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Résumé

Free surface flows of water are clearly ubiquitous on Earth. As viscosity is small,
the inviscid equations of water flow are presented. First, the case of small ampli-
tude perturbations in small depth is presented, so linearized, this leads to the
”?d’Alembert equation” or "wave equation”. Second, the case of small amplitude
perturbations in any depth is presented, this allows to explain the dispersive beha-
vior of water waves. This is called ” Airy wave theory”. Third the ”shallow water
theory” is presented, this corresponds to significant perturbations of the height
of water, which is small compared to the length of the waves; the equations are
non linear (”Saint-Venant” equations). Then, if one considers in this latter fra-
mework small amplitude waves, and the first correction due to depth, one may
have a balance between "non linearities” and ”dispersion”, or a balance between
”steepening” and ”spreading”. This leads to the solitary wave solution of "KdV
Equation” : the ”soliton”. The KdV (Korteweg—de Vries) equation is presented as
an application of multiple scale analysis.

1 Introduction

1.1 Observations of the soliton

First observed by John Scott Russell in 1834, the ”soliton” is a wave which
has always the same shape even if it is not in the small perturbation regime.
Russell was an engineer and scientist, he experimented Doppler effect with
trains. He engineered and designed the ”Great Eastern” the largest boat at
the time in 1860. But, before he did many experiments on models. During one
of those experiments, in 1834, on the Glasgow-Edinburgh channel, a wave was
generated during the abrupt stop of the boat (drawn along a narrow channel
and powered by horses). The wave moved with constant shape. He took his
horse to follow it on several miles (see the text from Remoissenet [16], on
page 319 of the Report on Waves, section I ”"The wave of translation”). He did

after that a lot of experiments to reproduce it in a 30’ wave tank in his back garden.

"This is a most beautiful and extraordinary phenomenon : the first day I saw
it was the happiest day of my life. Nobody had ever had the good fortune to see
it before or, at all events, to know what it meant. It is now known as the solitary
wave of translation. No one before had fancied a solitary wave as a possible thing.”

1 was observing the motion of a boat which was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped-not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of
violent agitation, then suddenly leaving it behind rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of
water, which continued its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet long and a
foot to a foot and a half in height. Its height gradually diminished, and after a chase of one
or two miles I lost it in the windings of the channel. Such, in the month of August 1834,
was my first chance interview with thar singular and beautiful phenomenon which | have
called the Wave of Translation, ...

John Scott Russell, Report on Waves (1844)

It was followed by other experiments by Henry Bazin and Henry Darcy and then
by theoretical investigations by Joseph Boussinesq ( < Théorie de I'intumescence
liquide, appelée onde solitaire ou de translation, se propageant dans un canal
rectangulaire >, dans Comptes Rendus de I’Académie des Sciences, vol. 72, 1871,
p. 755-759) and (< Théorie des ondes et des remous qui se propagent le long
d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce
canal des vitesses sensiblement pareilles de la surface au fond >, dans Journal de
Mathématique Pures et Appliquées, Deuxiéme Série, vol. 17, 1872, p. 55-108) and
Rayleigh (1876) and, finally, Korteweg and De Vries in 1895. The equation that
we will establish with asymptotic methods is :

o 3_0ny  1d%
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De Vries was the student of Korteweg, the title of the thesis Bijdrage tot de
kennis der lange golven, in dutch ” Contributions to the knowledge of long waves”.
Another famous student of Korteweg is A. Moens. They proposed the velocity
in arterial flow ”Moens-Korteveg” equation (arterial flows and water flows are
very similar; the elasticity of arteries is the gravitation in water flows). The
KdV equation was not studied much after this until Fermi- Pasta- Ulam and
Zabusky & Kruskal (1965). They wanted to study the heat transfer in a solid
consisting in a crystal modeled by masses en springs in a periodic domain (one
dimensional lattice). They discovered traveling waves which were not damped.
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They rediscoverd the soliton.

Ficure 1 — The Soliton reproduced in 1995 on the very same place
than Scott Russell ’first” observed a solitary wave on the Union Canal

near Edinburgh in 1834. (Photo from Nature v. 376, 3 Aug 1995, pg 373)
http://www.ma.hw.ac.uk/solitons/press.html

See Dauxois, Newell [I3], Remoissenet [16] and Maugin [I5] for other historical
details and a view of the fields of application. The fields are very large, from
hydrodynamics, lattice waves, waves in electric lines, light waves in optic cables
etc. but as Feynman says : “Now, the next waves of interest, that are easily seen by
everyone and which are usually used as an example of waves in elementary courses,
are water waves. As we shall soon see, they are the worst possible example, because
they are in no respects like sound and light; they have all the complications that
waves can have.” Lectures on Physics, chapitre 51-4 “Ondes”.

1.2 Scope of the lecture : heuristical point of view, small
dispersion on Shallow-Water

1.2.1 Considerations on equations

Waves in fluid are classical in mechanics of fluid courses (see M1 lecture by the
same author [I8] and [19]). What we want to do here is to restart from scratch this

= : e
b= — - =
r ;—‘ ; - —y
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FIGURE 2 — The original sketches of Scott Russel. ”The great wave of transla-
tion” http://www.ma.hw.ac.uk/~chris/Scott-Russell/SR44.pdf. The wave may be
generated by a moving wall, top left or a falling weight top right, or opening a
gate. The final result is a unique wave which translates without change in shape
on very long distance.

study with a unified point of view in order to recover the 0’Alembert Equation,
the Saint -Venant and the Airy Wave theory all in the same theoretical framework.
For instance, the 0’Alembert Equation, is heuristically proved as follows, we sup-
pose a plug flow wu(z,t), its acceleration is pdu/0t, the forces exerted are the
pressure ones. Due to the elevation of the wave 7 (over the free level y = 0), the
pressure is simply pgn for hydrostatic reason (we will see that in far more details
later or see [1§]). Then
ou on
PE = —PQ%o
The thickness of the fluid layer is hg, and 7 is smaller than hg, the other needed
equation is the conservation of mass, as there is no v in the equations, changes of
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the flux of u : 2

n [18]) :

(see why

ox

on n Ohou
ot Oz
At this point, to eliminate u, one needs the above mentioned hypothesis : the velo-
city is almost constant across the layer (it looks like a plug flow, or in other words,
the flow is irrotational). This gives the wave equation (0’Alembert Equation) :
2 2
@ — ghoﬁ = 0
ot? Ox?
with a celerity co = v/gho and solution in f(z — cot) + g(z + cot). To go further in
complexity, we can put some non linearities in these equations but still suppose a
plug flow (9,u = 0). The acceleration is then p2 S +u , and flux will be (hg+7)u,
this will give the Saint-Venant (Shallow Water) equatlons :

ou Ju on On  Ohu

Po; Jru% =—P9q and 5 + e

Instead of this description, we can imagine a linear small perturbation, with a
flow which is no more a plug flow, but depends on z and y : u(z,y,t), this will

give the famous dispersion relation (again we will settle this again, see or see
as well [19)) :

=0.

=0.

w? = gktanh(khy).
For long waves, this equation gives again the 9’ Alembert celerity co = w/k = v/gho.

1.2.2 Adding independantly non linearities and dispersion

Having in mind those equations describing the waves, then the solitary wave
will be presented as a mix of all this dispersion, khqg small and non linearity, n/hg
small that we will look at now. There are simple argument to settle at this point
KdV such as :

e from the wave equation the solution is u = gn/co, with ¢3 = gho
from the wave equation the wave which travels from left to right, this solution

satisfies 9 5
n n
— =0
ot g, ox
e from the linear Wave Theory we have the dispersion relation w = 1/ gk tanh(khg),

this is expanded in w = \/gk;Qho — %gk“lhg + ... for long waves, which is at order
two : w = /ghok(1 — lehg +...), then for a wave n = noe*="** as —iZn = wn,

we identify w with —i5- 6157 and k with i% therefore
0,0 L1 ,08°
—i— = — —i*=hi=——=) + ...
iy = gy T ghogg) T

so this following equation has dispersion relation w = v/ghok(1 — $k*h3) :

0 0 5 03
ﬁ+00l+0 U

ot ox 6083_0'

e Shallow water equations may be re written in a different way. We define ¢? = gh,
so 2cdc = gdh, momentum is written with this new variable c :

8u 8 80
and mass conservation multiplied by g :
oh Oh ou Oc Oc ou 0(2¢)  0(2¢)  Ou
— = hich is 2¢— +2uc—+c? — = P Hu—F——4c— =
gat—|— g8+h8 = 0 which is ca—l—ucax—&—cax 0 or T +u O +C(‘9x 0

if we add and substract these equations with u et ¢, we obtain (more details in
[18]) :

[881% (quc)aax](qu 2¢) =0 and [gt

This shows that along the lignes in the plane z,¢ defined by dz/dt = u £ ¢ we
have integrals of u £ 2¢ constants. Those lines are called ”characteristics”, and the
integrals u & 2¢ are the ”"Riemann invariants”.

For a wave going to the right (u—2+/gh) is constant. If the surface is unperturbed
far away (u = 0, h = hg), then u is obtained thanks to conservation of the Riemann

invariant :
u = 2+/gh — 2+/gho

(u—c)%](uf 2¢) = 0.

the mass conservation :

oh  O(uh)
at + or 0
with i + hg = h (n perturbation of free surface) and the previous u
on an an
E‘*‘(? g(ho +1n) —2 gho)%"'(ho-H?) (9)/((h0+77))8 =0

an
3\/ h0—|—77 gho 3 =0

Linearisation around ho at small 7 :

(3v/g9(ho + 1) — 21/gho) = \/gho(3(1 +ﬂ+ _9)— \/970(1+2;?,TO+ )

The final (inviscid Biirgers) equation :

3n 817
a1+ VIRl + )l =
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This equation leads to shocks as the higher the wave the faster it 1s
e Then the final equation of perturbation of the right moving wave a 7+ cog

is estimated as the sum of the two effects, the nonlinear steepening 602377’0% and

anf

the dispersive spreading cg 6h0 5.4, this is the KdV equation :

1o} 1o} 3n O o3
on g om, Bn0n 1,500

1
ot or 2ho O 0505 =0

We will use the longitudinal scale, say A such that the dispersive term is small, it
is (ho/)\)? < 1 and the non linear term is small as well /hg < 1, but :

n/ho = (ho/N)?* < 1

The Ursell number is the ratio 4 :0/ /}i\o)z =

with small parameters (hg/\)? < 1 and n/hg < 1, (we will define § = ho/\ and
€ = 19/ho the small parameters) and using dominant balances and multiple scale.
This, unfortunately, makes the 9’Alembert and Shallow Water description less
clear (the following pages are then obscure... maybe the previous ones as well...).
That is the price to catch the Soliton.

’%2. We will present the complete theory
0

So, we write the full system without dimension, and we show it contains Wave
Equation, Shallow Water and Linear Wave theory of arbitrary depth. Those three
”simple” solutions of the full problem will guide us to find the proper scales in
terms on § = ho/\ and &€ = 19/ho only. So we will fight to find the final system
with 0 and € only. The developments to find the final system are maybe
obscure, but once we found the proper dominant balances, is enlightening
and obscurity goes away. Starting from this system, we show again that it contains
Wave Equation (0’Alembert), Shallow Water (Saint-Venant) and Linear Wave
Theory of arbitrary depth (Airy).

The purpose of this lecture is to join three names 0’Alembert, Saint-Venant,
Airy and three models when € = 62 (non linearity balnces dispersion) in a new

model : the Korteweg De Vries equation.

Let us do the reset/RAZ/ Crl Alt Del

2 Equations

2.1 Equations with dimensions

3 el n air
SZOL———I—(-_B\MC&
ho Wohen

< -ho P N
h| j < —

FiGURE 3 — Notations, y = 0 is the unperturbed level of water, hy depth of
unperturbed water, A characteristic length of the wave, § ratio of these quantities;
¢ relative amplitude of the wave.

Let us do the reset. We start from scratch : Navier Stokes and try to identify all
the small parameters to obtain KdV. Write Navier Stokes, without dimension, put
Re = oo come back with dimensions, here is Euler incompressible and irrotational
(remember conservation of vorticity in ideal fluids) :

ou Ov ou Ov
or Ty T (G, o) T
ou ou ou 3p ov v ov dp

o T TV T "o Mo T e Ty T "oy Y

notice the irrotational hypothesis which is very strong, and which is not so much
discussed in the literature. These equation are for —hgy < y < 1. Boundary condi-
tions are the pressure p(xz,y = 1) = po at the surface (we neglect here surface
tension) and the relation linking the perturbation of the moving interface and the
velocity of the water just at the surface :

on(x,t on(x,t
o, t) = P1ED gy 210D

and slip conditions at y = —hy.

2.2 Simple linearisation : 9’Alembert equation

By simple linearisation around a basic state...
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the scaling for x is say A, the scaling for y is hg, time is 7, Up, Vj...

let us define € the small parameters related to the variation of the water level ehg.

let us define ¢ the small parameters ration of hg by A
pressure variation is epghg

velocity at the surface

h
Vo = €io
T
incompressibility
Uo _ %
A ho
this gives
A
Uy = A0 = A
ho T

momentum, with P deviation from hydrostatic pressure at the surface P =1

)\2 )\
then E = eghg then — gho
T

T

Uo _ epgho
A

non linear terms are O(e)

The scaling for u is ey/gho and for v is (hg/A)v/gho. Potential eA\/ghg .
momentum, with P deviation from hydrostatic pressure at the surface P =

ou 0P
ot oz
or % = —%, and
(@)2@ = 8715
Aot 0y
as n(z,t) u is not a function of y irrotationality is a result of 6 = (ho/)) small.
Hence v = — (g + 1)% and at surface v = 71% = %
as 86—7; = g” and ‘9“ = f% we obtain d’Alembert equation...
o _ o' _
o2 o

This is a fast way to find the scaling, we will do the same next but using the
equations with potential.

We will play with the two parameters € and J.

2.3 Equations with the potential
2.3.1 Finding the Equations

From irrotational flow, one usually define a potential :

8(;5 %
- 0z’ oy

and from incompressibility :

26 9

a2 o =0

this Laplacian must be solved with boundary Condltlons at the free surface and at
the bottom. At the free surface v(z,y =n,t) = 5] + uan which is

8¢>| n+3¢3n
oy"=" " ot " 9z oz

and writing the momentum with irrotationality

Plot Ox dy P T 2er T 20 8y Ox

gives a kind of Bernoulli equation :

ou

1 Op
P(a + 5

9 op
0 oz’

(4 0%) = -

with the pressure at the surface p(x,y = 1) = pg. Note here that the real jump
relation in inviscid flow between two media 1 and 2 may be written with the surface
tension :

pi(@,n(@,1),t) - palan(a, t),1) = oV - 71z
the normal to the surface
M1z = (—0n/0x,1)/\/(1+ (0n/0x)?

Here we neglect o/(pUZhg) (the inverse of the Weber number We = (pUghg) /o).
At equilibrium, when there is no flow
p=po+pg(—y)

Then po + pg(—y) is the "hydrostatic” pressure, we look at P the departure from
it. Pressure is then

p = po + pg(—y) + P.
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At the interface

p(z,y = +n) = po, so p(x,y =n) =po = po + pg(—n) + P(x,y =n)

We hence deduce
P(z,y =n) = pgn.

The active part of the pressure is related to variations of interface 7 :

op 0P _ On
9z oz ox

At the free surface, the previous momentum with irrotationality and the pressure :

o 0 1
P2 (% s L) g =0

2.3.2 Equations

The final system that we have to solve is the Laplace equation for the potential
¢ in the domain of water :
0% 0%¢ —0
0x2  Oy? ’

with an "unsteady Bernoulli” with potential ¢ at the free surface y =7 :

9o 1 ,0¢% 0¢>

Yo o Zr ¥ =0,

ot T3lar Tay ) T
at the free surface we have as well v = % + “% which is the relation between
potential and surface elevation 7 :

9¢ _9dn  0¢0n
oy Ot Oz 0z

On bottom y = —hg v = 0 which is the slip condition

0

9 _,,
Ay

Far usptream, and maybe down stream every thing is 0. This is the full system we

have to solve. note that the surface is an unknown of the problem, and that it is

defined with a non linear equation.

First we write it without dimension.

2.4 Equations without dimension

It is here a good idea to distinguish between scale in x and scale in y, so we
write z = AT and y = ho¥, the surface elevation is n = no7. The potential is not
known, as the time : ¢ = p¢, t = 7t. We define the ratio of scales § = hg/\ and
e = no/ho. Then incompressibility :

0%¢ 0%
527,(? qu =0 (1)
0z? = 0y
momentum at the surface

< 9 <2 <2
p 09 @7 209 +@

%) _— —_— = 2
€n+g7'h08t+29hg( 9% 8y) 0 @

velocity at the surface

o1 09 on o702 8&@

2oy " ot h2 o ow ®)

at the bottom § = —1 ~
o¢
Ay

we have to find the relations between :
©, T, A\ € and 9.

We will first explore three simplifications of this system (9’Alembert, Airy swell,
Saint-Venant). Those three simplifications will help us to understand two different
regimes and find the pertinent system (the one with a box around .

As we do the same thing several times, this complicates the lecture, so the
reader may skip to read §4]and then come back here to be sure that the scales
are OK.

3 Solutions of the Equations ¢ — 0 and/or § — 0

3.1 Fully linearised waves ¢ — 0 and § — 0

The first simple case is the case of fully linear waves in a shallow water, this leads
to the @’Alembert equation as we just will see. First we start from the Laplacian
Eq.[I] _ -

@ — f(;?@
0y? 0x?’
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SO By = 0 at leading order, with a Poincaré expansion ¢ = ¢g + 62¢; + %po + ..
at first oder _
9% 99

0y 9
so that ¢o(z,t) = f(z,%), we define ' = Oz¢g, we note that @(z,t) is only a

function of (7,%) at dominant order. If we now put the O(6%) term,

azggl _ 82 QEO

oy2 0z

=0

=0, with in y = —1,

The solution at order 1, with %Ll =0:

from the value at the bottom —1 we have the expression of the transverse velocity,
we note that this velocity is very small O(§2) :

aQ_S 8¢0 (52 a(bl

_ 52 9o

oy 0y 0y 0z?

At this point, we have obtained the expression of the transverse velocity, we
note that this velocity is very small O(42) :

96 _ 2061 _
8y_5 oy 0 0z?

We have to look at the surface, it is in § = e, as ¢ is small, this is § = 0. This
is "flattening” of boundary conditions.

% — _528 q;
oy 0x2
The domain is —1 < § < 0. At the surface y = 0, the gradient is the variation of
interface, hence equation [3] gives
aj) €h0 877 52 5%@
oy ot O or 0T

(g+1)...

(0+1).

Looking at those two expressions of g—% by dominant balance 62 = ;Lj’, and the
last one is _

2o Ehz(an e O 877)

oy @1 Ot 9z 0

we can neglect the non linear term

@ 528 ¢O

on
i 3 (0+1) = 8 5] + 0(5%)

ot

so that and as by convention ¢y = f
o°r _ on
or2 ot
The momentum at the surface (Eq. [2)) is (as we note that in §2 ‘g? +9 8* , the first
is O(6%) while the second is smaller O(§%)) :
_ ¢ 0¢ 2 ¢
— +0(0
et gThy Ot + O 2gh}

) =0,

by dominant balance ¢ = eg7hg, gives (with remember ¢ = ¢ + 6201 + ...) :
ol of

Ui smaller terms = 0, or at dominant order 77 + ot 0

So eliminating ¢ between this ¢ = egThg and the previous 62 = (¢h)/(¢7) and
using the relevant scales A = ho/d > hy, gives

AT =+/gho.
Then, the non linear or smaller terms of (Eq. ) are O(4?

O(%) = O(g?), which is indeed small as claimed.

The expression v/ghg is a velocity (say c¢o = v/gho). Hence ¢ = e\y/ghy. Then,
eliminating f gives :

Zgh 5) which is

0% f B 0% f 0%n B 0%n

932~ oz "oz~ o
the &’ Alembert wave equation of unit velocity (which is ¢g = /gho with dimen-
sions). This is valid for waves of small amplitude ¢ < 1 in shallow water § < 1. In
the next paragraph, we will study waves of small amplitude ¢ < 1 in deep water
0 = 1. In the paragraph after, we will study waves in not small amplitude ¢ = 1
in shallow water § < 1. Finally we will study waves of small amplitude ¢ < 1 in
shallow water § < 1 but no so shallow.

For those various waves, we will follow the same way : do some dominant balance
to take some terms, integrate the Laplacian from bottom (slip) to top (perturbation
of free surface), which gives in fact the small transverse velocity and use of the
momentum/ Bernoulli equation.

3.2 Scaling with ¢,0

This 9’ Alembert equation helps us to find the scalings. Having defined § = ho/\
and € = no/hg, we write x = AT and y = 0y, the surface elevation is 7 = edA7.
The incompressibility :

0?¢ 0%
P+ = =0 4
0z? + 02 )
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tells us that
0%¢ 1 0¢
— = 0(0?%) or —— = O(1). 5
5s = 0% or 5552 = 0() 5
This scaling was obtained in the linearised case (0’Alembert). This scaling is a bit
surprising, but comes from asymptotics. This is substituted in the velocity at the
surface, as
_on , p70* 0400
ot hE 0z 0z

906 _ g 109
eh2 0y eh 020y

(6)

the solution of the Laplace equation ([55 %;] = O(1)) suggested a dominant balance

78>
hg

62;% = 1. Then, the non linear term follows it is = ¢. The equation is finally
0

with § and € only :

10 0n  0¢0n

S _ 9, 2o 7

2oy ot “orox (™)

Momentum at the surface,

- -2 22

_ p 99 ¢ 500" ¢
99 5220 L 92

et gThgy Ot + Qghg( 0% + oy

) =0. (8)

The scaling s obtained in the linearised case (9’Alembert) is ¢ = —£— (pertubation
gTho

of n are of same magnitude than %‘i}) : As seen just before ;%52 =1, so that the
0
non linear term :
2
T P BTy (T L
il ~ grienz) =) =< zm):
Then, momentum at the surface reads :
06 2 L0060 04
Nte—=+-—50>—= +—— )=0 9
ittt Tag) )
As %62 =lande= gTLhO, we have :

M1 = +/gho, and o = eA? /T = eA\/gho

ho gh%
7:1/%, andgo:c’\/&—Q,

The final equations without dimension with § = ho/A and & = 19/ho, and with

this is as well

no approximations

0%  0%¢
27 7 _— =
“amtoE =%

1o¢ _ on_ 0600

20y ot “orox

B _2 oy (10)

—+_§@3+_E(Q? 4_j;§? ) = 0
T T2Ver Ts2ag ) T U

0

87g|g:_1 = 0.

3.3 Linear dispersive solution, Airy 1845, ¢ — 0,6 = O(1)

We look here at the swell (houle in French) in open sea. This is a very classical
solution (Lamb Chap IX, Landau & Lifshitz §12, etc) introduced by George Biddell
Airy of the Linear Wave theory with arbitrary depth (between 1841 and 1845).
The length and the depth are of same order. So we consider § = 1, we take the
same scales in x and y, it is more simple to use hg here, so that the bottom will
be in §y = —1. The equation is then a full Laplacian. Taking both scales equals
is of course the first simple possibility that we have to explore before looking at
different scales. We consider small amplitude waves so that ¢ < 1 then from the
same balance of the velocity at the surface (Eq (3))) and from the momentum

we have 7 = \/ho/g then p = EW: nov/'gho

¢ P _

oz Va0

06,000 06° ¢ o 06 0q
99 L 222 L 92 s well at surface =2 = 21 4 2091
n+8t+€(8§c +8y) 0 and as well at surface o5 8t+58§c85c
at the bottom B
_ 130)
= -1 — = U.
Y r 0

If course this is system for § = 1.

We look at the solution of the linearised problem

826 24

0°¢ dp,
g§|o+ay|0 =0
a5 B
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This problem as solution in e!*#=®%) with this ansatz, the solution of the Lapla-
cian,
0% 99 9 -
—k*’¢+ —— =0 with B.C. —|_1 =0, —|o =a}(0).
This gives a solution in ¢(0) cosh(ky + k)/ cosh(k) which preserves the g—§|_1 =0
boundary condition. So g—‘;b = ¢(0)ktanh k then, it gives the famous relation of
dispersion :
w? = ktanh(k)

with dimensions
w? = gk tanh(khy),

the phase velocity c¢(k) = w/k is function of k, this means that a signal will be
changed as every space frequency has a different velocity :

c(k) = v/gtanh(khg)/k.

Looking a small depth

3
w? = gk(khy — @ +..)

This % will be important for solitons, we will discuss it after. Then, the phase
velocity ¢ = w/k :
(kho)?

Cc = gho(]. — 6

+..)
gives at smalll khg, ie very very small depth,
c = +/ghg.

This is again the shallow water velocity we have already seen in the previous
paragraph.

If depth is too small one has to take into account the surface tension : o /(pUZhy)
is here o /(pgh?). So if the depth is of same order of magnitude than the capillary
length A, = y/o/(pg) then one has to use the surface tension jump. This gives the
correct dispersion relation

w? = g(1 + k*\2)k tanh(kho).

Notice here that for surface tension wave, small wave length travel faster. But, the
effect is reversed for Airy waves in shallow water.

FIGURE 4 — Waves on a sloping beach with Gerris. Code it at the end.

3.4 Non linear waves : Shallow water, ¢ = O(1),6 — 0

There is another relevant simplification of the full problem which corresponds
to flows in a small depth of water, so it is called ”Shallow water”. Or, flow with
changes at a scale much larger than the depth. We call this also ”Saint-Venant”
system. So, if § = hg/\ < 1, the length wave is long compared to the depth, and
now we can allow e = 1. The latter means that the wave may be large in height,
so non linear phenomena appear. Let us look at this : a balance of terms with non
linearities. At first order B B

0 __20%

o oz
but non linearities in Eq. [3| give the balance 7¢d%/h2 = 1 which is T /N2 =1
prdd 00 . 0600

oy = ot T onon
In the momentum Eq we have 77 which is 77, then g—T‘i—O%Z that we compare to
) -2
the next two which are, with 72 /h2 = 1, the non linear term E%(% +52g—‘§ ).
Hence, as ¢ is small :

< <2
0 10
7+ 2 (9, 109
gtho 0t 20T

As we have 7¢/A? = 1 from the non linearities of [3| and ¢ = grhg from the non
linear terms of this gives A\/7 = v/gho and ¢ = \*/7 .

With these scales, the scale % in front of g—‘; the V_elocity (of Eq. [3)) is A\2/h3,
which is large : 62 > 1. This is the subtle part, as ¢ does not change so much
trough the layer (from the Laplacian, the variation in g are of order §2), the small
variation is magnified by 62, so that the result is of order one.

We have shown that A\/7 = \/ghg and ¢ = A\?/7, so that ¢ = A\/ghy and
T = A/v/gho, so with e = 1 and § < 1, the final system reads :

ﬁ = _52&3
02 0z?

) =0
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(87(5 + 1%2
ot = 20z
106 _on oson
029y ot 0z 0T
Coming back with % = ¢z we have for momentum at surface (after derivation by
Z), a balance between the total derivative of the velocity (which is a ”plug” flow,
w(z,t)) influenced by the variations of pressure due to the changes of surfaces 7 :

) =0

ou  ou_ _0n
ot " Yor oz

Then working on the continuity equation, we first we integrate the Laplacian

9% _ _20%
57~ oWty

and at § = n, this gives %ZE at the interface which is 62%(77 + 1). Using the

definition of 4 (note that @ = ¢z is function of z,¢ at dominant order), we inject
this in relation of the surface velocity, ¢ disappears :

ou on on
—(n 1 = == U—-.
A A
We can write this system in a more readable way, as we obtain the famous Shallow

Water system (Saint-Venant, in French, GfsRiver in Gerrisand http://basilisk.
fr/src/saint-venant.h in Basifisk ) :

ou o _ o
t z oz

J e U p—

o gz (Lrma) =0,

This system gives advection, shocks, one example is on figure [5| were we see a
moving hydraulic jump.

An alternate formulation suitable for Shallow Water only (Saint-Venant) is in
http://www.lmm. jussieu.fr/~lagree/COURS/MFEnv/MFEnv.pdfl

4 Equations with ¢ and ¢

4.1 Sum up of the scales

The three previous subsections we looked at the d’Alembert § < 1, € < 1, then
the case of dispersive linear waves, § = 1, ¢ < 1 and Saint-Venant § < 1, ¢ = 1.
These are three fundamental points of view. We turn now to a case in between

FIGURE 5 — here example of a moving hydraulic jump computed by Gerris solu-
tion of GfsRiver . Code it at the end. see http://basilisk.fr/sandbox/M1EMN/
Exemples/belanger. c with Basifisk

with some dispersion and some nonlinearities in the set of equations first
line and |3) second line.

Using the previous dominant balances necessary to obtain a displacement of the
flow, each time we obtained the same scalings (§ _2% ~ % of the surface velocity

Eq. 3| and Eq. |l{and 77 ~ %ﬁi’ of the momentum Eq. , we remind the scaling we
have obtained

p=cec)/T=eX\/T), T= )\/\/gTo

which is as well

A Lo P
w =¢eX/ghy and T = ——, velocity is — = e+/ghyg.
Vgho A

Remember that this comes from the scales we obtained in the fully linearized
and Shallow Water cases. With those scales, we have already written the equations
with ¢ and the final system with ¢ and ¢ reads for Eq. 7 momentum at
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the surface Eq. (2), velocity at the surface Eq. (3), and at the bottom § = —1 :

82¢ 5‘2¢
09 e,06” 109" _
mt +2(8x +528y_) =0 -
106 on, 0o
620y Ot 0z 0%
¢
87]'37:_1 =0

If, in this set of equations we put ¢ < 1 and § < 1 we have the wave equation,
and if, in this set of equations we put € =1 and § < 1 we have the shallow water
again, and if, in this set of equations we put ¢ < 1 and § = 1 we have Airy linear
dispersive solution again, we just look at what happens with a small wave in a not
so shallow river.

4.2 Non linearity balances dispersion : small ¢ equals §?

We are now fully convinced that system is the good system with the per-
tinent scales. As 526 $ 4 ¢ o ‘f =0, by 1ntegrat10n we have —Z:’ The velocity at the
surface (Eq. ' says - -

19¢ _0n 8(;5 on
2oy ot “oxox
at the bottom y = —1

0
% _y,
dy
Solving the Laplacian - -
2P0
0x2 = oy
with a Poincaré expansion ¢ = ¢g + 6261 + 6%ps + ... at first oder
8¢ L 9
8@20 =0, with in § = —1, 87] =0
so that ¢o(Z,t) = f(z,t), we define f’ = dz¢o. Hence the various orders solve the
recurrence _ _ _ _
P Poo and Poy P
oy2  0x2 oy2 oz’
The solution at order 1, with %Ll =0:
> O _
072 —f" gives i —(g+1)f"

and by integration
b= 1"+ 37 + K@)
the K is 0 as if we suppose that the condition for (z,) are in f(Z,f). At next
order, with % =0:
9%¢»
0>

Do
oy

_ 1—2 1—3 1 "
(2y + 6V 3)f

1,
= f""(x)(y + ¥ %) gives ——

then, if we suppose again a 0 constant of integration :

- 1 1 1
= — 3 iy e
¢2 = f1(@ (Y + 519 — 39)

Then ¢ is a polynom in § with coefficients functions of derivatives of f,

1 1
AUt = R0

b= 130~ 85", D)5 + 57) + 67" @ DG + b - 5

Then g—? is a polynom in ¢ with coefficients functions of derivatives of f,

0 1 1
Qf 62 ”xt_)1+y —|—54 ////x{) _2—&-*@3—*)4-...
oy 6 3
so that if we substitute in expression of the velocity and perturbation of surface :
5%%) f+5%% we have in § = en
-1 07 d¢ 0n
”xf)(l—&—an)—f—éQ " E)f £+ ¢ O

‘oz 01

Let us define the longitudinal velocity by 4 = f’. Other choices are possible, not
only the value at surface § = 0 but the mean value :

0 B 62
up = / 0z pdy = f' + gf’” + ...
-1
depending of the choice, the various Boussinesq systems, see after, are possible).
With @ = f/ this equation is

on | du on on 1 5263—
ot oz oT 3 013

By dominant balance, we guess here that if we want non linear terms of order &
and variation across the layer of order §2, then

e =02,
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this is the fundamental balance for solitary wave.

The momentum follows from the scale of ¢, we notice that

99 2001
— = 0" —— + ..
95 0+ B +
So we can again neglect it in momentum at the surface
94 96 o
n+ P (5/2)(% +67°(0(6%))) = 0.
Which is at leading order
09 96 _

Remember that @ = f’ and at leading order, it is the usual inertial-pressure balance

ou g ou on

— teu—=— —.

ot ozT oz
At this point, as we want a dominant balance of the perturbative terms, wet take
e = 62, this is no/ho = (ho/A)?, the ratio :

Mo A2
hi

is called the the fundamental parameter in the theory of water waves, this is the

Ursell number (fZ;/ /h/\(’)2 = ”h—)g

So the final system of interest is :

on,on  _ _on 0w 15

t oz Yoz ez 3om

u oou 0

ot oz 0%

We may write it :

on 0 N 1 0%
ﬁ+5ﬂ@ =
ot oz oz’

Before looking at KdV, we see that this system has the non linear shallow water
terms, plus an extra term which comes from the depth which is not so shallow.
Considering linear waves, gives

on  o0u 1 &u Jou_ on

ot " or 30z Mo T oz

the plane wave solution e!*#=%1 giyes
74
o _ 72 ¢k
w- = k’ —_——
3

remember that Airy wave gave the dispersion relation
w? = ktanhk

which gives for long wave expansion w? = k(k — % + ....), so we find without
surprise the same relation (after change of scale which implies the §2).

4.3 KdV (e =0(%) < 1)

Let us no present the final canonical form of KdV with the final balance of

unsteadiness, non linearity and dispersion, written in a moving frame. The Ursell

number ( (hno/% = ’%2) is then one. The obtained system
‘0

on 0 .1 8%
A W T
gu  _0u __on
ot oz oz

The solution at order 0

0o 0, _
— + = =0
53_75 T 9z (1)
o _ 91
ot oz
will clearly imply 0’Alembert equation...
0? 0? 0? 0?
a2~ gpto =0 Fmh 5t =0,

say that £ =% —t and {( = Z +t to classically solve the wave equation so

0 _0 0 0_ 0 0
9z o9c ' aC ot 9E ' acC

then at order 0

(=70 + o) + ac

9 (@ +10) = 0
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0
—(@p+170) =0

g(—ﬁo + 7o) + ac

9¢

or by sum and substraction

0
8*5(*770 + 1) =0, gc(ﬂo +10) =0
so that
—fjo + o = F(¢) and ug + 7o = G(§).

We will focus on a wave going to the right (no information in ¢ = z + %), and
follow it with our horse. We deduce that 7y = @y and that this is a function of
&, a moving wave to the right. We prefer now to be in the moving frame, so that
E=z—1.

If we specify only the right moving wave and do not care about the other,
then in this moving frame % = 8%’ and 3% = —6%. But, due to the € terms, we
guess that it will create cumulative terms. So we do a "multiple scale analysis”
(http://www.lmm. jussieu.fr/~lagree/COURS/M2MHP/MEM_GB.pdf)), with a slow
time 7 = et we then have for the time an extra slow term,

0 o 0 0 0

_— = =, _ = = — £
or _o¢ oi o€ “or
so the momentum equation,

@+ _@_ [ (- ou 3u)+ @ 677
o Yor T oz © Uoe T o

after expansion @ = g + €tiy + ... and v = Uy + €01 + ... gives after substitution :

0 0 Otg

AQ@ﬂ + 7o) + @Qﬂ a1+ +1u
0 T 7o € 1 85771 08{

o€ ar 0 % ) =0

whereas the mass conservation gives

Eya—’)+d£f-ng’+f2i+a@E+*@@+lW%
e " 7o ar 1o afnl R us 2 T390

) =0.

From the first, we have

0. 00w
351 85771_870 0857
we substitute in the second
0 _ 0 _ _ Oug ({‘)770 Otg 1 831‘50 o
(gﬁoJrgquruo?Jruoag 7787£+§8§3)70’

but the wave solution a%(ﬂo —19) = 0 gives @y = 7jo + F(7) so

d d 9o, 10%70, _
(8 Ft2o- 770+7708€ (O+F())8§ 58753)7

This unknown function F(7) is interpreted as a ”secular term”, it must be always
0, hence we finally obtain the KdV equation :

9] 3 6770 1 6 170

arl T oMGe T 5 =0

”Le chemin qui y conduit semble long car nous avons détaillé chaque étape. On
peut trouver des solutions élégantes pour établir rapidement 1’équation KdV mais
le prix a payer est que I'on ne controle pas les approximations” as says Dauxois
[14], who takes another tortuous path.

4.4 Boussinesq Equation

From the point of view we developed :

on 0 .1 &% 2
ft:Jr%((ilJren)u) —fgeagﬁ + O(e7)
= aﬂ% = 77 O(e%)
ot 0z
We write it with dimensions (and forget the 0(52) )
Oh 8(hu) RO
T3 98
gt WA
“or ~ o

Depending on the choice of the horizontal fluid velocity given at some definite
height in the fluid column, we can change the system. For example, if we define a
new velocity u, = u + égg % (the mean value of velocity), the system is now at

the same order €, because of course €2 terms are different.

on 0

=+ —((1+en)u = 2
ot + afc((a; €1)tip) . 020(5 )
Gup 2 9 Ue | n %W _ 00
ot 3 oz ar 5z O
We write it with dimensions, using this new velocity :
Oh n O(hu) —0
at ox
ou ou o oh W 0
ot " "or T Yor T 3 0220
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this system is better as it is "more” conservative : mass conservation is full fitted.

Depending on the choice of the horizontal fluid velocity given at some definite
height in the fluid column, see [I], in fact different types of Boussinesq equations
have been introduced. Note that Boussinesq himself did not present exactly those
equations in 1871, CR Acad. Sci. Paris, ”Théorie de I'intumescence liquide ap-
pelée onde solitaire ou de translation se propageant dans un canal rectangulaire”.
Nevertheless, one writes :

oh d(hu) hjwz B 1) 0%h
ot 9x 2 37020t
ou i ou B (- )h Pu
ot " ox T Yo 2 0a20t
depending on # and notice that % = % = —codu 5.- These are other common

Shallow Water equation with a dispersive term (see hterature)

Oh  O(hu) h3 93u

ot oz 6 023
ou, ou " oh w2 o
ot u@x h gax 2 0x20t

They give all KdV so that they are a bit more universal.

For #2 = 1 we have our previous expression, for §2 = 1/3, the conservation of
mass is the standard one, which is a good thing

oh  O(hu)
- — O

ot ox

ou  Ou  __ Oh I &u
ot " Yor T Yoz T 3 0220t

Linearisation of this last set of equations gives with h = hg 4+ chy + ... and u =

04+cuy + ... : )

h
iwhy = thokuy, iwuy = +igkh; — iwkj?oul
2
so that w?(1 + kz%) = ghok?, the dispersion relation is :

vV ghok
\/1+k2%3’

close to 0 we expect dispersion (i.e. w/k function of k) :

w =

2

h
= \/gho(k — k?’go +..)

it allows a closer behavior of the exact dispersive wave solution (Airy Swell)

3 2
= +/gk tanh(khg) ~ \/gk(kho - k3% +...) = ky/gho(1 — kQ% +...)

so that up to order 3 we have the right dispersion relation.

4.5 Serre-Green-Naghdi equations, (¢ = O(1), (%) < 1)

At this point, we are close to a more improved model of Boussineq system : the
Serre-Green-Naghdi equations. They were derived by Serre (1953, independently
rediscovered by Su and Gardner (1969) and again by Green, Laws and Naghdi
(1974) (see D. Duthyk HDR 2010 for derivation with a Lagrangian and many
other expansions). Lannes and Bonneton Phys Fluids 21 2009 give a sophisticated
derivation. We prefer to give here a more simple description which follows closely
Bonneton’s lecture in Cargese (06/2017) [2].

The important point in the Saint-Venant description is that the pressure is
purely hydrostatic,

% = —pyg, pressure is p(z,y,t) = pg(h(z,t) —y),
thus the pressure gradient is pgdh/Ox. The previous Boussinesq equation show the
influence of the gradient of the non hydrostatic part, we found : 32 622 5t
This part of the pressure may be reobtained, even more precisely, starting from
Euler description. Let us define the transverse acceleration -y, so that the transverse
equation is

ov _0v av op

— 4+ u— + = — —

ot 0T ay oy
We integrate the pressure gradient, which is no more hydrostatic due to ”transverse
acceleration” ~ :

op
e A
Bl v

The pressure is indeed
ﬁ(‘fa Y, E) - p( Y=

ent) = - ]Eﬁ—/ajvcx

at the surface p(z,y = €7,t) = 0, so the pressure is the hydrostatic one, plus the
acceleration (correction)

Y
p(0) ==y +en— [ adg
ef

- MHP KdV PYL 2.14-

P.-Y. Lagrée, KAV


http://www.ida.upmc.fr/~lagree

we integrate a second time across the whole layer, as

[ ey = ZEEL e e = B

/Ej ey = % a /€1ﬁ(/e: e

the tricky part is the double integral corresponding to the non hydrostatic part of
pressure

then

i1l
~
<
S~—
U
<

Jat/%j<jggﬁw«<)d<)dy

let us define I'(j fen 7(€)d¢, so that & = —(7)

I Eﬁf’d’ is b I 7 T))d Eﬁ*drdf
o= [ T sy purts b= [ (e [ o

-1 -1

integrating the first, and using the definition of I
en en en
E=r(-0+ [ p@di= [ 2©dc+ [t
~1 —1 ~1

finally the non hydrostatic correction is exactly

<5:/ma+mwm@.

-1

Remember g—g is a polynom in ¢ with coefficients functions of derivatives of f,

oo
oy

1 1 1
62 ”(l’ t_> 1 y 54 p////( ,t_>(3y2 6y3 3
so that as v = 5—2‘; and 4 = f’ then

b= —6%@,5)(1 +7) + 0(5%)

asy = at U420 3 U4y g;, we take the time derivative, and the two space derivatives of
U, then by substitution of this derivatives of the transverse velocity and at leading
order

u 0% 0t o

7= =61+ 9l + g — (520 + OO

This is substituted in Iy, then as f_ol(l +42)dy = 1/3, the contribution of the non
hydrostatic pressure is
§2h?  0%u 0%u 0ty
U= — )
3 lomz * "o~ (gz)" T OO

I =—

finally the Serre-Green-Naghdi non linear weakly dispersive equations are :

a—}f+i(7m) =0

g o o 20 ou  o%u 0w

u . ow 01 pe O, 0% du, ’
o oz “oz "3hoz (h Gz a2 ~ (53 )) + 00"

The non linear term of O(§)? is more precise than in Boussinesq description. In
6’ 9 d%a

the case of weak non linearity, this is the same : % 5= 5%
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5 Some Solutions of KdV equation

5.1 KdV equation :

Coming back with variables, assuming that the fundamental parameter in the
theory of water waves is of order one (Ursell number) :

A2

the KdV equation reads with scales :

0 0 3co On  cohd 93n
- —_ —p—L — =0
ot " 2n "o T 6 ox
with ¢g = +/ghg. this equation represent the dominant balance between non

linearities that will create a hydraulic jump and dispersion that destroys the wave
in several waves. When there is balance, a special wave, the ”soliton”, exists. It
does not change in shape.

5.2 Solution of linearized KdV equation :

The linearized dispersion equation is that corresponding to the following problem
(it is called linearized KdV equation) :

on o coh?d®
T oot ¢ 02T

ot o6 oV

This equation has as dispersion relation : iw = ¢o(ik)(1 + (hg)z (ik)?).

Note kco(1 — M(l<:)2) is exactly the first two terms of the expansion on

6
w = +/gkth(khyp).

We will solve this equation assuming that the displaced surface f fooo ndx is given.

The first idea is to move with speed ¢y and put € = x — cot and a = coh,so that
the equation becomes :

on __ad
ot 6 083"
This equation is solved using the similar solutions technique...
t="Tt
change of scales { ¢ = X¢ (11)
n = Hi

FIGURE 6 — Dispersive wave at t fixed, function of = (fonction de Airy)

Conservation of total mass ffooo ndé becomes HX ffooo ﬁdé but as we want in-
variance ffooo ndé¢ = ffooo Adé, hence HX = 1 preserves the conservation of the

displaced surface ffooo ndx = 1.

Likewise for the equation itself , T = X3 preserves the invariance of the equation
which is written identically

on _ a0’

ot 6 93
using the classical trick of invariance of the implicit solution, it is straightforward
to obtain the similarity variable ( and the surface n of the form :

(= g andn =17 (),

By substitution and derivation the function f(¢) checks
—a/6f" =—Cf'/3—f/3.

By integrating, and since f is zero at infinity, we have :

af" =2 f.
The solution of y"(z) = xy(x) with y(co) = 0 is y = Ai(z) the Airy function,
moreover [ Ai(z)dz = 1 (and notice [;° Ai(z)dz = 1/3). We therefore have
the solution for f(¢) = (2/a)Y/3Ai((2/a)'/3¢), since € = & — cot The solution is
ultimately this f divided by two :

12 s, 2 gs (@ —col)
B Q(Cohgt) Z[(C()]'L(Q)) t1/3 }

n(z,t)
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Warning!!! "The factor 1/2 appears because these represent only the waves
moving to the right ; those moving to the left complete the full initial condition”
Whitham [I7] page 443.

See figure [[4] for a plot of Airy’s function

5.3 Solution of KAV equation with no dispersion : Biirgers

If we neglect the dispersion (third order derivative) the equation at long times
and in the frame of the moving wave becomes the so-called Biirgers equation (of
inviscid Biirgers) :

oy 3 00 _
ar  270¢
e From characteristic theory is it evident that this equation has /7 solutions....
It is also trivial that this nonlinear equation tends to create a shock because the
waves of greater height catch up with the lower ones.

0.

3 0n°

19 =0 Its associated shock velocity is therefore

e Indeed it is also written % +

352 B
17 _ 31|7]]. The total velocity of the discontinuity, into the laboratory frame
angl putting the dimensions back, is
3[ nl]-
W = 1 . 12
co(1+ tho ) (12)

This is the velocity of a discontinuity.

e We found the asymptotic selfsimilar solution for a given wave in terms of Airy’s
function. Note that we we can construct an analogue to this Airy solution for this
kdV with only non linearities (assuming that the displaced surface ffooo ndx is gi-

ven. % + %ﬁg—g = 0. This equation is solved using the similar solutions technique...

t="Tt
change of scales ¢ ¢ = X¢ (13)
n = Hij

Conservation of total mass is preserved by HX = 1 Likewise for the equation
itself, T' = X? preserves the invariance of the equation which is written identically
on _ 3099
ot 2 9¢
using the classical trick of invariance of the implicit solution, it is straightforward

to obtain the similarity variable ( and the surface i of the form :

and 1 = t*1/2f(i).

£
<:m7 t1/2

FIGURE 7 — A wave is transformed in a triangle due to breaking

By substitution and derivation the function f({) checks

(=¢f' = H/2=3f1

As (=Cf' — f) = —(¢f)’ by integration and since f is zero at infinity, we have :
Cf = 3f?. This gives f = ¢/3. This gives

n= £7 with gmaa: = \/67_
31

Any wave is transformed in a triangle whose shape decreases with time.
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FIGURE 8 — Center the solitary wave, it can be transformed in a triangle due to
breaking, or in many waves by dispersion

5.4 One famous solution of KdV equation : the Solitary
Wave

Now we mix both nonlinear terms and dispersive terms into one the KdV, we
will have the competition between the steepening of the triangle of figure [§| and
the dispersion of figure

Coming back with variables, assuming that the fundamental parameter in the
theory of water waves is of order one (Ursell number) :

NoA?
hi

=0(1),

the KdV equation reads with scales :

D b e Dy 4 30,00 colig %0

ot Ox 2hg " ox 6 Ox3
with cg = +/gho. this equation represent the dominant balance between non
linearities that will create a hydraulic jump and dispersion that destroys the wave
in several waves. When there is balance, a special wave, the ”soliton”, exists. It
does not change in shape.

=0

The solution with no elevation of the surface up and down stream needs some
algebra. We look at traveling waves f(z — Ct) = f(s), so that

0 0 0 0
a5t (z,t) = —Caf(s) = —Cf'(s) and %f(x,t) = af(s) = f'(s)
then :
) Of(x,t)  10%f(w,t)
gl w0+ f( D% T6 o

hence, it can be integrated once, the integration constant is such for s — +oo
perturbations of f are zero, so there is no constant. Then multiply by f’ and
integrate again :

o2

3

"
5 =0

3
=0, is —Cf’+i(f2)’+

—2Cf*+ f3=0

by separation of variables

| Fe= =

by change of variable, and few extra manipulations, we can find the solution.
Indeed, if (yes! if...) we notice that

(Arctanh(z)’ = 1/(1—2%), we have (Arctanh((1—2)") = —n(1—z" ") /(1—(1—2)*").
This gives us (n = 1/2) the solution of
/7’2 — —2(Arctanh((1 — 2)/2).
21—z
The inverse function of
& = —2(Arctanh((1 — 2)*/?) is z = 1 — tanh?(z/2) = 1/cosh(z/2)?
note that sech(x) = 1/cosh(z)
- 1
~ cosh?(v3s/2)
so that the final perturbation of the free surface is exactly :

7o

O 2 [3m0 10 '
cosh <2h i (z —co(1+ 5-)t ))

This is the ”Soliton” or Solitary Wave solution. It has a lot of properties... Other so-
lutions exist such as cnoidal waves (see literature, Whitham Lighthill, Debnath...)
John Scott Russell found the 1/ cosh? form experimental fit only. He obtained expe-
rimentally for velocity : c;sr = \/g(ho + 1) this is consistent with velocity of cha-
racteristics, so that it is a clever guess. The final exact velocity is v/gho(1+n0/(2ho),

the two velocity are close : v/g(ho +1n0) = vV/gho(1+n0/(2ho) + ...)... so that John
Scott Russell experimental result is not so wrong.

5.5 Other solutions of KdV equation : the Cnoidal Waves

Solutions of (f —20f? + f3 = 0, can be examined in a phase plane, with
g =df/ds and
dg  6Cf+9f2/2
df g
Critical points are f = g =0 and f =4C/3 and g = 0, the drawing in the phase
plane shows closed curves. For a given C' it involves cnoidal functions en(s) ...

n =mnocn®((2K(m)/A)(z — Ut)

=0.
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soliton obseryé

gsoliton calculé

FIGURE 9 — Soliton in a flume at Palais de la Découverte(t), photo

PYL http://www.lmm. jussieu.fr/ lagree/SIEF/SIEF97/solitongd.mov| , right the
1/cosh? solution.

FIGURE 10 — 3 solitons of various selfsimilar shape ¢y/ cosh? (% 360:13), they are

in the moving frame. The larger the height, the thinner the width, the faster the
wave. Time increases from bottom to top.
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6 What about viscosity ?

6.1 adhoc viscosity

Of course the viscosity plays a role and destroys the waves. Let us look at the
influence of the up to now neglected viscous term, first in a crude and false way.

According to Whitham [I7] the ondular bore equation is the kdV with an ad hoc
viscous coefficient necessary for the model but without real physical significance.

0 0 3co On  coh3 3n *n
a0 o ar T 6 o Va2 Y

with ¢y = v/gho and v this fake viscosity.

6.2 Biirgers equation

In the Navier Stokes equations, the second derivative term (92) has always been
neglected, claiming that it was negligible. However, this term is sometimes added
in an ad hoc manner. It allows precisely to smooth the shocks, over a distance that
is not very physical, but useful in practice the invicid burgers :

877+3 on _ @
or 2 85 852

Removing the 3/2 and changing 7, v, 7, we have the generic Biirgers model equa-
tion :

Oh , b _ 0%h
ot " or ~ "oa®

To solve this equation (Biirgers equation) we do the so-called Hopf transformation

21/8[09&( )

by setting n = from which

oF 0’F

I -¢)?
5 " Vae =9OF Wefind Fla0)= /_oo emp(—%)F((,O)dC.

Another solution of this equation, by setting ¢ = (£ — ¢7)/v to make the artificial
viscosity disappear and by looking for a solution F(¢) : —cF' + FF' + F" =
0, soit —cF + F?/2+ F' = cst solution is then

_hath o hathy h—h

(z —ct)
9 1T T 2

41/)

L tanh((hy — hs)

the shape moves at celerity ¢ = (hy + h2)/2, goes from hy to hy on a thickness

I//(hl — hg)

But again this viscosity has no asymptotic settlement.

6.3 Kakutani & Matsuuchi equation with fractional deriva-
tive

The viscosity plays a role and destroys the solitary wave. Let us look asymp-
totically at the influence of the up to now neglected viscous term. This is more
complicated than adding a false longitudinal term.

At dominant order, we have computed the ideal fluid solution, for the boundary

1 924

layer, we must add the dominant viscous term - 2 in the momentum equation

dug _ o 1 0?1

P + —
ot 01  Re 0>

with § = —1 + ﬁgj, and 4y = %y we change the scales to be in the boundary

layer as usual. We refer to the moving frame % = 8%’ and 8% = 85 we obtain

a_ 9 0

87§u0 + i 375770
with boundary conditions, first the no slip 4y = 0 in § = 0, second the matching
U (§ — 00) = up(y — —1) = 7jo(—1).

the resolution has been proposed by Kakutani & Matsuuchi in 1971 ([9]. The
problem is to solve for f =ty — 7jo(§, —1)

St asf=0
with boundary conditions, first f = —7jg in § = 0, second f(§ — o0) = 0 in fourier
space ikf + f = 0, so the solution is in e=°7 with o = (1—\/_5)(16 sgn(k))'/?, then

Uy = Mg — /ﬁoeigeikgdk

from this expression, we compute the transverse velocity using the trick of the
velocity in the boundary layer (second order effect, the blowing of the displacement
thickness in the ideal fluid) see http://www.lmm. jussieu.fr/~lagree/COURS/
CISM/blasius_CISM.pdf

o Oug _ 1 > 9 N
Ul——7§y+m/ (85( Uy — o) )dy

the corrective term, due to the blowing is rewritten after integration

1 o . .
gL = )1/2/ (=1 + isgn(k)|k|'/?Hoe* dk

(2Re
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by convolution, K& M wrote

z o 1 e (9770 dgl
BL — (71‘R€)1/2 ¢ 85' (fl _ €)1/2
this velocity is inserted in the 5%‘3—‘; = % + Eg—i}%
- _ _ -1 on ¢ On
g D1 52 111 N— — “ e
! (xa)( +577)+ / (CUJ 3 UBL = It te 9T O
The final Kakutani & Matsuuchi [9] is
0 3 8170 103 i) 1 > Ong d¢’
20 + t oo = A1
or "9 "6 oc (TRe)t/2 Je 0 (& —&)/?

In the integral one recognises a ”fractional” derivative. As the Fourier transform
of fis f, the the Fourier transform of ZTZ is (—ik)™f. Here, in this problem we have
(—ik)'/? so a 1/2 derivative! by inverse transform and convolution this (—ik)'/?

/

gives the part ff
The final

(G 5)1/2

3 ano L1 1 9%n N 1 o/%q,
8¢ T 6 03 T (wRe)l/2 06172

note that the coefficients are maybe wrong (check, it depends on the definition
of the 1/2 derivative). See le Meur https://hal.archives-ouvertes.fr/
hal-00826564/document| for discussion and bibliography, and controversy of the
use of Fourier transform, Laplace transform must be better to take into account
the history of the development of the boundary layer.

=0

8770+

We note that the KM equation is not only local : with J; and 0, derivatives.
This equation is as well non-local : [ 4 &'+ The mix of properties makes it difficult
to solve and interesting to study.
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6.4 Effet faible de la profondeur : solution lointaine

6.4.1 A partir de ’équation de dispersion tronquée (KdV linéarisé)

On a trouvé des solutions en ondes telles que w? = gk tanh(khg) si on développe
dans le cas peu dispersif de I’eau peu profonde, a grande longueur d’onde khg —
0, on fait un développement limité en khy de la tangente puis de la racine, (et

c2 = gho) :

(kho)?
3

(kho)?

w? = gk(kho— 3

+....) = (gho)k*(1— dont les racines sont w = £cok

o),

On en déduit en prenant la valeur + des ondes qui se déplacent vers la droite. On
2
la forme d’onde n = ngexp(i(wt — kx)), avec iw = (ik)co(1 + %(ik)2 +....) ce
qui veut dire que puisque 0yn = iwn et que d,n = —ikn ’équation de dispersion
linéarisée est celle correspondant au probléme suivant (elle s’appelle équation de
KdV linéarisée) :
0 0 coh? 03
a1 + Cof77 + 070 773]
ot ox 6 Ox
Cette équation s’obtient aussi a partir du systeme de Boussinesq obtenu en corri-
geant Saint-Venant et en considérant une onde qui va vers la droite. Nous allons
résoudre cette équation en supposant que la surface déplacée ffooo ndx est une
donnée. La premiere idée est de se déplacer avec la vitesse ¢y et de poser £ = x—cot
et a = coh3, 'équation devient :

=0.

o _ _ad’y
ot 6063

Cette équation, se résout par la technique des solutions semblables. Par invariances
par dilatations on cherche des solutions semblables... Consulter

t="Tt
le changement d’échelle { ¢ = X¢ (14)
n = Hi

La conservation de la masse totale fix;o nd¢ devient HX ffooo f]d{c mais comme
on veut 'invariance ffooo ndé = ffooo Ad& donc HX = 1 préserve la conservation
de la surface déplacée ffooo ndx = 1. De méme pour 1’équation, si T = X3 cela

N 3 A
préserve l'invariance de I’équation qui s’écrit identiquement g’tz =-3 g 52' La va-
riable de similitude est = -5 et la surface est de la forme : n = t~/3 f(£5).

Par substitution et dérivation la fonction f(¢) vérifie —a /6" = —(f'/3 — f/3 .
En intégrant, et comme f est nulle & l'infini, on a : af” = 2(f. Introduisons une

1—

(kh)*

).

FIGURE 11 — Onde dispersive a ¢ fixé, fonction de = (fonction de Airy).

nouvelle fonction qui est la fonction d’Airy (et qui n’a pas de rapport en soit avec
la Houle de Airy)

La solution de y”(z) = zy(z) avec y(co) = 0 et avec [~ Ai(x)dx =1 est y = Ai(z) la |

Nous allons montrer dans le paragraphe suivant par la méthode de la ”phase
stationnaire” ou de ”plus grande descente” t Hinch page 34, Erdély page 41 (et

voir plus loin) que

L—1/4

1 2 1
pour z < 0 Ai(z) ~ ﬁz_l/‘l sin(§|z|3/2+7r/4), et pour z >0 ona Ai(z) ~ NG

+
.3 (2%3) 23%3 al 1 sk
. . 4553+ oi3e5-6 T oemnsrersso T T @D L o
Le développement de Taylor : Ai(z) = —22-—22528 2 33;’/§F8(§) Lk ik -
3
2t i ;10 k-1 3k+1
T+ 37+ 5o T oo Tt sEGEED ¢ +oo
3r(1)

On a donc la solution pour f = (2/a)/3Ai((2/a)/3¢), puisque € = z — cot la
solution est au final :

1, 2

==
'r](l', ) Q(Coh(%t

1/3Ai 2

[( COh% )1/3 (Z‘ — Cot)}

t1/3 (15)
Attention il a fallu rajouter un facteur 1/2 car comme le rappelle Whitham
[?] page 443, on ne consideére que la moitié des vagues, celles qui vont vers la droite !

Nous allons retrouver ce résultat autrement dans la suite.
Pour mémoire quelques lignes Mathematica sur raspberry
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DSolvely’’[x] - x y[x] == 0, y[x], x]

ylx_, t.]1 := FL[(27(1/3)) =x/t"(1/3)] t~(-1/3)

FullSimplify[D[y[x, t1, t1 + 1/6 DIlylx, tl, x, x, x]]

intF = Integratel[%, x];

intFe = Simplifyl[% /. x -> eta t~(1/3) (2°(-1/3))]

DSolve[{), == O, F[Infinity] == 0}, Fl[etal, eta]

Integrate[(27(1/3)) AiryAi[(27(1/3)) x], {x, -Infinity, Infinityl}]

Series[AiryAil[x], {x, 0, 4}]

Series[AiryAi[x], {x, -\[Infinity], 0}] // Normal

Cette maniere est la plus simple de trouver la forme au loin des ondes disper-
sives. Nous allons voir deux autres méthodes classiques mais plus compliquées.

6.4.2 Plus compliqué : paquet au loin par la méthode de la phase
stationnaire, méthode générale

On a vu le déplacement d'un paquet d’ondes sous la forme n =
ffooo F(k)e'kz=«t) dk dans les cas simplifiés de deux ondes puis d’une porte (plus
avant en §77). Cela nous a permis d’introduire la vitesse de groupe. Dans le cas
ou F est réduite a la fonction porte F(k) = 1 pour kg — Ako/2 < k < ko + Ako/2,
et 0 sinon :

/ F(r)e™ @) gk = Akgsine((z — vgt)Ako/2)

— 00

la fonction sinus cardinal sinc(x) = sin(x)/x est une fonction ”piquée” en 0. Ce
calcul était un peu simpliste, reprenons le. On part de la perturbation de surface
libre décomposée suivant tous les modes spatiaux de Fourier :

n= / F(k)e'h=<t dk,

Cette intégrale est en fait difficile a calculer car on I’'a vu il y a beaucoup d’oscilla-
tions qui se compensent mutuellement (d’ou les simplifications : deux ondes puis
une porte en §7?). On va appliquer I'idée de la phase stationnaire ("méthode du
col”, ou "méthode de la phase stationnaire”, ou encore steepest descent cf Hinch
”Perturbation methods” page 30, c¢f Erdélyi 1956), pour cela on commence par
privilégier un rayon x = V't, ce qui permet d’éliminer la dépendance en x. L’onde
1 se développe alors en :

n= /F(k)exp(icp)dk ou la phase ¢ = Vk —w(k) = Vk — ke(k).

La contribution principale de 'intégrale est donc lorsque la phase ¢ varie peu avec
k, c’est a dire lorsque d¢/0k = 0. La dérivée s’annule justement pour un certain
ko tel que :

V =vy = 0w/0k.
On retrouve donc la vitesse de groupe. On développe en série au voisinage de ce
ko la relation de dispersion w(k), on note wf = 9%w/0k? :

1
w=wo + vg(k — ko) + iwg(k — ko) + ..

et on injecte dans l'intégrant,
n= / exp(i(kvy — wo)t) F(k)ewp(~af ((k — ko) /(\/(=20))? + ...))dk

(astuce i = —1/i et (v/2)? = 2). Or, seule la fréquence kq est sélectionnée, en
effet F(k) = F(ko) + (k — ko)OF/0k + ..., les termes autres que F (ko) ont une
contribution négligeable, il vient :

1~ exp(i(kovy — oJo)f)F(ko)/6961?(—606’((76 — o)/ (V/(=20)) )k

L’intégrale de exp(—w(((k — ko)/( (fZi))Q)))dk: est réécrite comme l'intégrale
de (—2i/(wyt))'/?exp(—s%)ds par changement de variable en définitive puisque
ffooo exp(—s?)ds = /7, on obtient I'estimation de la perturbation de surface libre

[on .
ne~i Ej;e”r/d‘(F(ko)exp(i(kox —wot)), autour du rayon principal x/t = vg.

Si wjj < 0 alors en le remplace par —w({ dans l'expression et on change le signe
e~i™/4 L’amplitude de la perturbation décroit au loin en t='/2, et ce le long du
rayon vy, en dehors de ce rayon, les ondes sont inexistantes. Le paquet d’onde se
déplace bien a la vitesse vy, 'amplitude décroit en 1/Vt.

6.4.3 Plus compliqué : paquet au loin par la méthode de la phase
stationnaire, cas des vagues

Le calcul précédent est général, il est utilisé dans d’autres branches de la
mécanique des fluides (en stabilité par exemple). Malheureusement, si on part

2
directement de w = kv/gho(1 — §k?h3 + ...), on a alors vy = co — h%&sz donc

wl = —h3cok. il n’y a pas de terme w{] & premiere vue quand k = 0.
Pour rattraper le coup, en fait, il y en a un si on suppose k petit et fini,
2
et w = —hicok est donc petit mais pas nul. Dot k = :l:\/(cot—m)/(h‘);“ ),
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en mettant dans 1’équation de la phase stationnaire vue a linstant 7 ~

27
wi't

le terme (kox — wot) fait apparaitre (z — ¢ot) en puissance 3/2 dans le sinus et w(
qui est en k est donc en /cot — z. On obtient apres calcul la forme de 'onde

2 s 2 (cot —x)%? 7
'~ 2/mE(0) ((hacow((:ot - x)) i (3<h§cOt/2>1/2 " 4)

6.4.4 Toujours aussi compliqué : paquet au loin sans la méthode de la
phase stationnaire

i e/ (F(ko)exp(i(kox — wot)), ces deux racines on fait apparaitre le sinus,

Sinon, si on ne veut pas faire ce calcul, on peut partir directement de la compo-
sition des ondes ~
n= / F(k)e' k=1 dk;
— 00

et en effectuant le développement au voisinage de k = 0 dans I'exponentielle

iCOhgk?’t

..)dk
6 )

n = F(0) / exp(ik(x — cot) +

. _ 3
Ensuite, on pose (cf Mei p 30) 23 = 2[:1;0%;] et k[z — cot] = za la partie réelle
0

’iCOhngt

...)dk
6 )

n = F(0) / cos(ik(x — cot) +

devient avec ce changement de variables

21/3 ad

or il est "bien connu” qu’une définition de la fonction de Airy est :

1 [ 3
Ai(z) = f/ cos(sz + %)ds
0

™

en fait on retombe sur la solution d’Airy que 'on a déja vue avec des solutions
semblables (& partir de la relation de dispersion de KdV linéarisé Eq. , mais
obtenue ici par le passage par la définition intégrale de 1’équation d’Airy :

21/3 (x — cot)
0~ T F(0) 2 A (21/3> .
(h2cot)'/? (hgcot)1/®

On se demande quelle est la relation entre cette description avec la fonction de
Airy et la méthode de la phase stationnaire , c’est ce que I'on va voir maintenant.

6.4.5 Lien final entre ces différentes approches

La fonction d’Airy a un comportement asymptotique [que I’on obtient justement
par la méthode de la phase stationnaire dans Hinch page 34, Erdély page 41]

1 2 1
Ai(z) ~ —=z" "4 sin(Z|2>/?+7/4) pour z < 0 ou pour z >0 on a Ai(z) ~ ——
(2) ~ A sin( 22 /) b &)~ 57
et on fait la substitution dans I’expression précédente du paquet au loin sans la
méthode de la phase stationnaire

_ 2 (cot —x)3? 1
~ 2 _ yag (20072 %
n ~ 2/7F(0) ((hicot/2)(cot — x)) sin <3 (W2cot /217 + 1

on retrouve bien la méme forme obtenue & partir de la phase stationnaire a k petit.

Au final, on voit quelle est la forme de la perturbation de surface libre : elle
devient exponentiellement petite pour x > cot, elle est maximale en x = cot
(approximation avec (cot — )~ '/* y diverge, il faut garder Airy), ensuite
pour x < cot elle a un caractere ondulatoire, 'amplitude décroit lentement en
(cot —x)~'/* au fur et & mesure que I'on s’éloigne du front.

Il faut alors retourner aux comparaisons issues de Noda [?] ”Water waves
generated by a local surface disturbance”. Il compare, des expériences, aux
deux approximations proposées, Airy complet, la solution en phase stationnaire
asymptotique donc avec la puissance -1/4 qui fait que 'onde diverge en x = ¢ot .

Des exemples de calcul avec Basilisk :
http://basilisk.fr/sandbox/M1EMN/Exemples/boussinesqc.c| résolution en
C des équations de Boussinesq,
http://basilisk.fr/sandbox/M1EMN/Exemples/airy_watertrainfront.c
résolution Multilcouche Euler Lagrange ou Green Naghdi avec Basilisk
http://basilisk.fr/sandbox/M1EMN/Exemples/ressaut_mascaret.c/Poor’s
man dispersive model

L—1/4

€.
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Water WAVES

7395
_ STATIONARY-PHASE SOLUTION
— - LEADING-WAVE SOLUTION
ot _______ EXPERIMENTAL DATA
XI5 ft, \=2ft,d=2.3 ft
B<o %d = 6.525, \/d=0.87
h=-0.3 tt g A I . -
> Y/ a Fa
1 A A
! / \ J \ II/\ N\ le\ —~
7 T A\ Ay VRN AV
[/ / \\ - \v \:\/ \/
A\
\ ,’ N v
A
s p<o -
£ | he-02# 4 \
o g N AL AR
A 7 o \\/ K
. / Y, \ \U X/~
\"
h=-0lft B<O
2 p>0 \//\\//\ 2= P A N
TIME : t* (seconds )
1 2 3 4 5 6 7 8 9 10
1 1 1 1 L 1 1 II 1
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

TIME : t=t* -3— (dimensionless )

Fig. 6. Experimental and analytical amplitude-time relationships.

FIGURE 12 — Comparaisons issues de Noda [?]. Comparaison des expériences,
aux deux approximations proposées, celle de la phase stationnaire 7
i2met™/ 4 (Wit) T2 F(ko)exp(i(kor — wot)) que l'on va voir plus loin & celle de

, 1/3 . e
la solution n = W / Az(21/3( o

t2/3 au lieu de t'/3, cela est certainement une typo.

W) que 'on vient de voir (en fait il y a un

~
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7 The ondular bore or Mascaret

Hydraulic jumps arise some time in rivers due to the elevation of the sea level
due to the tide. The simple bore (hydraulic jump) is solution of Shallow water
equations, but if the river is with enough water depth, dispersion occurs, then the
bore breaks and create an ”ondular bore” (a ”Mascaret”, a ”Poroqua”, see Chan-
son [3] definite book : ”Tidal Bores, Aegir, Eagre, Mascaret, Pororoca : Theory
and Observations”). It is present in some rivers in the world and it is due to the
high tide. The mascaret on the ”Severn River” (Lighthill book [12]), is famous.
But the mascaret on the Dordogne in Saint Pardon is spectacular (of course the
ondular bores of China and Amazonia are the largest in the world), see figure
Far upstream, it breaks in solitary waves.

pRot Prarre-Yvus Lagree # MARrAred A Sain! Pardas A DOrdnens an Asit 1997

FiIGURE 13 — Mascaret or Ondular Bore at Saint Pardon on the
Dordogne, Photo PYL See other photos : http://www.lmm.jussieu.fr/~
lagree/SIEF/SIEF97/sieft97m.html

To define a model, we notice that the boundary conditions are different from
KdV as the levels are not the same downstream and upstream.

integral of Ai

0-2\
P S Y S S S I S S S A S Y X

L L L L L L L
-12 -10 -8 -6 -4 -2 2

FIGURE 14 — Dispersive infinitesimal small jump : integral of Airy).

If we neglect non linear terms, the KdV equation is

0 0 cohd &3n 9%y
o T T o Von2

=0

with cg = +/gho. It is a first good model for ondular bore, as the solution of this
equation is with [ A¢ which is the solution that has two different level at +o00, see

figure [14]

If we take the kdV with an initial jump as initial condition

0 0 3co On . cohd 93n
T Coax”+ 2h0n3x + 6 Ox3

ot =0

with cg = v/ghg, there is the formation of a train of solitary waves.
According to Whitham [I7] the ondular bore equation is then the modified kdV
with an extra ad hoc term

0 3co @ coh%@_ 0%n

a5 o T T 6 aws Vom0

with cg = v/gho and v an ad hoc viscous coefficient necessary for the model but
without real physical significance. This dissipation avoids the escape of the train
of solitary waves.

This is a dissipation which prevent the formation of a train of solitons.
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FIGURE 15 — A "Mascaret” with Gerris.
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FIGURE 16 — A "Mascaret” in the moving frame, numerical solution of the reduce
equation y"(z) —my'(z) —y(z) +y(z)? = 0, "Model bore structure” see figure 13.6
page 484 of Whitham [I7]

FiGure 17 - ondular bore in a channel ENSTA experimen-
tal lab. DBatterie de 1'Yvette, photo PYL. See other films
http://wuw.lmm. jussieu.fr/~lagree/SIEF/SIEF97/MAQUETTE/mascaret.html

S

FI1GURE 18 — A hydraulic jump is metamorphosed in a undular bore due to a small
increase in depth. photo PYL, Baie de la Fresnaye (22) Port & la Duc 2010. [click
to launch the movie, Adobe Reader required|

FIGURE 19 — Some meters down stream, the hydraulic jump changes ... into an
undular bore photo PYL, Baie de la Fresnaye (22) Port & la Duc.
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FIGURE 20 — left a very non linear wave Miami 2016, right a mascaret Saint
Pardon 1997...

8 Conclusion

In this chapter, we observed waves in water. First, we study waves of small
amplitude ¢ < 1 in shallow water § < 1. This gives the 0’Alembert wave
equation. Second, we study waves of small amplitude ¢ < 1 in deep water § = 1.
This is Airy wave theory. Third, we study waves in not small amplitude ¢ = 1
in shallow water § < 1. This is shallow water. Finally we study waves of small
amplitude £ < 1 in shallow water § < 1 but no so shallow, with e = §2 < 1. This
is Boussinesq KdV theory.

The Soliton and the Ondular Bore are nice examples of waves.
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This course is a part of a larger set of files devoted on perturbations methods,
asymptotic methods (Matched Asymptotic Expansions, Multiple Scales) and
boundary layers (triple deck) by &2.-%. Lagrée .

The web page of these files is http://www.lmm. jussieu.fr/~lagree/COURS/M2MHP.

/Users/pyl/ ... /kdv.pdf

- MHP KdV PYL 2.28-

P.-Y. Lagrée, KdV


https://www.epoc.u-bordeaux.fr/indiv/bonneton/publications/Talks/Bonneton_Cargese_29mai-2juin2017.pdf
https://www.epoc.u-bordeaux.fr/indiv/bonneton/publications/Talks/Bonneton_Cargese_29mai-2juin2017.pdf
https://www.epoc.u-bordeaux.fr/indiv/bonneton/publications/Talks/Bonneton_Cargese_29mai-2juin2017.pdf
http://books.google.fr/books?id=kAG8MMq1NUQC&printsec=frontcover&dq=hubert+chanson&hl=en&sa=X&ei=3sufUMSQB-ag0QWZg4HACQ&redir_esc=y#v=onepage&q&f=false
http://books.google.fr/books/reader?id=RXeMpAqAnrQC&hl=fr&printsec=frontcover&output=reader&source=ebookstore&pg=GBS.PR1
 http://books.google.fr/books/about/Waves_Called_Solitons.html?id=A72QQ4BDKNIC&redir_esc=y
http://books.google.fr/books/about/Linear_and_Nonlinear_Waves.html?hl=fr&id=84Pulkf-Oa8C
http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEnv.pdf
 http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEhoule.pdf
http://www.lmm.jussieu.fr/~lagree/COURS/M2MHP
http://www.ida.upmc.fr/~lagree

54 Sir James Lighthill and Modern Fluid Mechanics

Lol

Fig. 3.2 At the University of Central Florida, October 1995, Left to right: Lokenath

Debnath, Sir James Lighthill and Lady Nancy Lighthill.

FIGURE 21 — From the book ”Sir James Lighthill and Modern Fluid Mechanics”
by Lokenath Debnath
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Codes Gerris Basilisk.

Gerris

Some Gerris code for water waves

mkdir SIM
rm SIM/sim*

gerris2D -m hydrolicjump3Bv.gfs | gfsview2D

# Title: Airy waves

#

# Description:

#

# Author: PYL

Define Uhoul 0.25%sin(omega*t + 2*pixx/lambda)*cosh(2*pix*y/lambda)/cosh(
Define Vhoul -0.25%cos(omega*t + 2*pi*x/lambda)*sinh(2*pi*y/lambda)/cosh
Define LEVEL2 ((LEVEL-2) *(y<hO+.3)+(LEVEL-4)x*(y>=h0+.3))

Define LEVEL1 (((LEVEL-2)%* (y<=hO-.3))+(LEVEL*(y>(hO-.3)&&(y<hO+.4)))+(LEV
Define Nraf 9

# suffit 8 pour houle simple

3 2 GfsSimulation GfsBox GfsGEdge {
# shift origin of the domain
x =0.5y=0.5}A
Global {
#define LEVEL Nraf
#define hO 1
#define RATIO (1.2/1000.)
#define VAR(T,min,max) (min + CLAMP(T,0,1)*(max - min))
#define pi 3.141516
#define eps 1.e-6
#define lambda 4.0
#define omega sqrt(2+pi/lambda*tanh(2*pi/lambda))
}
PhysicalParams { L = 10 }

Refine LEVEL2

VariableTracerVOF T
VariableFiltered T1 T 1
Time {end = 100 }

InitFraction T ((h0 - y))
Init { } {U = Uhoul*0 V = Vhoul*0 1}

# air/water density ratio si T1=0 RATIO si Ti=1 1
PhysicalParams { alpha = 1./VAR(T1,RATIO,1.) }

ProjectionParams { tolerance = 1.e-3 }
ApproxProjectionParams { tolerance = 1.e-3 }

P*pi/lambda)*(y<1.1)
(2*pi/lambda)*(y<1.1)

EL-3)* (y>=h0+.4))

RefineSolid Nraf

Solid ( y + 0.1%(x-30./2))

Source V -1.

Source U 0.0

RemoveDroplets { istep = 1 } T -2

OutputTime { step = 2 } stderr
OutputSimulation { istep = 25} stdout
# noter le format 000

}

GfsBox {
left = Boundary {
BcNeumann U O
BcNeumann T O  }
top = Boundary

AdaptGradient { istep = 1 } { cmax = 0.0 maxlevel = LEVEL1 } UxT

OutputSimulation { step = 0.25 } SIM/sim-%06.2f.gfs
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bottom = Boundary {
BcDirichlet V O
}r

GfsBox {

top = Boundary
bottom = Boundary {
BcDirichlet V O
3}

GfsBox {
top = Boundary
bottom = Boundary {
BcDirichlet V O
}
right = Boundary {
BcDirichlet U Uhoul
BcDirichlet V Vhoul
BcNeumann T O

}

1 2 right
2 3 right

Improve this code, verify that the dispersion relation works, try to do a solitary
wave and a mascaret.
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Here code for Saint-Venant hydraulic jump (the bore)

Title: Steady Hydraulic Jump
Description:

Author: PYL

Command: gerris2D dam.gfs
Required files: dam.plot
Generated files: jump.gif
#

F1°2 0.375

H O H H H H B HH

#+OH ¥ OH OB O
=
N

#Define LO 10
#
# Use the GfsRiver Saint-Venant solver
1 0 GfsRiver GfsBox GfsGEdge {} {
PhysicalParams { L = 10 }
RefineSolid 9
# Set a solid boundary close to the top boundary to limit the
# domain width to one cell (i.e. a 1D domain)
Solid (y/10. + 1./pow(2,9) - 1le-5 - 0.5)
# Set the topography Zb and the initial water surface elevation P
Init {} {

Zb = 0
U = 0.387632*(x<-3)+(-.22474%0.5) * (x>-3)
P={
double p =x<-371 : 0.5;
// p = 1+(1.30277563773199-1) * (1+tanh(x))/2;

return MAX (0., p - Zb);
3
}
PhysicalParams { g = 1. }
# Use a first-order scheme rather than the default second-order
# minmod limiter. This is just to add some numerical damping.
AdvectionParams {
# gradient = gfs_center_minmod_gradient
gradient = none

}

Time { end = 7}
OutputProgress { istep = 10 } stderr
# Save a text-formatted simulation
OutputSimulation { step = 0.1 } sim-%g.txt { format = text }
# Use gnuplot to create gif images
EventScript { step = 0.1 } {
time=‘echo $GfsTime | awk ’{printf("%4.1f\n", $1);}°°¢
cp sim-$GfsTime.txt sim.txt
cat <<EOF | gnuplot
load ’dam.plot’
set title "t = $time"
set term postscript eps color 14
set output "sim.eps"
h(x)= 1-(0.5)*(x>-3+1.*$time)
plot [-5.:5.1[0:2]’sim-$GfsTime.txt’ u 1:7:8 w filledcu 1lc 3, ’sim-0.txt’
EOF
time=‘echo $GfsTime | awk ’{printf("%04.1f\n", $1);}’°
convert -density 300 sim.eps -trim +repage -bordercolor white -border 10 -
rm -f sim.eps
b
# 1:x 2:y 3:2 4:P 5:U 6:V 7:Zb 8:H 9:Px 10:Py 11:Ux 12:Uy 13:Vx 14:Vy 15:7Z
# Combine all the gif images into a gif animation using gifsicle
EventScript { start = end } {
gifsicle --colors 256 --optimize --delay 25 --loopcount=0 sim-*.gif > mjum
rm -f sim—*.gif sim-*.txt

}
¥
GfsBox {
left = Boundary { BcNeumann U O }
right = Boundary { BcNeumann U O }
}
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Ressaut mobile

Ul =03876 U2=-022474 hi=1 h2=05 W=|

FIGURE 22 — bore at Port a la Duc, baie de la Fresnaye. Photo PYL and with
Gerris
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Basilisk.

see web

Annex

Multilayer codes...

A

Raymond Subes ”Sans Titre” 1961 (entrée de Jussieu Quai Saint Bernard)
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