 319 of the Report on Waves, section I ”"The wave of translation”). He did

after that a lot of experiments to reproduce it in a 30’ wave tank in his back garden.

"This is a most beautiful and extraordinary phenomenon : the first day I saw
it was the happiest day of my life. Nobody had ever had the good fortune to see
it before or, at all events, to know what it meant. It is now known as the solitary
wave of translation. No one before had fancied a solitary wave as a possible thing.”

1 was observing the motion of a boat which was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped-not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of
violent agitation, then suddenly leaving it behind rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of
water, which continued its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet long and a
foot to a foot and a half in height. Its height gradually diminished, and after a chase of one
or two miles I lost it in the windings of the channel. Such, in the month of August 1834,
was my first chance interview with thar singular and beautiful phenomenon which | have
called the Wave of Translation, ...

John Scott Russell, Report on Waves (1844)

It was followed by other experiments by Henry Bazin and Henry Darcy and then
by theoretical investigations by Joseph Boussinesq ( < Théorie de I'intumescence
liquide, appelée onde solitaire ou de translation, se propageant dans un canal
rectangulaire >, dans Comptes Rendus de I’Académie des Sciences, vol. 72, 1871,
p. 755-759) and (< Théorie des ondes et des remous qui se propagent le long
d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce
canal des vitesses sensiblement pareilles de la surface au fond >, dans Journal de
Mathématique Pures et Appliquées, Deuxiéme Série, vol. 17, 1872, p. 55-108) and
Rayleigh (1876) and, finally, Korteweg and De Vries in 1895. The equation that
we will establish with asymptotic methods is :
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De Vries was the student of Korteweg, the title of the thesis Bijdrage tot de
kennis der lange golven, in dutch ” Contributions to the knowledge of long waves”.
Another famous student of Korteweg is A. Moens. They proposed the velocity
in arterial flow ”Moens-Korteveg” equation (arterial flows and water flows are
very similar; the elasticity of arteries is the gravitation in water flows). The
KdV equation was not studied much after this until Fermi- Pasta- Ulam and
Zabusky & Kruskal (1965). They wanted to study the heat transfer in a solid
consisting in a crystal modeled by masses en springs in a periodic domain (one
dimensional lattice). They discovered traveling waves which were not damped.
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They rediscoverd the soliton.

Ficure 1 — The Soliton reproduced in 1995 on the very same place
than Scott Russell ’first” observed a solitary wave on the Union Canal

near Edinburgh in 1834. (Photo from Nature v. 376, 3 Aug 1995, pg 373)
http://www.ma.hw.ac.uk/solitons/press.html

See Dauxois, Newell [I3], Remoissenet [16] and Maugin [I5] for other historical
details and a view of the fields of application. The fields are very large, from
hydrodynamics, lattice waves, waves in electric lines, light waves in optic cables
etc. but as Feynman says : “Now, the next waves of interest, that are easily seen by
everyone and which are usually used as an example of waves in elementary courses,
are water waves. As we shall soon see, they are the worst possible example, because
they are in no respects like sound and light; they have all the complications that
waves can have.” Lectures on Physics, chapitre 51-4 “Ondes”.

1.2 Scope of the lecture : heuristical point of view, small
dispersion on Shallow-Water

1.2.1 Considerations on equations

Waves in fluid are classical in mechanics of fluid courses (see M1 lecture by the
same author [I8] and [19]). What we want to do here is to restart from scratch this

= : e
b= — - =
r ;—‘ ; - —y
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FIGURE 2 — The original sketches of Scott Russel. ”The great wave of transla-
tion” http://www.ma.hw.ac.uk/~chris/Scott-Russell/SR44.pdf. The wave may be
generated by a moving wall, top left or a falling weight top right, or opening a
gate. The final result is a unique wave which translates without change in shape
on very long distance.

study with a unified point of view in order to recover the 0’Alembert Equation,
the Saint -Venant and the Airy Wave theory all in the same theoretical framework.
For instance, the 0’Alembert Equation, is heuristically proved as follows, we sup-
pose a plug flow wu(z,t), its acceleration is pdu/0t, the forces exerted are the
pressure ones. Due to the elevation of the wave 7 (over the free level y = 0), the
pressure is simply pgn for hydrostatic reason (we will see that in far more details
later or see [1§]). Then
ou on
PE = —PQ%o
The thickness of the fluid layer is hg, and 7 is smaller than hg, the other needed
equation is the conservation of mass, as there is no v in the equations, changes of
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the flux of u : 2

n [18]) :

(see why

ox

on n Ohou
ot Oz
At this point, to eliminate u, one needs the above mentioned hypothesis : the velo-
city is almost constant across the layer (it looks like a plug flow, or in other words,
the flow is irrotational). This gives the wave equation (0’Alembert Equation) :
2 2
@ — ghoﬁ = 0
ot? Ox?
with a celerity co = v/gho and solution in f(z — cot) + g(z + cot). To go further in
complexity, we can put some non linearities in these equations but still suppose a
plug flow (9,u = 0). The acceleration is then p2 S +u , and flux will be (hg+7)u,
this will give the Saint-Venant (Shallow Water) equatlons :

ou Ju on On  Ohu

Po; Jru% =—P9q and 5 + e

Instead of this description, we can imagine a linear small perturbation, with a
flow which is no more a plug flow, but depends on z and y : u(z,y,t), this will

give the famous dispersion relation (again we will settle this again, see or see
as well [19)) :

=0.

=0.

w? = gktanh(khy).
For long waves, this equation gives again the 9’ Alembert celerity co = w/k = v/gho.

1.2.2 Adding independantly non linearities and dispersion

Having in mind those equations describing the waves, then the solitary wave
will be presented as a mix of all this dispersion, khqg small and non linearity, n/hg
small that we will look at now. There are simple argument to settle at this point
KdV such as :

e from the wave equation the solution is u = gn/co, with ¢3 = gho
from the wave equation the wave which travels from left to right, this solution

satisfies 9 5
n n
— =0
ot g, ox
e from the linear Wave Theory we have the dispersion relation w = 1/ gk tanh(khg),

this is expanded in w = \/gk;Qho — %gk“lhg + ... for long waves, which is at order
two : w = /ghok(1 — lehg +...), then for a wave n = noe*="** as —iZn = wn,

we identify w with —i5- 6157 and k with i% therefore
0,0 L1 ,08°
—i— = — —i*=hi=——=) + ...
iy = gy T ghogg) T

so this following equation has dispersion relation w = v/ghok(1 — $k*h3) :

0 0 5 03
ﬁ+00l+0 U

ot ox 6083_0'

e Shallow water equations may be re written in a different way. We define ¢? = gh,
so 2cdc = gdh, momentum is written with this new variable c :

8u 8 80
and mass conservation multiplied by g :
oh Oh ou Oc Oc ou 0(2¢)  0(2¢)  Ou
— = hich is 2¢— +2uc—+c? — = P Hu—F——4c— =
gat—|— g8+h8 = 0 which is ca—l—ucax—&—cax 0 or T +u O +C(‘9x 0

if we add and substract these equations with u et ¢, we obtain (more details in
[18]) :

[881% (quc)aax](qu 2¢) =0 and [gt

This shows that along the lignes in the plane z,¢ defined by dz/dt = u £ ¢ we
have integrals of u £ 2¢ constants. Those lines are called ”characteristics”, and the
integrals u & 2¢ are the ”"Riemann invariants”.

For a wave going to the right (u—2+/gh) is constant. If the surface is unperturbed
far away (u = 0, h = hg), then u is obtained thanks to conservation of the Riemann

invariant :
u = 2+/gh — 2+/gho

(u—c)%](uf 2¢) = 0.

the mass conservation :

oh  O(uh)
at + or 0
with i + hg = h (n perturbation of free surface) and the previous u
on an an
E‘*‘(? g(ho +1n) —2 gho)%"'(ho-H?) (9)/((h0+77))8 =0

an
3\/ h0—|—77 gho 3 =0

Linearisation around ho at small 7 :

(3v/g9(ho + 1) — 21/gho) = \/gho(3(1 +ﬂ+ _9)— \/970(1+2;?,TO+ )

The final (inviscid Biirgers) equation :

3n 817
a1+ VIRl + )l =
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This equation leads to shocks as the higher the wave the faster it 1s

e Then the final equation of perturbation of the right moving wave a 7+ cog 8’7 =
is estimated as the sum of the two effects, the nonlinear steepening 602377’0% and

the dispersive spreading cg 6h0 5.4, this is the KdV equation :

1o} 1o} 3n O o3
on g om, Bn0n 1,500

1
ot or 2ho O 0505 =0

We will use the longitudinal scale, say A such that the dispersive term is small, it
is (ho/)\)? < 1 and the non linear term is small as well /hg < 1, but :

n/ho = (ho/N)?* < 1

The Ursell number is the ratio 4 :0/ /}i\o)z =

with small parameters (hg/\)? < 1 and n/hg < 1, (we will define § = ho/\ and
€ = 19/ho the small parameters) and using dominant balances and multiple scale.
This, unfortunately, makes the 9’Alembert and Shallow Water description less
clear (the following pages are then obscure... maybe the previous ones as well...).
That is the price to catch the Soliton.

’%2. We will present the complete theory
0

So, we write the full system without dimension, and we show it contains Wave
Equation, Shallow Water and Linear Wave theory of arbitrary depth. Those three
”simple” solutions of the full problem will guide us to find the proper scales in
terms on § = ho/\ and &€ = 19/ho only. So we will fight to find the final system
with 0 and € only. The developments to find the final system are maybe
obscure, but once we found the proper dominant balances, is enlightening
and obscurity goes away. Starting from this system, we show again that it contains
Wave Equation (0’Alembert), Shallow Water (Saint-Venant) and Linear Wave
Theory of arbitrary depth (Airy).

The purpose of this lecture is to join three names 0’Alembert, Saint-Venant,
Airy and three models when € = 62 (non linearity balnces dispersion) in a new

model : the Korteweg De Vries equation.

Let us do the reset/RAZ/ Crl Alt Del

2 Equations

2.1 Equations with dimensions

FIGURE 3 — Notations, y = 0 is the unperturbed level of water, hy depth of
unperturbed water, A characteristic length of the wave, § ratio of these quantities;
¢ relative amplitude of the wave.

Let us do the reset. We start from scratch : Navier Stokes and try to identify all
the small parameters to obtain KdV. Write Navier Stokes, without dimension, put
Re = 0o come back with dimensions, here is Euler incompressible and irrotational
(remember conservation of vorticity in ideal fluids) :

ou Ov ou Ov

ox T, T (g )=

ou ou ou Ip v v v Ip
Mot e ey T e M e TV T oy Y
notice the irrotational hypothesis which is very strong, and which is not so much
discussed in the literature. These equation are for —hgy < y < 1. Boundary condi-
tions are the pressure p(xz,y = 1) = po at the surface (we neglect here surface
tension) and the relation linking the perturbation of the moving interface and the
velocity of the water just at the surface :

on(x,t on(x,t
o, t) = P1ET gy 210D

and slip conditions at y = —hy.
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2.2 Equations with the potential
2.2.1 Finding the Equations

From irrotational flow, one usually define a potential :

o¢ o¢
= 7; V= —
ox dy
and from incompressibility :
0? 02
25 7,
ox2 = Oy?
this Laplacian must be solved with boundary condltlons at the free surface and at
the bottom. At the free surface v(z,y =n,t) = 5] + ua77 which is
99 Oon 09 0n

8y|y T ot * ox Oz Ox
and writing the momentum with irrotationality

ou ou ou Ou 10u? 10v? ou Ov

o T Ve =P Taar Taar TGy e

gives a kind of Bernoulli equation :

Ou 10 o oo  0Op
Aot oW Hv)=—5,

with the pressure at the surface p(x,y = ) = po. Note here that the real jump
relation in inviscid flow between two media 1 and 2 may be written with the surface
tension :

(@0, 1), t) = pala, n(2,1),) = 0V - T
the normal to the surface
1o = (—0n/0x,1)/y/(1 + (9n/0x)>

Here we neglect o/(pUZho) (the inverse of the Weber number We = (pUghg) /o).
At equilibrium, when there is no flow

p=po+ pg(—y)

Then pg + pg(—y) is the "hydrostatic” pressure, we look at P the departure from
it. Pressure is then

p=po+pg(—y) + P.

At the interface

p(z,y = +n) = po, so p(z,y =n) =po = po + pg(—n) + P(z,y =n)

‘We hence deduce
P(z,y =n) = pgn.

The active part of the pressure is related to variations of interface 7 :

dp _OP 877
dx  ox &c

At the free surface, the previous momentum with irrotationality and the pressure :

0 0
87(8f+ (u? + %) 4+ gn) = 0.

2.2.2 Equations

The final system that we have to solve is the Laplace equation for the potential
¢ in the domain of water :
0? 0?
j 4 j =0,
oxr?  0y?

with an "unsteady Bernoulli” with potential ¢ at the free surface y =7 :

do 1 8¢ 8¢

T 7% =0,

ot + (ax + dy )+ gn

at the free surface we have as well v = 8" + u o ' which is the relation between
potential and surface elevation 7 :

06 _on 00 0n
dy ot Oz dx

On bottom y = —hg v = 0 which is the slip condition

% _y,
Ay
Far usptream, and maybe down stream every thing is 0. This is the full system we
have to solve. note that the surface is an unknown of the problem, and that it is
defined with a non linear equation.
First we write it without dimension.
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2.3 Equations without dimension

It is here a good idea to distinguish between scale in x and scale in y, so we
write z = AT and y = hoy, the surface elevation is n = no7. The potential is not
known, as the time : ¢ = p@, t = 7¢. We define the ratio of scales § = hg/\ and
€ = 19/ho. Then incompressibility :

2?9 9%
P+ 0 =0 1
0z * 02 (1)

momentum at the surface

e 9,007 94
= = 4+ £ )= 2
S gtho 0t~ 2gh} (6 0z + o] )=0 2)

velocity at the surface

$T 06 00 180600
eh?dy Ot  hi 0z 0z

at the bottom y = —1

53
9% _,
oy
we have to find the relations between :
@, T, A\ € and 0.

We will first explore three simplifications of this system (9’Alembert, Airy swell,
Saint-Venant). Those three simplifications will help us to understand two different
regimes and find the pertinent system (the one with a box around .

As we do the same thing several times, this complicates the lecture, so the
reader may skip to read §4]and then come back here to be sure that the scales
are OK.

3 Solutions of the Equations ¢ — 0 and/or § — 0

3.1 Fully linearised waves ¢ — 0 and § — 0

The first simple case is the case of fully linear waves in a shallow water, this leads
to the &’Alembert equation as we just will see. First we start from the Laplacian
Eq. [ _ _

827¢> — f52a27¢
0y 0z2’

S0 gy = 0 at leading order, with a Poincaré expansion ¢ = ¢g + 62¢1 + 6% + ..
at first oder _ _
%o ¢

0y 9y
so that ¢o(z,t) = f(z,t), we define f’ = Oz¢o, we note that ¢(z,) is only a
function of (#,%) at dominant order. If we now put the O(6?) term,

=0

=0, withing = —1,

Por P
0y2 0z’
The solution at order 1, with %Ll =
82(51 1 . a(gl — 1"
G =1 gives S = (g4 1)f

from the value at the bottom —1 we have the expression of the transverse velocity,
we note that this velocity is very small O(6?) :

67(? _ 8¢0 62 8¢_1 =0— 528 ¢

oy oy oy 0z?

At this point, we have obtained the expression of the transverse velocity, we
note that this velocity is very small O(§?) :

% _626¢1 — _628 (Z)

ay oy 0T2
We have to look at the surface, it is in § = e, as € is small, this is § = 0. This
is "flattening” of boundary conditions.

@ _628¢

0y 0z2
The domain is —1 < § < 0. At the surface § = 0, the gradient is the variation of
interface, hence equation [3| gives
87{) = Lh%ai? + 525@@
oy T Ot 0T 0%

G +1)...

(¥ +1).

(0+1).

we can neglect the non linear term and substitute

¢ 9%y z—:ho 87)

52
0y 0z? T Ot

0+1)= + O(6%)

2 —
so that by dominant balance 62 = ZLT" and as by convention ¢g = f

25 _ o
02 ot
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S22
The momentum at the surface (Eq. is (as we note that in 52% + g—(g , the first

is O(0?) while the second is smaller O(§%)) :

_ p 09 2 9
799 5
et grhgy Ot of 2ghd

) =0,

by dominant balance ¢ = eg7hg, gives (with remember ¢ = ¢ + 62¢1 + ...) :
of

0
7+ 37? + smaller terms = 0, or at dominant order 7 + P = 0.

So eliminating ¢ between this ¢ = egrho and the previous 62 = (¢h3)/(¢7) and
using the relevant scales A = hg/d > hg, gives

M1 =/gho.

Then, the non linear or smaller terms of (Eq. D are O(62 2 ) which is

2gh3
O(%) = O(£?), which is indeed small as claimed.
The expression y/ghg is a velocity (say co = v/ghg). Hence ¢ = eAv/ghg. Then,

eliminating f gives :

2 2 = =
8—} = a—_f and @ = @
ox? o2 ox?  ot?
the & Alembert wave equation of unit velocity (which is co = /gho with dimen-
sions). This is valid for waves of small amplitude € < 1 in shallow water § < 1. In
the next paragraph, we will study waves of small amplitude € < 1 in deep water
0 = 1. In the paragraph after, we will study waves in not small amplitude € = 1
in shallow water § < 1. Finally we will study waves of small amplitude € < 1 in
shallow water § < 1 but no so shallow.

For those various waves, we will follow the same way : do some dominant balance
to take some terms, integrate the Laplacian from bottom (slip) to top (perturbation
of free surface), which gives in fact the small transverse velocity and use of the
momentum/ Bernoulli equation.

3.2 Scaling with ¢,6

This 0’ Alembert equation helps us to find the scalings. Having defined § = hg/A
and € = n9/ho, we write z = AZ and y = Ay, the surface elevation is 7 = ed\7j.
The incompressibility :

0% 0%
27 —_— =
0 0oz?  0y? 0 @
tells us that 55 99
1
— 2 —_— T =
R 0(6%) or 2 05 O(1). (5)

This scaling was obtained in the linearised case (9’Alembert). This scaling is a bit
surprising, but comes from asymptotics. This is substituted in the velocity at the
surface, as

¢ 09 _ Qﬂ[i%]_@ 7% 06 O (6)
eh3 0y  eh3'820y Ot hZ 0z 07
the solution of the Laplace equation ([53 g—‘;] = O(1)) suggested a dominant balance

o182
hg

62% = 1. Then, the non linear term follows it is = &. The equation is finally

with & and € only : ~ ~
199 0On 0¢ On
520y ot 0103 @
Momentum at the surface,
- —2 =2
_ \ % ¢ 2% % —
Nt oot TagmdCar tay ) 0 (8)

The scaling s obtained in the linearised case (9’Alembert) is € = —£— (pertubation
gTho

of 1 are of same magnitude than %) : As seen just before 57%52 =1, so that the

non linear term :

> _ OTV_(#T 1

o = grigig) =) = <Cm):
Then, momentum at the surface reads :
_9¢ e, L0460 99
—+ == +—)=0 9
Mgt Tay ) ©)
As %62 =lande= QTL}LO, we have :

AT =/gho, and ¢ = eX?/T = eA/gho

ho ghg
7':“@, and(pzé‘\l?,

The final equations without dimension with § = hg/A and e = ny/hg, and with
no approximations

this is as well

0%p  0%¢
27 _— =
"ot oy* N _
106 _ o, dboq
2 — - I — — 9
) %’y ot 0x 0% (10)

96 ¢.06°> 109¢

1+ 58+ 5050 +@877) = 0,
9¢
a*gb:fl =0
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3.3 Linear dispersive solution, Airy 1845, ¢ — 0,0 = O(1)

We look here at the swell (houle in French) in open sea. This is a very classical
solution (Lamb Chap IX, Landau & Lifshitz §12, etc) introduced by George Biddell
Airy of the Linear Wave theory with arbitrary depth (between 1841 and 1845).
The length and the depth are of same order. So we consider § = 1, we take the
same scales in x and y, it is more simple to use hg here, so that the bottom will
be in y = —1. The equation is then a full Laplacian. Taking both scales equals
is of course the first simple possibility that we have to explore before looking at
different scales. We consider small amplitude waves so that ¢ < 1 then from the
same balance of the velocity at the surface (Eq (3)) and from the momentum

we have 7 = /hg/g then ¢ = e1/gh3 = n0v/gho

¢ & _
0z2 0y
R ¥ S ¢ _0n 99
7+ 5% +e (&E + 0 ) =0 and as well at surface 95 Bf+€3f6£
at the bottom 95
s—_1. 2
y=-1, Fyi 0
If course this is system for § = 1.

We look at the solution of the linearised problem

82 y 2 1
T(b + 8—_¢ 0
o2 Oy
0°¢ 0¢
W'O + 8_37‘0 =0
99
7 =0
ay' !
This problem as solution in ei(m_‘:’ﬂ, with this ansatz, the solution of the Lapla-
cian,
oo %9 99 99 -
—k? —— =0 with B.C. —=|_1 =0, ——|o = @%¢(0).
¢+8g2 wi 3@‘ 1=0, ag|o w”¢(0)

This gives a solution in ¢(0) cosh(ky + k)/ cosh(k) which preserves the g—§|,1 =0

boundary condition. So g—§|0 = $(0)k tanh k then, it gives the famous relation of
dispersion : - -
w? = ktanh(k)

with dimensions
w? = gk tanh(khy),

FIGURE 4 — Waves on a sloping beach with Gerris. Code it at the end.

the phase velocity ¢(k) = w/k is function of k, this means that a signal will be
changed as every space frequency has a different velocity :

c(k) = +/gtanh(kho)/k.

Looking a small depth

3
w? = gk(khy — @ +...)

This @ will be important for solitons, we will discuss it after. Then, the phase
velocity ¢ = w/k :
kho)?
c=+/gho(1— % +...)

gives at smalll khg, ie very very small depth,

c=+/ghg.

This is again the shallow water velocity we have already seen in the previous
paragraph.

If depth is too small one has to take into account the surface tension : o/(pUZho)
is here o /(pgh2). So if the depth is of same order of magnitude than the capillary
length A. = /o /(pg) then one has to use the surface tension jump. This gives the
correct dispersion relation

w? = g(1 + k*\2)k tanh(kho).
Notice here that for surface tension wave, small wave length travel faster. But, the

effect is reversed for Airy waves in shallow water.

3.4 Non linear waves : Shallow water, ¢ = O(1),6 — 0

There is another relevant simplification of the full problem which corresponds
to flows in a small depth of water, so it is called ”Shallow water”. Or, flow with
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changes at a scale much larger than the depth. We call this also ”Saint-Venant”
system. So, if & = hg/\ < 1, the length wave is long compared to the depth, and
now we can allow € = 1. The latter means that the wave may be large in height,
so non linear phenomena appear. Let us look at this : a balance of terms with non
linearities. At first order

ﬁ — f(;?@

02 0T?

but non linearities in Eq. [3| give the balance 7¢d%/h2 = 1 which is T /A% =1
pT00 _ 0y 0600
h3 oy Ot 0z 0z

)

In the momentum Eq we have e which is 7, then F7ho m

¢ that we compare to
52
the next two which are, with 7¢62 /h3 = 1, the non linear term 2 (% +52{Tg ).

. 2g7ho
Hence, as § is small :

- -2
R (99 109
7+g7h0(8f+28i

)=0

As we have 7¢/\% = 1 from the non linearities of [3 I and ¢ = gThg from the non
linear terms ofl 2| this gives \/7 = /gho and <p N /T

With these scales, the scale £ hg in front of 2 8@ the velocity (of Eq. |3|) is A\2/h3,

which is large : 72 > 1. This is the subtle part, as ¢ does not change so much
trough the layer (from the Laplacian, the variation in § are of order §2), the small
variation is magnified by 72, so that the result is of order one.

We have shown that A\/7 = \/gho and ¢ = A\?/7, so that ¢ = A\/ghg and
7 = MVghg, so with € = 1 and § < 1, the final system reads :

@:_52@
02 0z?
*+(%+}%2)—0
"V Toez T

199 ¢ _on L 99 ¢ an
029y Ot 0z 0T
Coming back with @ = ¢z we have for momentum at surface (after derivation by
Z), a balance between the total derivative of the velocity (which is a ”plug” flow,
(Z,t)) influenced by the variations of pressure due to the changes of surfaces 7 :
ou n _0u on
- U— .
ot or oz

Then working on the continuity equation, we first we integrate the Laplacian

o6 82¢
ay 63:2( y+1)

and at y = 7, this gives g’? at the interface which is 62 gxf (7 + 1). Using the

definition of % (note that % = ¢z is function of z,t at dominant order), we inject
this in relation of the surface velocity, ¢ disappears :

ou on  _0n
1 .
21D = G e
We can write this system in a more readable way, as we obtain the famous Shallow

Water system (Saint-Venant, in French, GfsRiver in Gerris and http://basilisk.
fr/src/saint-venant.h in Basifisk ) :

ou + u@ = 877
gﬁ T T

This system gives advection, shocks, one example is on figure [5| were we see a
moving hydraulic jump.

An alternate formulation suitable for Shallow Water only (Saint-Venant) is in
http://www.lmm. jussieu.fr/~lagree/COURS/MFEnv/MFEnv.pdf,

4 Equations with ¢ and ¢

4.1 Sum up of the scales

The three previous subsections we looked at the d’Alembert § < 1, € < 1, then
the case of dispersive linear waves, § = 1, ¢ < 1 and Saint-Venant § < 1, € = 1.
These are three fundamental points of view. We turn now to a case in between
with some dispersion and some nonlinearities in the set of equations first
line and [3) second line.

Using the previous dominant balances necessary to obtain a displacement of the
flow, each time we obtained the same scalings (672 g¢ 377 of the surface velocity

Eq. ]3| and Eq. 1| and 77 ~ ﬁ of the momentum Eq. |2 I) we remind the scaling we

have obtained
=eX /T =eA(\/T), T=A/Vgho

which is as well

w =¢eX/ghy and T =

A ®
locity is = = e\/gho.
\/!%, veomyls/\ €v/gho
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FIGURE 5 — here example of a moving hydraulic jump computed by Gerris solu-
tion of GfsRiver . Code it at the end. see http://basilisk.fr/sandbox/M1EMN/
Exemples/belanger. c| with Basifisk

Remember that this comes from the scales we obtained in the fully linearized
and Shallow Water cases. With those scales, we have already written the equations
with ¢ and ¢ (10} the final system with ¢ and ¢ reads for Eq. , momentum at
the surface Eq7 velocity at the surface Eq. , and at the bottom y = —1 :

,0%0 09

06 <08 1000
ta e tey) 0
109 _ on_ 0600
29y ot ‘ozox
¢
igb:fl =0

If, in this set of equations we put ¢ < 1 and § < 1 we have the wave equation,
and if; in this set of equations we put e = 1 and § < 1 we have the shallow water
again, and if, in this set of equations we put ¢ < 1 and § = 1 we have Airy linear

dispersive solution again, we just look at what happens with a small wave in a not
so shallow river.

4.2 Non linearity balances dispersion : small ¢ equals §°

We are now fully convinced that system is the good system with the per-
tinent scales. As 52% + g%‘f = 0, by integration we have g—%’. The velocity at the
surface (Eq.[3) says B B

10¢ _0n, 0000
20y ot 0xox’
at the bottom § = —1

08
% _y,
9y
Solving the Laplacian
2?6  0%¢
o=+ 55 =0
0z + 0y?
with a Poincaré expansion ¢ = ¢g + 62¢1 + 6*po + ... at first oder
9% o e 0
e =0, with in y = —1, 8—@:0
so that ¢o(z,t) = f(z,t), we define f' = dz¢o. Hence the various orders solve the
recurrence _ _ _ _
¢ 9o 92 R
— =——F—and &5 = ————, ...
02 0z? 02 0z
The solution at order 1, with %Ll =0:
1 O _
072 = —f" gives e =—(g+1)f"

and by integration
- 1
o1 =—f"(@,0F + 57°) + K(3,9)
the K is 0 as if we suppose that the condition for (z,t) are in f(z,f). At next
order, with % =0:
Y
9?92
oy>

e _ 172 : ‘%_ 1*2 1*3_1 "
= ")y + 57°) gives % =G+ —3)f

then, if we suppose again a 0 constant of integration :

B 1 1 1
— M5 F 1.3 La Lo
po=f (%7(61/ + 549 3y)
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Then ¢ is a polynom in § with coefficients functions of derivatives of f,

1 1
S0 = 2

&= 1(@.0) 81" @D+ 55 + 5@ DG + i

Then g—g is a polynom in g with coefficients functions of derivatives of f,

9 1 1

52 " (1 54 " I v
o =~ @D+ 0)+ 8@ DG + 50— 3) +
so that if we substitute in expression of the velocity and perturbation of surface
5%%@ = g? +€gi gz we have in § = &7
-1 05 ¢ On
—H_,tl = 52 I/N_,t—:—, .
FH@ A +en) + 67 f"(@, 1) 5 = 5 + e o

Let us define the longitudinal velocity by u = f’. Other choices are possible, not
only the value at surface § = 0 but the mean value :

0 B 52
iy = / Oppdy = [+ 57 + ..
-1
depending of the choice, the various Boussinesq systems, see after, are possible).
With @ = f’ this equation is
an L ou ou on on 1_,0%u
ot 0Oz or
By dominant balance, we guess here that if we want non linear terms of order ¢
and variation across the layer of order 42, then

e =62,
this is the fundamental balance for solitary wave.

The momentum follows from the scale of ¢, we notice that

9¢ 25¢1
a7 =0+6 3_

so we can again neglect it in momentum at the surface

9¢ 5)(;5

4 —
M+ o+ (/250 +072(06Y) =
Which is at leading order
_ 3(2_5 3¢
N+ == o (5/2) =0.

Remember that u = f’ and at leading order, it is the usual inertial-pressure balance

ou , _9u_

E oz oz’

At this point, as we want a dominant balance of the perturbative terms, wet take
e = 62, this is 179/ho = (ho/A)?, the ratio :

7}0>\2
h{

is called the the fundamental parameter in the theory of water waves, this is the

Ursell number (}Z)/ /h)f))z = %

So the final system of interest is :

on 0w _ _on  _ou 10
¢ o, ox Tox 3°0x%
- +eﬂ@ —@
ot oz oz’
We may write it :
on 0 N 1 &u
" +5ﬂ@ —_—
ot 0z oz’

Before looking at KdV, we see that this system has the non linear shallow water
terms, plus an extra term which comes from the depth which is not so shallow.
Considering linear waves, gives

on | du 1 0%u du  9n

ot "oz 3%0m M 5T oz

the plane wave solution e/*2=%0 gives

1.4
2o
3

remember that Airy wave gave the dispersion relation

= ktanh k

which gives for long wave expansion w? = k(k — % + ....), so we find without
surprise the same relation (after change of scale which implies the §2).
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4.3 KdV (e =0() < 1)

Let us no present the final canonical form of KdV with the final balance of

unsteadiness, non linearity and dispersion, written in a moving frame. The Ursell

number ( (go//h;)z N

) is then one. The obtained system

hg
0 1 0%
—~((1 i) =
gt £ (1 en) %Eax?’
+ Eu@ =
t oz oz
has € terms, so we look at an expansion
U = Ug + €uq +
V=179 + v +
The solution at order 0
0n 0
Z0 ., 2 =0
7 %(M
9o __ 9
ot oz
will clearly imply 0’Alembert equation...
0? 0? 02 0?

@uo - ﬁuo =0, @7}0 - ﬁno =0,

say that £ = Z —t and ¢ = Z + t to classically solve the wave equation so

0 _0 0 0_ 0 0
9r _ o9¢  aC ot 9E ' aC

then at order 0

8%(—170 + 1g) + 8%(@0 +170) =0
5%(*@0 + 7o) + (%(ﬂo +10) =0

or by sum and substraction

885( Mo + o) = 0, %(%Jrﬁo):o

so that
—io + o = F(¢) and 1y + 7o = G(§).

We will focus on a wave going to the right (no information in ( = Z + t), and
follow it with our horse. We deduce that 7y = @y and that this is a function of
£, a moving wave to the right. We prefer now to be in the moving frame, so that
E=71—1.

If we specify only the right moving wave and do not care about the other,
then in this moving frame % = a%’ and a% = —a%. But, due to the € terms, we
guess that it will create cumulative terms. So we do a "multiple scale analysis”
(http://www.lmm. jussieu.fr/~lagree/COURS/M2MHP/MEM_GB.pdf), with a slow
time 7 = et we then have for the time an extra slow term,

g 0 0 0 0

oz ~o¢ i o or

so the momentum equation,
LB PR W
¢ or oc o

+eu— = is (—

ot or 0z
after expansion 4 = % + €ty + ... and U = ¥y + €01 + ... gives after substitution :

0 0 0 _ 0 Oty
—(—1up + 7o) + (= — U1+ =T + Ug—— o€

o¢ 70~ o¢ o¢ ) =0,

whereas the mass conservation gives
a _ 0 _ 0 _ o _ . _0omy  _0Ouy 18,
8§(u0 7)0)+5(87_770 65”1 + 8§u1 + o o€ + 7o a€ + 3068 ) =
From the first, we have

LI TR T Y
ge T g™ T prio T Moge

we substitute in the second

(Lo + Lo+ 125 4 4 Oy | 7 00 10°00
37’770 or ° 0 o¢ 085 "o ¢ 3 0¢3

) =0,

but the wave solution a%(ﬂo — o) = 0 gives @y = 7jo + F(7) so

0 0 Oy , 1%, _
(8 Ft2o- 770+77an (O+F())8§ 58753)_

This unknown function F'(7) is interpreted as a ”secular term”, it must be always
0, hence we finally obtain the KdV equation :

o _ 3 _09m 180

Eno + 577067g + 66763 =
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”Le chemin qui y conduit semble long car nous avons détaillé chaque étape. On
peut trouver des solutions élégantes pour établir rapidement 1’équation KdV mais
le prix a payer est que ’on ne controle pas les approximations” as says [14], who
takes another tortuous path.

4.4 Boussinesq Equation

From the point of view we developed :

) 1 &% 2
D) —%eﬁ_B +O(?)

L =L 02
T T oz

We write it with dimensions (and forget the O(g?) ) :

oh B(hu) h3 93u

=—=73
B R P
o Yar T Yo

Depending on the choice of the horizontal fluid velocity given at some definite
height in the fluid column, we can change the system. For example, if we define a
new velocity u, = u + éegﬁ (the mean value of velocity), the system is now at

the same order ¢, because of course €2 terms are different.

o7 9

P + — o (1 + en)ip) = 0+O(52)
ou, 1 &%, _Oup, O
o 30w T = ap TOE)

We write it with dimensions, using is new velocity :

oh  O(hu)
- — 0

ot ox

Ou  Ou  __ Oh I &u
ot " Yor T Yor T 3 020t

this system is better as it is "more” conservative : mass conservation is full fitted.

Depending on the choice of the horizontal fluid velocity given at some definite
height in the fluid column, see [I], in fact different types of Boussinesq equations
have been introduced. Note that Boussinesq himself did not present exactly those
equations in 1871, CR Acad. Sci. Paris, ”Théorie de I'intumescence liquide ap-
pelée onde solitaire ou de translation se propageant dans un canal rectangulaire”.

Nevertheless, one writes :

% O(hu)

ot ox

@ + u—u =
ot Ox a

depending on # and notice that %

h3
2(

1> 93h
37 0x20t
(1 )h2 O3y
2 0z20t
P
= o = _COa

Shallow Water equation with a dispersive term (see literature)

oh  d(hu)
ot ox
ou Ou
ot ox

h3 93u
6 O3

oh w2 o
Y9: T 2 0220t

They give all KdV so that they are a bit more universal.

These are other common

For #? = 1 we have our previous expression, for §2 = 1/3, the conservation of
mass is the standard one, which is a good thing

oh

at

u
ot

Linearisation of this last set of equations gives with h = hg + chy + ...

04+eup + ... :

O(hu)
ox

ou

+u—

ox

=0

iwhl = ihokul, z'wul

Oh

= +igkhy — ika%ul

th Bu
3 0z20t

2

2
so that w?(1 + kQ%) = ghok?, the dispersion relation is :

vV ghok

w =

\/1+k2?°

close to 0 we expect dispersion (i.e. w/k function of k) :

h2
w=/gho(k — kz3€°

it allows a closer behavior of the exact dispersive wave solution (Airy Swell)

3
= +/gk tanh(khg) ~ \/gk(kho - k3% +...) = ky/gho(

+.)

so that up to order 3 we have the right dispersion relation.

and u =

2

h
1- k:QEO +..)
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4.5 Serre-Green-Naghdi equations, (¢ = O(1), (6%) < 1)

At this point, we are close to a more improved model of Boussineq system : the
Serre-Green-Naghdi equations. They were derived by Serre (1953, independently
rediscovered by Su and Gardner (1969) and again by Green, Laws and Naghdi
(1974) (see D. Duthyk HDR 2010 for derivation with a Lagrangian and many
other expansions). Lannes and Bonneton Phys Fluids 21 2009 give a sophisticated
derivation. We prefer to give here a more simple description which follows closely
Bonneton’s lecture in Cargese (06/2017) [2].

The important point in the Saint-Venant description is that the pressure is
purely hydrostatic,

? = —pg, pressure is p(z,y,t) = pg(h(z,t) —y),
Y

thus the pressure gradient is pgdh/0x. The previous Boussinesq equation show the
influence of the gradient of the non hydrostatic part, we found : —%2%.
This part of the pressure may be reobtained, even more precisely, starting from
Euler description. Let us define the transverse acceleration -, so that the transverse
equation is
v ov v op op
—4Uu—+0—=—7-—1,ig,sayy=———1
ot Yoz oy~ oy YT "8
We integrate the pressure gradient, which is no more hydrostatic due to ”transverse
acceleration” ~y :
p
Lo 14
y 7
The pressure is indeed

) 7
p(@.5.0) - plo.g = end) = [-ulEy - [ 2dC
en
at the surface p(z,y = €7,t) = 0, so the pressure is the hydrostatic one, plus the
acceleration (correction)

Y
p(y) = —y+€ﬁ—/ﬂdé
ef]

we integrate a second time across the whole layer, as

/T(—y +en)dy — 7*(6’7; L )1 o) = LEED” *2“7)

then

[ =0 [ dcyay

—1 —1 n

the tricky part is the double integral corresponding to the non hydrostatic part of

pressure - -
et} en

I, = d¢)dy

o= [ o

let us define I'(y) = f;ﬁ ~(¢)d¢, so that % = —v(y)

" r@g. is " Lgrnag— [ 5o
= [ T, isbyparts k= [ (- [ o%dn
2 —1 ° 1 dy 1 dy
integrating the first, and using the definition of T’
5471 en 5471
=0+ [ m@di= [ 0dc+ [
-1 -1 -1
finally the non hydrostatic correction is exactly
en
B[ 0o
-1
Remember g—‘g is a polynom in g with coefficients functions of derivatives of f,
¢ 1 1 1
7:_52 " H(1 - 54 e 52 a3
7 )1 +g) + 8 f7 (@ OG5 + 50" — 5) +

so that as 7 = 5%‘; and 4 = f’ then

o1

o= —0——(z,8)(1+7) + O(6)
0z

asy = % +’L_L% —H?g—g, we take the time derivative, and the two space derivatives of

U, then by substitution of this derivatives of the transverse velocity and at leading

order ) )
0°u 0*u  ,0u
=—01+9)) = + == — (==)? 39)].
1= 00 + D)o + s~ (902 4 O(s)]
This is substituted in I, then as fgl(l +4?)dy = 1/3, the contribution of the non
hydrostatic pressure is

75252 9%u 0%u  Ou

_ AR P R il V/
2= ===z gz ~ (57) Ol
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finally the Serre-Green-Naghdi non linear weakly dispersive equations are :

o L 9 ha) =0

gt 9% o7 82 9 ®a P oa

gu | ou __9n 07 0 (59, 07U 07U DUy 4
o oz 0z " 3hoz (h Gz g ~ G5 )> +O0)

The non linear term of O(8)? is more precise than in Boussinesq description. In

. . P .02 9 d%a
the case of weak non linearity, this is the same : % 5= 52

4.6 One famous solution of KAV equation : the Solitary
Wave

Coming back with variables, assuming that the fundamental parameter in the
theory of water waves is of order one (Ursell number) :

NoA?
hq

= 0(1),

the KdV equation reads with scales :

0 0 3¢ 877 coh 9%n
- —p—L — =0
ot 5" 3, Tor T 6 0
with ¢g = +/ghg. this equation represent the dominant balance between non

linearities that will create a hydraulic jump and dispersion that destroys the wave
in several waves. When there is balance, a special wave, the ”soliton”, exists. It
does not change in shape.

The solution with no elevation of the surface up and down stream needs some
algebra. We look at traveling waves f(z — Ct) = f(s), so that

0 0 0 0
Ef(%t) = —C%f(s) = —Cf'(s) and af(xat) = af(s) = f'(s)
then :
0 Of (x,t)  103f(x,t) . f’”
Oty @ 2D AT o op Sy Iy

hence, it can be integrated once, the integration constant is such for s — Foo
perturbations of f are zero, so there is no constant. Then multiply by f’ and
integrate again :

o2

5 20+ =0

by separation of variables

| Fe= =

by change of variable, and few extra manipulations, we can find the solution.
Indeed, if (yes! if...) we notice that

(Arctanh(z)’ = 1/(1—22), we have (Arctanh((1—2)") = —n(1—z" ") /(1—(1—2)").
This gives us (n = 1/2) the solution of
/L = —2(Arctanh((1 — 2)/2).
21—z
The inverse function of
2 = —2(Arctanh((1 — 2)*/?) is z = 1 — tanh?(z/2) = 1/cosh(z/2)?
note that sech(xz) = 1/cosh(z)
- 1
~ cosh?(v/3s/2)
so that the final perturbation of the free surface is exactly :

o
= 2 1 310 70 '
cosh? (5h51/52 (@ = co(1+ F)1))

This is the ”Soliton” or Solitary Wave solution. It has a lot of properties... Other so-
lutions exist such as cnoidal waves (see literature, Whitham Lighthill, Debnath...)
John Scott Russell found the 1/ cosh? form experimental fit only. He obtained expe-
rimentally for velocity : cysr = v/g(ho + no) this is consistent with velocity of cha-
racteristics, so that it is a clever guess. The final exact velocity is v/gho(1+n0/(2ho),

the two velocity are close : y/g(ho + 10) = v/gho(1+n0/(2ho) + ...)... so that John
Scott Russell experimental result is not so wrong.
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soliton obseryé

gsoliton calculé

FIGURE 6 — Soliton in a flume at Palais de la Découverte(t), photo

PYL http://www.lmm. jussieu.fr/ lagree/SIEF/SIEF97/solitongd.mov| , right the
1/cosh? solution.

FIGURE 7 — 3 solitons of various selfsimilar shape ¢g/ cosh? (% 360.1:), they are

in the moving frame. The larger the height, the thinner the width, the faster the
wave. Time increases from bottom to top.
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4.7 What about viscosity ?

Of course the viscosity plays a role and destroys the solitary wave. Let us look
at the influence of the up to now neglected viscous term.
At dominant order, we have computed the ideal fluid solution, for the boundary

. . 25 . .
layer, we must add the dominant viscous term é %5‘2“ in the momentum equation

Oug o 1 92 U

=4
ot 0T  Re 032
with §y = —1 + ﬁgj, and ug = %y we change the scales to be in the boundary
layer as usual. We refer to the moving frame % = a%’ and 8%— = ag we obtain

o_ a0

3?‘”0 + Tﬂz = 875770
with boundary conditions, first the no slip %y = 0 in § = 0, second the matching
to(§ — 00) = up(y — —1) = no(=1).

the resolution has been proposed by Kakutani & Matsuuchi in 1971 ([9]. The
problem is to solve for f = g — 7jp(&, —1)

0 0?

el Z 9

oe! tap!
with boundary conditions, first f = —7jp in § = 0, second f(§ — co) = 0 in fourier
space ikf + f” = 0, so the solution is in e~79 with o = U= (k sgn(k))'/2, then

V2
ug = 1o — /ﬁofﬁ@ikﬁdk

from this expression, we compute the transverse velocity using the trick of the
velocity in the boundary layer (second order effect, the blowing of the displacement
thickness in the ideal fluid) see http://www.lmm.jussieu.fr/~lagree/COURS/
CISM/blasius_CISM.pdf

o 3u0 ]. o0 3 -
T +Rel/z/ (¢ (@0 — o))y

the corrective term, due to the blowing is rewritten after integration

1 o0 _ .
o1 = G (1 + im0l e

(2Re

by convolution, K& M wrote

o N 1 ° 3770 dél
BL — (7TR€)1/2 ¢ 35/ (5/ _ 5)1/2
this velocity is inserted in the 512 gfj = ai 1+ sg—g%
_ _ -1 877 L) 377
ey (1 62 " 0— — .
f (1'73( +577) + f (l’, 3 3 UBL = 6t +e€ 8.13 61‘
The final Kakutani & Matsuuchi [9] is
0 3 87]0 103 o 1 g d¢’

or 770+ 65 + = 6 €3 = (WR@)I/z p o€’ (5/_5)1/2

In the integral one recognises a ” fractlonal derivgtive. As the Fourier transform
of f is f, the the Fourier transform of 4 dTﬂ is (—ik)™f. Here, in this problem we have
(—ik)'/2, 50 a 1/2 derivative! by inverse transform and convolution this (—ik)'/?

/

gives the part f{ W
The final "
3 8770 1 8 T_]() 1 7] 770
a7t Ge T 608 T (xRe)i 2 0612

note that the coefficients are maybe wrong (check, it depends on the definition
of the 1/2 derivative). See le Meur https://hal.archives-ouvertes.fr/
hal-00826564/document| for discussion and bibliography, and controversy of the
use of Fourier transform, Laplace transform must be better to take into account
the history of the development of the boundary layer.

=0

We note that the KM equation is not only local : with J; and 0, derivatives.
This equation is as well non-local : [ ;&' The mix of properties makes it difficult
to solve and interesting to study.
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4.8 The ondular bore or Mascaret

Hydraulic jumps arise some time in rivers due to the elevation of the sea level
due to the tide. The simple bore (hydraulic jump) is solution of Shallow water
equations, but if the river is with enough water, then the bore breaks and create
an ”ondular bore” (a "Mascaret”, a ”Poroqua”, see Chanson [3] definite book :
"Tidal Bores, Aegir, Eagre, Mascaret, Pororoca : Theory and Observations”). It
is present in some rivers in the world and it is due to the high tide. The mascaret
on the ”Severn River” (Lighthill book [12]), is famous. But the mascaret on the
Dordogne in Saint Pardon is spectacular (of course the ondular bores of China
and Amazonia are the largest in the world), see figure [8| Far upstream, it breaks
in solitary waves.

prot PrarresYvus Lagree & MARFArS! A faint PArdne A Drdnens an Asil 1997

FIGURE 8 — Mascaret or Ondular Bore at Saint Pardon on the Dor-
dogne, Photo PYL See other photos : http://www.lmm.jussieu.fr/~
lagree/SIEF/SIEF97/sieft97m.html

According to Whitham [I7] the ondular bore equation is then the kdV,

0 0 3co O h3 9° 9?
—77+00£77+ Co_Omn  Cohpg oM n

ot =0

"o T 6 02 Von2

with ¢g = v/gho and v an ad hoc viscous coefficient necessary for the model but

without real physical significance. This is a dissipation which prevent the formation
of a train of solitary waves. The boundary conditions are different from KdV as
the levels are not the same downstream and upstream. The dissipation is necessary
to avoid the destruction in a train of solitons.

3ol
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FIGURE 9 — A "Mascaret” with Gerris.

1k i
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FIGURE 10 — A ”"Mascaret” in the moving frame, numerical solution of the reduce
equation y” () —my'(z) —y(x) +y(x)? = 0, ”Model bore structure” see figure 13.6
page 484 of Whitham [17]
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FiGure 11 - ondular bore in a channel ENSTA experimen-
tal lab. DBatterie de 1'Yvette, photo PYL. See other films
http://www.lmm. jussieu.fr/~lagree/SIEF/SIEF97/MAQUETTE/mascaret.html

S

FIGURE 12 — A hydraulic jump is metamorphosed in a undular bore due to a small
increase in depth. photo PYL, Baie de la Fresnaye (22) Port & la Duc. [click to
launch the movie, Adobe Reader required]

FIGURE 13 — Some meters down stream, the hydraulic jump changes ... into an
undular bore photo PYL, Baie de la Fresnaye (22) Port & la Duc.
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FIGURE 14 — left a very non linear wave Miami 2016, right a mascaret Saint
Pardon 1997...

5 Conclusion

In this chapter, we observed waves in water. First, we study waves of small
amplitude ¢ < 1 in shallow water § < 1. This gives the 0’Alembert wave
equation. Second, we study waves of small amplitude ¢ < 1 in deep water § = 1.
This is Airy wave theory. Third, we study waves in not small amplitude ¢ = 1
in shallow water § < 1. This is shallow water. Finally we study waves of small
amplitude £ < 1 in shallow water § < 1 but no so shallow, with e = §2 < 1. This
is Boussinesq KdV theory.

The Soliton and the Ondular Bore are nice examples of waves.
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54 Sir James Lighthill and Modern Fluid Mechanics

Lol

Fig. 3.2 At the University of Central Florida, October 1995, Left to right: Lokenath

Debnath, Sir James Lighthill and Lady Nancy Lighthill.

FIGURE 15 — From the book ”Sir James Lighthill and Modern Fluid Mechanics”
by Lokenath Debnath
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Some Gerris code for water waves

mkdir SIM
rm SIM/sim*

gerris2D -m hydrolicjump3Bv.gfs | gfsview2D

# Title: Airy waves

#

# Description:

#

# Author: PYL

Define Uhoul 0.25*sin(omega*t + 2*pi*x/lambda)*cosh(2*pi*y/lambda)/cosh(
Define Vhoul -0.25%cos(omega*t + 2*pi*x/lambda)*sinh(2*pi*y/lambda)/cosh
Define LEVEL2 ((LEVEL-2) *(y<hO+.3)+(LEVEL-4)*(y>=h0+.3))

Define LEVEL1 (((LEVEL-2)* (y<=hO-.3))+(LEVEL*(y>(hO-.3)&&(y<h0+.4)))+(LEV
Define Nraf 9

# suffit 8 pour houle simple

3 2 GfsSimulation GfsBox GfsGEdge {
# shift origin of the domain
x=0.5y=0.5%}{

Global {
#define
#define
#define
#define
#define
#define
#define
#define

}

PhysicalParams { L = 10 }

LEVEL Nraf

ho 1

RATIO (1.2/1000.)

VAR(T,min,max) (min + CLAMP(T,0,1)*(max - min))
pi 3.141516

eps 1.e-6

lambda 4.0

omega sqrt(2xpi/lambda*tanh(2*pi/lambda))

Refine LEVEL2
VariableTracerVOF T
VariableFiltered T1 T 1
Time {end = 100 }

InitFraction T ((h0 - y))
Init { } {U = Uhoul*0 V = Vhoul*0 3}

# air/water density ratio si T1=0 RATIO si Ti=1 1
PhysicalParams { alpha 1./VAR(T1,RATIO,1.) }

AdaptGradient { istep = 1 } { cmax = 0.0 maxlevel = LEVEL1 } UxT

1.e-3 }
1.e-3 }

ProjectionParams { tolerance
ApproxProjectionParams { tolerance

P*pi/lambda)*(y<1.1)
(2xpi/lambda)*(y<1.1)

EL-3) * (y>=h0+.4))

RefineSolid Nraf

Solid ( y + 0.1%(x-30./2))

Source V -1.

Source U 0.0

RemoveDroplets { istep = 1 } T -2

stderr
= 25} stdout

OutputTime { step = 2 }

OutputSimulation { istep
# noter le format 000

OutputSimulation { step = 0.25 } SIM/sim-7%06.2f.gfs

3

GfsBox {
left = Boundary {
BcNeumann U O
BcNeumann T O
top = Boundary
bottom = Boundary {
BcDirichlet V O

3

1}
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GfsBox {

top = Boundary
bottom = Boundary {
BcDirichlet V O
}}

GfsBox {
top = Boundary
bottom = Boundary {
BcDirichlet V O
}
right = Boundary {
BcDirichlet U Uhoul
BcDirichlet V Vhoul
BcNeumann T O

}

1 2 right
2 3 right

Improve this code, verify that the dispersion relation works, try to do a solitary
wave and a mascaret.
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Here code for Saint-Venant hydraulic jump (the bore)

Title: Steady Hydraulic Jump
Description:

Author: PYL

Command: gerris2D dam.gfs
Required files: dam.plot
Generated files: jump.gif
#

F1°2 0.375

H O H H H H B HH

#+OH ¥ OH OB O
=
N

#Define LO 10
#
# Use the GfsRiver Saint-Venant solver
1 0 GfsRiver GfsBox GfsGEdge {} {
PhysicalParams { L = 10 }
RefineSolid 9
# Set a solid boundary close to the top boundary to limit the
# domain width to one cell (i.e. a 1D domain)
Solid (y/10. + 1./pow(2,9) - 1le-5 - 0.5)
# Set the topography Zb and the initial water surface elevation P
Init {} {

Zb = 0
U = 0.387632*(x<-3)+(-.22474%0.5) * (x>-3)
P={
double p =x<-371 : 0.5;
// p = 1+(1.30277563773199-1) * (1+tanh(x))/2;

return MAX (0., p - Zb);
3
}
PhysicalParams { g = 1. }
# Use a first-order scheme rather than the default second-order
# minmod limiter. This is just to add some numerical damping.
AdvectionParams {
# gradient = gfs_center_minmod_gradient
gradient = none

}

Time { end = 7}
OutputProgress { istep = 10 } stderr
# Save a text-formatted simulation
OutputSimulation { step = 0.1 } sim-%g.txt { format = text }
# Use gnuplot to create gif images
EventScript { step = 0.1 } {
time=‘echo $GfsTime | awk ’{printf("%4.1f\n", $1);}°°¢
cp sim-$GfsTime.txt sim.txt
cat <<EOF | gnuplot
load ’dam.plot’
set title "t = $time"
set term postscript eps color 14
set output "sim.eps"
h(x)= 1-(0.5)*(x>-3+1.*$time)
plot [-5.:5.1[0:2]’sim-$GfsTime.txt’ u 1:7:8 w filledcu 1lc 3, ’sim-0.txt’
EOF
time=‘echo $GfsTime | awk ’{printf("%04.1f\n", $1);}’°
convert -density 300 sim.eps -trim +repage -bordercolor white -border 10 -
rm -f sim.eps
b
# 1:x 2:y 3:2 4:P 5:U 6:V 7:Zb 8:H 9:Px 10:Py 11:Ux 12:Uy 13:Vx 14:Vy 15:7Z
# Combine all the gif images into a gif animation using gifsicle
EventScript { start = end } {
gifsicle --colors 256 --optimize --delay 25 --loopcount=0 sim-*.gif > mjum
rm -f sim—*.gif sim-*.txt

}
¥
GfsBox {
left = Boundary { BcNeumann U O }
right = Boundary { BcNeumann U O }
}
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Ul =03876 U2=-022474 hl=1 h2=05 W=l

FIGURE 16 — bore at Port a la Duc, baie de la Fresnaye. Photo PYL and with
Gerris

S

Raymond Subes ”Sans Titre” 1961 (entrée de Jussieu Quai Saint Bernard)
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Annex

Multilayer codes...
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