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Résumé

Creeping flows correspond to small Reynolds flows. Although every body knows
the Stokes solution around a sphere of radius L moving at velocity U0 : the force
is 6πµLU0, few know that the next orders need Matched Asymptotic Expansion
(MAE) to be computed. This is even more frustrating for the 2D flow around a
circle, in this case there is no solution of the 2D Stokes flow : this is the ”Stokes
Paradox”. Fortunately, the MAE allows to compute the flow, which was done in
1957, and allows to estimate the drag on a cylinder.

This chapter is the ”missing chapter” in all the courses of ”microhydrodyna-
mics” (because they are few references on this paradox on the web, for example
in 2024, chatGPT does not know the response... ).

We present then the Hele-Shaw cuve with more terms than usually (and discuss
the non linear convective terms).

1 Introduction

Small Reynolds flows receive a new impulse nowadays. There is a huge interest
in ”microhydrodynamics”, which means that those flows are slow, and at a small
scale, so the Reynolds

Re = U0L/ν � 1

is small. This new interest comes from the fact that lot of applications in biological
field have been studied. For example flow around blood cells, around spermato-
zoids, swimming of microorganisms. Or for example flows in small devices MEMS,
lab on chip.... But Stokes flow can be at large scale with slow velocity and high
viscosity (in geophysics, flow in porous media, flow of lava or ice (as a very first
approximation)), flow of glass (window process) etc.

Those flows are called either ”Stokes flow” either ”low Reynolds flows”, or also
named ”creeping flows” or ”creeping motion”, in french ”écoulement rampant”.

L

U0

Figure 1 – A typical problem a body of length L in a uniform velocity U0 ; the Reynolds

number is small Re = U0L/ν << 1.

Historically, it is one of the first solutions obtained by George Gabriel Stokes 1819-
1903 : the flow around a sphere when advective inertial forces are small compared
to viscous forces.

We will see that this solution exists by ”chance” around a sphere, and that the
viscous flow around a cylinder can not be computed leading to the Stokes paradox.

It puzzled Stokes himself in 1851 and later Oseen, 1910 ; Lamb, 1911... It can be
understood through the use of matched asymptotic expansions (MAE) is one of
the triumphs of perturbation theory. See Van Dyke (1964) who presents the work
of Kaplun (1957) and Proudman and Pearson (1957) who found the solution.It
seems that the ideas cames from systematic applications of MAE by Lagerstorm
and its students. Proudman and Pearson were inspired by a paper of Lagerstorm
& Cole (1955), and Kaplun (1957) found more terms than they did. Proudman
and Pearson (1957) acknowledge the independent work of Kaplun in their paper
(Saul Kaplun was a kind of genius of MAE, but he died at the age of 40 in 1964).

2 Small Reynolds flows

2.1 Incompressible Navier Stokes equations

The problem that we have to solve is the problem of the solution of Navier Stokes
equations around a given body at small Reynolds number. Reynolds number Re is
constructed with a velocity (U0) and a typical length (L). We suppose that the flow
is laminar,which is always the case in practice at small Renolds, or small enough.
We will describe 2D or axi flows. The flow is supposed steady and incompressible.

So, we first non-dimensionalise the equations with L (the typical length of the
body) and U0 (the typical velocity) in all directions of space and velocity (with
”bars” over the variables i.e. x̄ = x/L, ȳ = y/L, ū = u/U0, v̄ = v/U0 p = p0 + p̄P0,
the reference pressure is here taken to be p0, this must be changed in compressible
flows). For large Reynolds flows, we will take P0 = (ρU2

0 ), for small Reynolds flows,
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pressure scales with viscosity rather than with inertia :

P0 = (ρU2
0 )/Re = µU0/L.

The drag is then obviously scaled by P0L
2 which is µLU0 (in this chapter we

will indeed find that the prefactor is 6π for a sphere, and a more complicated
value for a cylinder).

Boundary conditions are no slip at the wall :
if Fw(x̄, ȳ) is the implicit equation of the the wall : ū = 0 and v̄ = 0 on the body, and
u = 1 and v̄ = 0 far away from the body. Incompressible steady adimensionalised
Navier Stokes equations are : −→̄

∇ · −→̄u = 0

Re(
−→̄
u ·
−→̄
∇−→̄u ) = −

−→̄
∇p+

−→̄
∇2−→̄u .

These are the relevant non dimensional NS. The small parameter ε = Re� 1, at
first glance, the ε does not remove second order derivatives. So we think that the
problem will be regular. We will just put Re = 0 and try to solve the problem.

2.2 Stokes solution for a sphere

Stokes solution corresponds then to the solution of the purely viscous problem
with ε = 0, so

−→̄
∇ · −→̄u = 0 and 0 = −

−→̄
∇p+

−→̄
∇2−→̄u

with no slip velocity on the body.
As says Milton Van Dyke [21] page 149 ”Every high-school student learns that

Millikan calculated the drag of an oil drop using the approximation developed by
Stokes in 1851” (that gave to Robert Millikan Nobel prize in 1923). This exact
solution is very classical (one of the first among the few). It leads to the famous
force on the sphere 6πµRU0. As said by Milton, the solution is in every text book
(Kundu [9], Guyon Hulin & Petit [8]... see Landau [14] for an elegant alternative).

The solution, that we present very quickly here (without all the details of deriva-
tion), is done usually with the stream function for a flow in spherical coordinates :

ūr =
1

r̄2 sin θ

∂ψ̄

∂θ
, ūθ = − 1

r̄ sin θ

∂ψ̄

∂r̄

as, to remove gradient of pressure, the rotational of equation (0 = −
−→̄
∇p +

−→̄
∇2−→̄u )

gives the ”Laplacian” of the ”curl,” the final equation is a ”bilaplacian” :

−→̄
∇2
−→̄
∇2ψ̄ = 0

which reads

[
∂2

∂r̄2
+

sin θ

r̄2

∂

∂θ
(

1

sin θ

∂

∂θ
)]2ψ̄ = 0, (1)

with on the circle, r̄ = 1 the no slip condition

ψ̄(1, θ) =
∂ψ̄

∂r̄
(1, θ) = 0,

and far away the free stream of unit velocity

ψ̄(∞, θ) =
1

2
r̄2 sin2 θ.

Solving a Laplacian is often done with separation of variables, F (r̄)G(θ). We guess
that G(θ) will involve sine and cosine. One of the tricks is to look at ψ̄ = f(r̄) sin2 θ,
because the far field solution has this structure, and after substitution and inte-
gration, and use of B.C. and fact that r̄4 solutions are not possible, so the final
solution of eq. 1 is :

ψ̄ = r̄2 sin2 θ(
1

2
− 3

4r̄
+

1

4r̄3
).

The velocity derives from it :

u =
1

r̄2 sin θ

∂

∂θ
ψ̄, and v = − 1

r̄ sin θ

∂

∂r̄
ψ̄,

which is :

ū = cos θ(1− 3

2r̄
+

1

2r̄3
) and v̄ = sin θ(1− 3

4r̄
− 1

4r̄3
)

then one computes the pressure and the viscous stress components on the sphere,

[−p̄ cos θ + σ̄rr cos θ − σ̄rθ sin θ]r̄=1,

with

p̄(r̄, θ) = −3 cos θ

2r̄2
on the sphere p̄(1, θ) = −3 cos θ

2
.

So that the final total drag (by integration around all the sphere) is 6π. With
dimensions (multiplied by the scale of pressure which is µU0/L = ρU2

0 /Re and by
the scale of surface L2), this gives the famous law for the drag :

D = 6πµLU0

Notice that if the drag is scaled by the Bernoulli pressure ρU2
0 /2 which is usual

for high Reynolds flows, and the radius L of the sphere (projected area πL2), at
small Reynolds constructed on the diameter : ReD = 2UL/ν :

CD =
D

πL2

2 ρU2
0

=
24

ReD
.
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See figure 8 which represents the CD as function of Re.
Alternative way to solve the Stokes problem may be found, see Landau [13] §20

for the elegance of the use of invariances.

2.3 Terminal velocity

This famous drag relation D = 6πµLU0 gives us the terminal velocity in a
gravity field g which corresponds to the balance of weight and viscous drag :
ρs(4/3)πR3 = 6πµRU0 so that

U0 = ρs
g(2R)2

18µ
.

In the buoyant case, one has to replace ρs(4/3)πR3 by (ρs − ρ)(4/3)πR3 so that

U0 = ∆ρ
g(2R)2

18µ
.

The Reynolds number

Re =
ρU0L

µ
∝ ρg∆ρ(R)3

µ2

with A = ρ g∆ρ(R)3

µ2 the Archimedes number.

2.4 Hadamard-Rybczynski Solution for rising bubbles

The general solution for a Stokes flow in a uniform stream is :

ψ̄ = r̄2 sin2 θ(
1

2
+
A

r̄
+
B

r̄3
).

The Stokes flow corresponds to the flow around a sphere, were velocity is 0. The
solution with no slip at the wall is A = −3/4, B = 1/4. If we compute the force it
is

D =
4

3
πµU0L(4 + 2A+ 8B),

again, this gives for A = −3/4 and B = 1/4, the Stokes solution :

D = 6πµLU0

There is another solution from Hadamard and Rybczynski (both in 1911) who
modelised a bubble as a sphere with zero shear stress. Then A = −1/2 and B = 0
and the drag is

D = 4πµU0L.

Figure 2 – flow around a sphere at Re = 0. iso stream function ψ̄ = r̄2 sin2 θ( 1
2
− 3

4r̄
+

1
4r̄3

)
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Figure 3 – Pressure along x for Re = U0L/ν = 0 for flow around a sphere at Re = 0.

In practice, a real bubble is in between (as the air is moving in it), and surfactants
at the surface change the properties and the boundary condition.

One has to note that the potential flow solution is A = 0 and B = −1/2 and
that the drag is

D = 0.
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Figure 4 – iso Pressure for flow around a sphere at Re = U0L/ν = 0.

Figure 5 – rising bubbles, those are too large to apply Hadamard-Rybczynski theory.

Those are Taylor bubbles which are inertial, so that drag is scaled by ρU2
0L

2.
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2.5 Oseen criticism (sphere at next order)

Carl Oseen (born Lund 1879, died Uppsala 1944) has remarked that far away
from the sphere, at location x̄ = O(1/Re), the neglected term of convection is no

more negligible. Indeed, Re(
−→̄
u ·
−→̄
∇−→̄u ) which is almost (Re∂x̄

−→̄
u ) is no more small

compared to the viscous term (∂2
x̄ + ∂2

ȳ + ∂2
z̄ )
−→̄
u .

This is clear is we do the change of scale x̄ = (1/Re)x̃, so

Re∂x̄ = Re2∂x̃

and
(∂2
x̄ + ∂2

ȳ + ∂2
z̄ )
−→̄
u = Re2(∂2

x̃ + ∂2
ỹ + ∂2

z̃ )
−→̃
u .

This is just as in the Graetz problem, so the inertia is as large as (−
−→̄
∇p+

−→̄
∇2−→̄u ).

Hence, the inertial term is no more negligible...
He proposed to look at perturbation (with a prime)

−→̄
u ′ of a uniform flow along

−→e x which is the basic solution, so that

−→̄
u = −→e x +

−→̄
u ′.

The Oseen correction is linear :

−→̄
∇ · −→̄u ′ = 0

Re(
∂

∂x̄

−→̄
u ′) = −

−→̄
∇p′ +

−→̄
∇2−→̄u ′

This can be solved (see Kundu [9], his Re is 2Re), the resolution of this linearized
problem is not so simple

ψ̄ = r̄2 sin2 θ(
1

2
+

1

4r̄3
)− 3

2Re
(1 + cos θ)(1− e− 2Rer̄

4 (1−cos θ))

If Re is small, the expansion of the exponential gives :

3

2Re
(1 + cos θ)(1− e− 2Rer̄

4 (1−cos θ)) = − 3

Re
(1 cos2 θ)

Rer̄

4
= − 3

4r̄

so we have the Stokes solution from the Oseen solution when Re→ 0. See figure 7
for a comparison at Re = 0.05. One should nevertheless notice that ψ̄ is not zero
on the sphere with the Oseen solution (but is O(Re)).

After some -long- algebra (Kundu [9], Lamb [12]), the correction to the drag is
obtained from Oseen approximation :

D = 6πµLU0(1 +
3

8
U0L/ν)

Figure 6 – flow around a sphere at Re = 0 (Stokes solution, dash), and at Re = 0.05

Oseen solution, plain. Note the small (O(Re)) transport of the stream lines.

2.6 Criticism of Oseen criticism and ”Whitehead paradox”

In his book Lamb [12] wrote a paragraph called ”Oseen criticism” explaining
the above theory. Lamb said that this linearisation is not true, as the velocity
changes all along distance. But by chance, the result, ( 3

8U0L/ν), is good ! White-
head wanted to solve the next order, he did not succeed to solve the problem by
iteration (finding the (U0L/ν)2 term), this is called the ”Whitehead paradox” 1889.
The problem has been solved by Proudman and Pearson [16] and simultaneously
by Lagerstorm and Kaplun (1957) ; with the matched asymptotic expansion they
obtained after some (long long) algebra (Log is ln the Logarithmic function, or
Neperian Log) :

D = 6πµLU0(1 +
3

8
Re+

9

40
Re2Log(Re) + ...) Re = U0L/ν

notice that for Re = 0.15, we compute 3Re/8 = 0.055 and 9
40Re

2Log(Re) = −0.01,
which is small enough...

The expected development was Re0, Re, Re2, Re3.... The fact that a new unex-
pected term arises Re2Log(Re) and interplays Re � Re2Log(Re) � Re2... was
called ”Switchback” by S. Kaplun [18] ”in trying to find terms of a certain order
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Figure 7 – Flow at various Re around a sphere from Taneda 1956

one is forced to reconsider lower order terms.” (in ”fluid mechanics and singular
perturbations collection of paper by Kaplun editor Lagerstrom )

We will not present this matched asymptotic expansion in axi symmetrical flow
around a sphere but we will present it in the next section all the details in 2D
around a cylinder. Before, we plot the fields with a Navier Stokes solver.

22 1 Einige Grundzüge der Strömungen mit Reibung

Bild 1.19. Widerstandsbeiwert von Kugeln in Abhängigkeit von der Reynolds-Zahl
Kurve 1: Theorie nach G.G. Stokes (1856), cW = 24/ Re
Kurve 2: Theorie nach C.W. Oseen (1911), cW = (24/ Re)[1 + 3 Re /16]

Zur Erweiterung dieser Gleichung für höhere Reynolds-Zahlen vgl. M. Van Dyke
(1964b)

Kurve 3: Numerische Ergebnisse nach B. Fornberg (1988)

Einsetzen instationärer Strömung bei Re = 200, vgl. U. Dallmann et al. (1993)

sich nur geringe Abweichungen zwischen Messung bei Re = 1030 und der Grenzlösung. Die
ebenfalls eingezeichnete gestörte Grenzlösung wird in Kap. 14.2 behandelt.

Nach Bild 1.5 wächst die kritische Reynolds-Zahl wie bei der Kugel mit zunehmender
Mach-Zahl, so daß bei Überschallanströmung bis zu Re = 106 unterkritische Bedingun-
gen vorliegen. Die Druckwiderstände sind dann unabhängig von der Reynolds-Zahl und in
guter Übereinstimmung mit der Grenzlösung Re = ∞, wie beispielsweise bei W.D. Hayes;
R.F. Probstein (1959) gezeigt wird.

Kugel. Die Umströmung der Kugel ist der Kreiszylinderströmung sehr ähnlich. Das Wider-
standsdiagramm der Kugel nach Bild 1.19 entspricht dem Bild 1.12 für den Kreiszylinder.
Wieder läßt sich bei hohen Reynolds-Zahlen der unterkritische und der überkritische Zu-
stand unterscheiden. In Bild 1.20 sind für diese beiden Zustände zwei typische experimentell
ermittelte Druckverteilungen dargestellt, vgl. auch E.Achenbach (1972). Bei hohen Reynolds-
Zahlen treten auch hier Abweichungen von der Axial-Symmetrie und Einsetzen instationärer
Vorgänge auf, wie in U. Dallmann et al. (1993) und B. Schulte-Werning; U. Dallmann (1991)
ausgeführt wird, vgl. auch E. Achenbach (1974a). Der Einfluß der Mach-Zahl auf den Ku-
gelwiderstand war bereits in Bild 1.5 dargestellt worden. Wie die Kugelumströmung von der
Rauheit der Oberfläche abhängt, wurde von E. Achenbach (1974b) untersucht.

Diffusor. Abgesehen von der Rohrströmung waren die bisher genannten Beispiele Umströ-
mungen. Als ein weiteres Beispiel für eine Durchströmung soll noch auf den technisch

Figure 8 – From Schlichting Gersten (Grenzsischt Theorie, Springer) cD on a sphere

as function of Reynolds based on diameter. Oseen and corrections are good for Re < 5,

at Re = 103 the flow is turbulent and CD remains constant, for Re ∼ 3 105, CD changes

rapidly from about 0.4 to 0.1 : the flow pattern changes, the turbulent wake is narrower

(this is strongly dependent of the defects on the sphere surface). This sudden drop is

called ”drag crisis”.
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2.7 With Gerris
# PYL oct 2012

#gerris2D -DLEVEL=13 -DRe=0.1 sphre.gfs | gfsview2D v.gfv

1 0 GfsAxi GfsBox GfsGEdge {} {

Time { end = 10 dtmax = 100.e-3}

PhysicalParams { L = 200 }

Refine 8

Refine (LEVEL + 1./50.*(x*x + y*y)*(4. - LEVEL))

Solid (ellipse (0., 0., 1, 1))

# SourceViscosity 1. { beta = 1 }

# SourceViscosity 1./Re { beta = 1 tolerance = 1e-4}

SourceViscosity 1./Re { beta = 1 }

# PhysicalParams { alpha = 1./Re }

Init {} { U = 1.0 }

AdaptGradient { istep = 1 } { cmax = 5e-2 minlevel = 5 maxlevel = LEVEL } U

AdaptGradient { istep = 1 } { cmax = 5e-2 minlevel = 5 maxlevel = LEVEL } V

AdaptFunction { istep = 1 } { cmax = 1e-2 minlevel = 5 maxlevel = LEVEL } {

return (fabs(dx("U"))+fabs(dy("U")))/fabs(U)*ftt_cell_size (cell);

}

EventStop { istep = 50 } U 1e-4 DU

OutputTime { istep = 20 } stderr

OutputSimulation { istep = 20 } stdout

OutputSimulation { start = end } end.gfs

}

GfsBox {

left = Boundary { BcDirichlet U 1.0 }

right = Boundary {

BcNeumann U 0.

BcNeumann V 0

# BcDirichlet P 0

}

top = Boundary {

BcDirichlet U 1.0

BcNeumann V 0

BcDirichlet P 0

}

bottom = Boundary

}

put it in sphre.gfs and then put in run.sh the following script

Figure 9 – iso Pressure Re = U0L/ν = 0.05 with Gerris, colors and exact solution

−3̄̄x/(x̄2 + ȳ2)3/2/Re

#!/bin/sh

export LANG=C

for Re in 1.0 .10 0.01

do

echo $Re

gerris2D -DLEVEL=13 -DRe=$Re sphre.gfs | gfsview2D v.gfv

cp end.gfs end$Re.gfs

gfs2oogl2D -c P -o -i < end.gfs | \

awk ’{print 3.14159265359 - atan2($2,$1),$4}’ | \

sort -k 1,2 > cp$Re.txt

done

cp end.gfs test.gfs

#######coupes en y=0

file="cuty0.dat"

awk ’BEGIN{

for (a = -100.; a <= 100; a += 0.01)

{ b=0;

print a " " b " 0.0 "; }

}’ > $file

gerris2D -e "OutputLocation { } dat0.dat cuty0.dat" test.gfs > /dev/null
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Figure 10 – pressures for Re = U0L/ν = 0.005 with Gerris and Stokes solution
along the axis y1 = 0, at a distance y1 = 1 and y1 = 20 from the axis : p̄e =
−3x̄/(x̄2 + ȳ2

1)3/2 .

Figure 11 – Velocity ū(r̄, θ = π) for Re = U0L/ν = 0.1 with Gerris and Oseen −(−1 +

1/(2. ∗ (x3)) + 3/((x2) ∗ 2 ∗ Re) − 3./(exp((−x ∗ 2 ∗ Re)/2.) ∗ (x2) ∗ 2 ∗ Re)) and Stokes

(1− 3/2./abs(x) + 1./2/abs(x)/x/x) solutions along the axis y1 = 0, The Stokes solution

is different, the Oseen and numerics are very close, the difference may be explained du

to the fact that Oseen is an approximation. The decrease is very slow, the box is of size

200 compared to the unit radius.
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3 Stokes paradox

3.1 The 2D Stokes problem, flow around a circle

3.1.1 Equations

In this section we will present the Stokes problem for the flow around a cylinder
(around a circle). We will see how it leads to a paradox (sub subsection 3.1.2).
Then we will show that there are two (concentric) layers, and two problems in
subsection 3.2 and the definite solution with MAE in subsection 3.3. We give then
the value for the Drag at the end in subsection 3.5.

In 2D, let us start again just as in the case of sphere, but now we try to find
the solution around a circle. We are indebted to François [4] who presents a clear
synthetic solution that we will follow. The full problem is indeed very technical
and the two initial papers from Kaplun 1957 [18] and Proudman & Pearson [16]
are not simple. Van Dyke [21] presents a summarized result.

Navier Stokes equations, scaled with L and U0 are in 2D (x̄, ȳ) :

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

Re(ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = −∂p̄

∂x̄
+ (

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
),

Re(ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
) = −∂p̄

∂ȳ
+ (

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
).

(2)

let us introduce the stream function with straightforward scale

ψ = LU0ψ̄

and so that :

ū =
∂ψ̄

∂ȳ
, v̄ = −∂ψ̄

∂x̄
.

Navier Stokes reads

Re((
∂ψ̄

∂ȳ

∂

∂x̄
− ∂ψ̄

∂x̄

∂

∂ȳ
)
−→̄
∇2ψ̄) =

−→̄
∇2
−→̄
∇2ψ̄.

It seems simple to write the expansion

ψ = ψ0 +Reψ1 + ...

the problem at order 0 is the Stokes flow around a circle

−→̄
∇2
−→̄
∇2ψ̄0 = 0,

and the order one

((
∂ψ̄0

∂ȳ

∂

∂x̄
− ∂ψ̄0

∂x̄

∂

∂ȳ
)
−→̄
∇2ψ̄0) =

−→̄
∇2
−→̄
∇2ψ̄1,

may be obtained from the order 0. This is exactly as in 3D.

3.1.2 The paradox

But unfortunately, there is no solution in 2D of the Stokes problem :

−→̄
∇2
−→̄
∇2ψ̄0 = 0 with, on the circle ψ̄0 = ∂n̄ψ̄0 = 0 and far from the circle ψ̄0 = y.

This is the Stokes Paradox.

More precisely the bi-Laplacian :
−→̄
∇2
−→̄
∇2ψ̄0 = 0 with on the circle ψ̄0 = ∂n̄ψ0 = 0,

in polar coordinates, and with a good guess (as in 3D) ψ̄0 = f(r̄) sin θ has the
general solution :

f(r̄) = Ar̄3 +Br̄Log(r̄) + Cr̄ +
D

r̄
.

After removing spurious solutions and using the no slip condition it is :

ψ̄0 = D sin θ(2r̄Log(r̄)− r̄ +
1

r̄
),

but we can not fit the boundary condition far away, due to the logarithmic term.
If now, we try to fit the condition at infinity and on the circle f(1) = 0, we have :

f(r̄) = Cr̄ − C

r̄

but now we do not have f ′(1) = 0.

This the Stokes paradox, there is no possible set of values of constants to obtain
the good boundary conditions.

This paradox has puzzled people during 100 years, for some it was a proof that
2D flow can not exist, or that steady flow can not exit... But we will see that the
paradox may be solved in the sequel of this course.

3.2 The two problems

3.2.1 Observation of the scaling of ψ and of space

All the problem arises because the sequence is not in powers of the small para-
meter Re. Here we just look at what happens if we do not take LU0 to scale ψ so
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say ψ = Ψ0ψ̄ and as well let us use x = `x̄, y = `ȳ then we have :

Ψ0

ν
((
∂ψ̄

∂ȳ

∂

∂x̄
− ∂ψ̄

∂x̄

∂

∂ȳ
)
−→̄
∇2ψ̄) =

−→̄
∇2
−→̄
∇2ψ̄

with Ψ0/ν is without dimension as we have defined Re = U0L/ν, so
Ψ0/ν = Ψ0Re/(U0L). Note that the scale ` is not in the Stokes equation
at all, any scale is possible. Different cases may arise :

• either Ψ0/ν = Ψ0Re/(U0L)� 1 or Ψ0 � (U0L)/Re, so that

−→̄
∇2
−→̄
∇2ψ̄ = 0

we will see that we will take ` = L there.

• either Ψ0/ν = Ψ0Re/(U0L) = 1 or Ψ0 = (U0L)/Re, so that we have the full
Navier Stokes, we will see that we will have to take `� L there.

• either Ψ0Re/(U0L)� 1 or Ψ0 � (U0L)/Re, so that we have a Euler equation

Ψ0

ν
((
∂ψ̄

∂ȳ

∂

∂x̄
− ∂ψ̄

∂x̄

∂

∂ȳ
)
−→̄
∇2ψ̄) = 0,

we will see that we will have to take `� L there.

It is interesting to notice that Ψ0 is the relevant scale for the problem, the lon-
gitudinal scale ` disappears in the equations. The boundary condition far away is
ψ = U0y so that ψ̄ = (U0`/Ψ0)ȳ so that we guess that it is impossible to have only
one scale for the length, there is a scale of the size of the radius near the body
` = L and another one far from it ` � L. Furthermore ψ has not the same scale
in those layers (see final figure 13 as summary).
Far away is a Euler region (negligible obstacle), and a Navier Stokes around the cy-
linder. This layer will include a viscous layer (Stokes problem) around the cylinder,
the outer Navier Stokes and the Euler regions are the ”Oseen” layer.

So we construct two problems, one far, the other near the circle.

3.2.2 First problem or ”Oseen problem”, far from the cylinder

First, from this analysis, the so called Oseen problem (we will understand why
latter), far from the body, in which inertia and viscosity are playing a role :

ψ =
U0L

Re
ψ̃, (x, y) =

L

Re
(x̃, ỹ)

we are in (x̃, ỹ) = O(1), at this scale the cylinder is a point ((x̃, ỹ) are the Oseen
variables),

((
∂ψ̃

∂ỹ

∂

∂x̃
− ∂ψ̃

∂x̃

∂

∂ỹ
)
−→̃
∇2ψ̃) =

−→̃
∇2
−→̃
∇2ψ̃

with boundary ψ̃ = ỹ far away. Notice that viscosity becomes negligible far from
the body, and we may re obtain Euler.

For small (x̃, ỹ) we have to match with the inner problem which comes next.

3.2.3 Second problem or ”Stokes Problem” close to the cylinder

Second the Stokes problem, near the body (variables scaled by L), were inertia
is small

ψ = Ψ0ψ̄, (x, y) = L(x̄, ȳ)

Ψ0 is not known, and we define (x̄, ȳ) = 1
Re (x̃, ỹ) now, we are in (x̄, ȳ) = O(1),

the scale of the cylinder ((x̄, ȳ) are the Stokes variables), Ψ0Re/(U0L) � 1 or
Ψ0 � (U0L)/Re,

Ψ0Re

U0L
((
∂ψ̄

∂ȳ

∂

∂x̄
− ∂ψ̄

∂x̄

∂

∂ȳ
)
−→̄
∇2ψ̄) =

−→̄
∇2
−→̄
∇2ψ̄ (3)

with, as the convection is small compared to the diffusion :

Ψ0Re

U0L
� 1

On the circle ψ̄ = ∂n̄ψ = 0 and far away we match to the first problem for large
(x̃, ỹ).

3.3 Solving the two problems

To solve we follow Proudman and Kaplun, they found at the same time the
same solution (see in [16] !).

3.3.1 First problem : Oseen, far from the cylinder

It seems possible to expand

ψ̃ = ỹ + δψ̃1 + ...

where δ is not known up to now. The flow is nearly not perturbed by the point,
the stream remains parallel to x axis.
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3.3.2 Second problem : Stokes, close to the cylinder

Looking at an expansion
ψ̄ = ψ̄0 + ...

gives the bi-Laplacian : −→̄
∇2
−→̄
∇2ψ̄0 = 0

with on the circle ψ̄0 = ∂n̄ψ0 = 0

The best way is to be in polar coordinates. and a good guess (as in 3D) is to
try ψ̄0 = f(r̄) sin θ so the general solution is (Log(Re) is ln(Re) the Logarithmic
function, or Neperian Log) :

f(r̄) = Ar̄3 +Br̄Log(r̄) + Cr̄ +
D

r̄

we then obtain from the no slip condition on the circle (and as r̄3 is too large at
infinity) :

ψ̄0 = D sin θ(2r̄Log(r̄)− r̄ +
1

r̄
)

so we have the Stokes paradox, there is no possible matching with a uniform flow,
in this layer. But we have to match with the layer of the first problem.

3.3.3 Van Dyke Matching

Let us write the solution of the Stokes problem, we have just found the solution
of the Stokes problem near the cylinder, Ψ0ψ̄0 as a function of r̄ (corresponding
to L, the scale of the cylinder)

Ψ0ψ̄0 = DΨ0 sin θ(2r̄Log(r̄)− r̄ +
1

r̄
),

in the Oseen r̃ variable (far from the cylinder) which is r̄ = r̃
Re , with r̃ = O(1) it

reads

Ψ0ψ̄0 = DΨ0 sin θ(2
r̃

Re
Log(r̃)− 2

r̃

Re
Log(Re)− r̃

Re
+
Re

r̃
)

the larger term when Re is small is the term with Log(Re) as |Log(Re)| → ∞ for
Re→ 0. So that the behavior is :

Ψ0ψ̄0 = −2DΨ0 sin θ
r̃

Re
Log(Re) + ...

The solution of the outer problem (first problem or Oseen problem ψ̃ = ỹ + ...)
written with its scales (U0L/Re for the stream function and L/Re for space, U0

velocity)
U0Lψ̃0/Re = U0Lỹ/Re+ ...

or in axi coordinates :
U0L

Re
ψ̃0 = U0

L

Re
r̃ sin θ + ...

hence the pq− qp rule gives (or the behaviour of the two descriptions for large r̄) :

−2DΨ0
1

Re
Log(Re) =

U0L

Re

so that D = 1/2 is a good idea and up to now unknown scale for Ψ0 is found yet

Ψ0 = − LU0

LogRe
.

We have exhibited here the relevant scale for the stream function at the cylinder
scale : Ψ0. Notice that the sign −LogRe > 0 for Re < 1 and we verify that as
expected Ψ0Re

U0L
= Re

LogRe � 1 as Re→ 0.

3.3.4 Final first order solution

Near the cylinder, we have just found that the scale of space is L (Stokes scale)
and the stream function has scale − LU0

LogRe the solution is

ψ̄0 = sin θ(r̄Log(r̄)− r̄

2
+

1

2r̄
).

Far from the cylinder the scale of space is L/Re (Oseen scale) and the stream
function has scale LU0

Re the solution is

ψ̃0 = r̃ sin θ.

The Stokes paradox is solved thanks asymptotics, it was due to this logarithmic
term. We are just at dominant order, for more precision let us look at the next
order.

3.4 Next order

3.4.1 Next order Stokes variable

If we wish more precision, the work is not finished and is harder and harder.

Near the cylinder, one can compute the next order from the momentum equation
with Ψ0 = − LU0

LogRe so eq. 3 is with Ψ0/ν in front of the viscous term :

Re

−LogRe
((
∂ψ̄

∂ȳ

∂

∂x̄
− ∂ψ̄

∂x̄

∂

∂ȳ
)
−→̄
∇2ψ̄) =

−→̄
∇2
−→̄
∇2ψ̄.
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We may guess that the solution is then with the expansion with Re
−LogRe as small

parameter :

ψ̄ = ψ̄0 +
Re

−LogRe
ψ̄1 + ...

Unfortunately, the solution of the problem of ψ̄1 is not possible (see François [4]),
then, it means that the expansion is not good, it should be with an intermediate
term of order ν with 1 � ν � Re

−LogRe . This is the Kaplun’s [18] ”Switchback” :
”in trying to find terms of a certain order one is forced to reconsider lower order
terms.”

We write

ψ̄ = ψ̄0 + νψ̄1 +O(
Re

−LogRe
)...

We have again a bi Laplacian to solve for ψ̄1 :

−→̄
∇2
−→̄
∇2ψ̄1 = 0, with condition on the cylinder ψ̄1(r̄ = 1, θ) = ∂r̄ψ̄1(r̄ = 1, θ) = 0

so that the shape of the solution is the same function as previously, at a multipli-
cative constant, say D1 :

ψ̄1 = D1 sin θ(r̄Log(r̄)− r̄

2
+

1

2r̄
).

3.4.2 Next order Oseen variable

Far from the cylinder : ỹ is ψ̃0 :

ψ̃ = ỹ + δψ̃1 + ...

so NS are at order δ
∂

∂x̃

−→̃
∇2ψ̃1 =

−→̃
∇2(
−→̃
∇2ψ̃1).

This is the ”Oseen approximation” that we described for the sphere ! The solution
is really complicated as it involves modified Bessel function Kn. In fact it has been
computed by Lamb in 1911 (for the cylinder, not by Oseen, who did the sphere
in 1910). After algebra, one of the first technical step is a transform (Goldstein
transform : thanks to ϕ̃ = ex̃/2φ̃ ) of

∂

∂x̃
φ̃ =
−→̃
∇2φ̃ in to

1

4
ϕ̃ =
−→̃
∇2ϕ̃

it turns that the equation for ϕ̃ reads with z = r̃/2 :

z2 d
2ϕ̃

dz2
+ z

dϕ̃

dz
− z2ϕ̃ = 0,

from Abramowitz and Stegun [1], this is Modified Bessel Equation of order n = 0.
The general expression is that In(z) and Kn(z) are the two linearly independent
solutions to the modified Bessel’s equation :

z2 d
2Kn(z)

dz2
+ z

dKn(z)

dz
−
(
z2 + n2

)
Kn(z) = 0,

We have for z � 1 the expansion K0(z) = −γ− ln(z/2) + ... where γ = 0.577216...
(we obtain as in the example in the first chapter the Euler constant γ). The
expansion for K1 for z � 1 is K1 = 1

z + z
2 ln z

2 ... The expansion for Kn for z � 1
and for n ≥ 1 is Kn = 2n(n− 1)!z−n + ...

Finally the full general solution for φ̃ is (see [16]) :

φ̃ = R((an + ibn)ex̃/2Kn(r̃/2)einθ).

This expression should be integrated to obtain ψ̃1 as φ̃ =
−→̃
∇2ψ̃1

The final expression after long algebra (Tomotika & Aoi [20]), which I am not
sure to follow, for small r̃ implies terms in r̃Log(r̃) and in r̃ and Euler constant γ.

3.4.3 Van Dyke Matching at next order

Let us write Stokes solution ψ̄ = ψ̄0 + ν1ψ̄1 + ... in r̃ Oseen variable (1/Re) far
from the cylinder (remember Ψ0 = − LU0

LogRe ) :

Ψ0(ψ̄0 + ν1ψ̄1 + ...) =

= Ψ0(sin θ(
r̃

Re
Log(r̃)− r̃

Re
Log(Re)− r̃

2Re
+
Re

2r̃
+ν1D1 sin θ(

r̃

Re
Log(

r̃

Re
− r̃

2Re
+
Re

2r̃
)+...)

for small Re this gives

− LU0

LogRe
(ψ̄0 + ν1ψ̄1 + ...) =

LU0

Re
r̃ sin θ(1− 1

LogRe
(Logr̃ − 1

2
) + 2D1ν1 + ...)

This should match term to term to Oseen solution for small r̃. This Oseen solution
was deduced from the integration of the set of Bessel Kn in the previous sub-
subsection, from the behaviour of the final computation, for small r̃, there appear
in ψ̃1 terms in r̃Logr̃ and r̃ terms. See literature for more details ([4, 16, 21, 18]),
even if none of the references gives really the full details. We see 1/LogRe terms
and then D1ν1 is of this order by dominant balance, hence ν1 = 1/LogRe. We
deduce as well that δ = 1/LogRe.
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3.5 Gathering the results for the Cylinder at small Reynolds

3.5.1 Poincaré approximation

Near the cylinder r = Lr̄, and ψ = − LU0

LogRe ψ̄, the solution is :

ψ̄ = sin θ(r̄Log(r̄)− r̄

2
+

1

2r̄
)

(
1 +

Log(4)− γ + 1/2

Log(Re)
+O(Log(Re)−2)

)
,

Far from the cylinder, r = Lr̃/Re, and ψ = LU0

Re ψ̃, the solution is :
and

ψ̃ = (r̃ sin θ +
1

LogRe
ψ̃1 +O(Log(Re)−2)),

3.5.2 Drag on a Cylinder at small Re

From the scale of Ψ0 = −U0L/LogRe we deduce that the total stress will be
µΨ0/L

2 so that the force over the circle will be µΨ0/L which is :

D ∼ µU0

−Log(U0L
ν )

In fact, after lot of algebra, the final result (after computing the pressure and
the shear at the wall from the function ψ̄1 at the wall) for the drag on a cylinder
at small Re is then

D =
4πµU0

1
2 − γ − Log(U0L

4ν )

Again, this formula as been obtained by Lamb in 1911 [11], but in the wrong
framework. It has been re formulated by Proudman & Pearson and Kaplun &
Lagerstorm who fixed the right framework : Matched Asymptotic Expansions.
Most of the ideas were from Kaplun, he disseminate them in conferences, so that
Proudman & Pearson found in parallel the final result. Saul Kaplun died at the
age of 40 in 1964.

We did not give all of the complicated details, they can be found in those papers.
The complete analysis has nearly never been explained in books of fluid mechanics.

We notice :
• that for Re = 0 there is no movement at all, but remember that we look at
Re→ 0, so that 1/LogRe is larger than Re, so an even small effect in 1/LogRe is
not so small compared to Re
• that the sequence is in 1/LogRe, so the convergence is slow.
• in fact all the Stokes terms are the same in the development so no asymmetry
is introduced by the various orders near the cylinder.
• the development fails for Re = 1 which is bad !

Figure 12 – From Van Dyke [21] page 164, drag function of Reynolds for a Cy-

linder, formula (8.49) in Van Dyke [21] : CD = 4π
Re

[∆1 − 0.87∆3
1 + O(∆4

1)] with

∆1 = 1/(Log(4/Re) − γ + 1/2) and Log(4) − γ + 1/2 = 1.31... = Log(3.70..). ”Full

Oseen” refers to the solution of the Oseen problem (Re ∂
∂x
− ∇2)∇2ψ = 0 by Tomotika

and Aori 1950.

• the formula is written using ρU2
0 as scale in Van Dyke [21]. The experimental

datas and the drag is on figure 12, it reads :

CD =
4π

Re
[∆1 − 0.87∆3

1 +O(∆4
1)] with ∆1 =

1

Log(4/Re)− γ + 1/2

As says Moffat in the ”cours des Houches” 1973 ”The complexity of the formula
is indicative of the complexity of the underlying analysis”.
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Figure 13 – The various regions around the cylinder of radius L in a stream U0. Far

away is a Euler region (negligible obstacle), and a Navier Stokes around the cylinder.

This layer includes a ”Stokes” layer around the cylinder, the outer Navier Stokes and

the Euler regions are the ”Oseen” layer. Near the cylinder, we are in the ”Stokes” region

were ψ/(U0L) = 1
−LogRe (ψ̄0 + 1

LogRe
ψ̄1 + ...) and r = Lr̄. Far from the cylinder, we are

in the ”Oseen ” region were ψ/(U0L) = 1
Re

(ψ̃0 + 1
LogRe

ψ̃1 + ...) and r = L
Re
r̃
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4 Unsteady Stokes

The unsteady equations, x̄ = x/L, ȳ = y/L, ū = u/U0, t̄ = ReU0t/L :

−→̄
∇ · −→̄u = 0,

∂

∂t̄

−→̄
u = −

−→̄
∇ p̄+

−→̄
∇2−→̄u ,

see Landau §24... ex 5... In Fourier space the solution gives (Graebel [7]/ Landau) :
we recognise a fractional derivative when we come back in real time domain, the
term is ”Basset ” and we have added mass.

Added mass or virtual mass is the inertia added to a system because an acce-
lerating or decelerating body must move some volume of surrounding fluid as it
moves through it.
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5 The Hele Shaw cuve

We will present here the Hele Shaw cuve (Henry Selby Hele-Shaw (1854-1941)).
This cuve is a channel which is thin. It is a kind of pipe, as there is no free surface.
This pipe has a rectangular section of size L × h , the vertical section h is far
smaller than L. A pressure drop produces the flow, as it is a flow in a kind of
pipe, we guess that this is a kind of Poiseuille flow. In this pipe, an obstacle will
be introduced. As a final result the mean flow around the obstacle behaves as an
ideal fluid (even if the flow is very viscous).

See figure 15 for an original picture from Hele-Shaw and 14 for a sketch.

The coordinate x is along the pipe and y and z are in the cross section. The
longitudinal and transverse scales (for x and y) are supposed of the same L. We
then write x = Lx̄, and y = Lȳ and of course z = hz̄. The ratio of scales ε = h/L
is small. The Reynolds number is defined as Re = U0h/ν. The pressure drop is
∆P0, it is imposed to promote the flow. we have w = εU0w̄ by dominant balance
of incompressibility.

Equations without dimension :



∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄
= 0,

εRe(ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄
) = −ε2Re

∆P0

ρU2
0

∂p̄

∂x̄
+ ε2(

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
) +

∂2ū

∂z̄2
,

εRe(ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄
) = −ε2Re

∆P0

ρU2
0

∂p̄

∂ȳ
+ ε2(

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
) +

∂2v̄

∂z̄2
,

εRe(ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄
) = −εRe P0

ρU2
0

∂p̄

∂z̄
+ ε2(

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
) +

∂2w̄

∂z̄2
.

(4)

the driving pressure ∆P0 is counter balanced by the viscous gradient across the
depth (ρU2

0 )/(ε2Re), so that ε2Re∆P0

ρU2
0

= 1. It gives the value of the flow velocity

in the channel U0 = ∆P
µL h

2. this is exactly the Poiseuille scaling. Hence NS without

b

upvpU0

Lc

Hc

alph

bump

h

Figure 14 – A cuve, the flow across the small dimension is a Poiseuille profile.

dimension is :

∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄
= 0,

εRe(ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄
) = −∂p̄

∂x̄
+ ε2(

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
) +

∂2ū

∂z̄2
,

εRe(ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄
) = −∂p̄

∂ȳ
+ ε2(

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
) +

∂2v̄

∂z̄2
,

ε3Re(ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄
) = −∂p̄

∂z̄
+ ε3(

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
) + ε

∂2w̄

∂z̄2
.

(5)

for small enough ε and εRe, then ∂p̄
∂z̄ = 0, so p̄ = P̄ (x̄, ȳ)

0 = −∂p̄
∂x̄

+
∂2ū

∂z̄2
, and 0 = −∂p̄

∂ȳ
+
∂2v̄

∂z̄2
,

give

ū = −∂P̄
∂x̄

z̄(1− z̄) and v̄ = −∂P̄
∂ȳ

z̄(1− z̄)

incompressibility gives by integration from the lower boundary were w̄(x̄, ȳ, 0) = 0 :

w̄ = (
∂2P̄

∂x̄2
+
∂2P̄

∂ȳ2
)(z̄2/2− z̄3/3)

The upper boundary condition (w̄(x̄, ȳ, 1) = 0) is not reached. This is impossible,
so it means that w̄ is always 0 :

(
∂2P̄

∂x̄2
+
∂2P̄

∂ȳ2
) = 0

The theory of Hele-Shaw cuve is as follow, the mean velocity Ū =
∫ 1

0
ūdz̄ is such

that

Ū = −1

6

∂P̄

∂x̄
and V̄ = −1

6

∂P̄

∂ȳ

so that

(
∂2P̄

∂x̄2
+
∂2P̄

∂ȳ2
) = 0

this is a pre freefem++ tool to solve Laplacians.... and that is indeed the figure
15 from Hele-Shaw were we see the flow around an airfoil.
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5.1 Next orders, averaged method

The influence of the next term may be interesting. As it is complicated, a good
idea is to say that the velocity has always the Poiseuille shape, so that

ū = 6z̄(1− z̄)Ū(x̄, ȳ) and v̄ = 6z̄(1− z̄)V̄ (x̄, ȳ) and w̄ = 0

were Ū(x̄, ȳ) and V̄ (x̄, ȳ) are the deflected velocity. As
∫ 1

0
z̄(1 − z̄)dz̄ = 1/6 and∫ 1

0
z̄2(1−z̄)2dz̄ = 1/30, we compute and ∂z̄ū = Ū6(1−2z̄) and we have ∂z̄ū(̄,ȳ, 1)−

∂z̄ū(̄,ȳ, 0) = −Ū
The final approximative system that we have to consider is :

∂Ū

∂x̄
+
∂V̄

∂ȳ
= 0,

6

5
εRe(Ū

∂Ū

∂x̄
+ V̄

∂Ū

∂ȳ
= −∂P̄

∂x̄
+ ε2(

∂2Ū

∂x̄2
+
∂2Ū

∂ȳ2
)− 6Ū

6

5
εRe(Ū

∂V̄

∂x̄
+ V̄

∂V̄

∂ȳ
) = −∂P̄

∂ȳ
+ ε2(

∂2V̄

∂x̄2
+
∂2V̄

∂ȳ2
)− 6V̄ ,

(6)

See Gondret & Rabaud, Plouraboué & Hinch, Loiseleux & Doppler.
Note that the viscous term has an equivalent Reynolds number 1/ε2. And that

the convective term is maybe not so small as it is a product of ε which is small,
but we can increase Re if we increase the pressure drop. Hence εRe is maybe not
small.

5.2 Euler Like

Of course, a good choice of parameters ε the small geometrical ratio and Re
the viscosity & pressure drop is to adjust εRe = 1 in order to have a kind of NS

Flow past the propeller strut of one of Her Majesty’s cruisers;

Rankine body and flow past a flat plate.

5

Figure 15 – An original photo of Hele-Shaw

problem (with an equivalent Reynolds 1/ε2) with an extra friction term opposed
to the velocity. Hece, at small ε we have kind of ideal fluid equations (no viscous
terms with Laplacian) :

∂Ū

∂x̄
+
∂V̄

∂ȳ
) = 0,

6

5
(Ū
∂Ū

∂x̄
+ V̄

∂Ū

∂ȳ
) = −∂P̄

∂x̄
− 6Ū

6

5
(Ū
∂V̄

∂x̄
+ V̄

∂V̄

∂ȳ
) = −∂P̄

∂ȳ
− 6V̄ ,

(7)

5.3 Next orders, residual method

What we have seen is the classical simple point of view, more recently, an al-
ternative method has been proposed (popularised by C. Ruyer Quill and others).
The change will be in the non linear term of the equation. We keep εRe in factor
to insist on the perturbative point of view valid for any given Re. Neglecting ε2

terms in equation (5), we have :

∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄
= 0,

εRe(ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄
) = −∂p̄

∂x̄
+
∂2ū

∂z̄2
,

εRe(ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄
) = −∂p̄

∂ȳ
+
∂2v̄

∂z̄2
,

ε3Re(ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄
) = −∂p̄

∂z̄
+ ε3(

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
) + ε

∂2w̄

∂z̄2
.

(8)

we define the velocity as Poiseuille one plus a correction, which is small, at fixed
Re = O(1). This correction is of order ε and comes from the correction of inertia.

Furthermore we impose that the total flux of uc is zero
∫ 1

0
ucdz̄ = 0 so

ū = Ū(x̄, ȳ)6z̄(1− z̄) + ūc and v̄ = V̄ (x̄, ȳ)6z̄(1− z̄) + v̄c

this correction being small, let say O(uc) = O(vc) which is of order ε, incompres-
sibility gives by integration the transverse velocity :

w̄ = (
∂Ū

∂x̄
+
∂V̄

∂ȳ
)(3z̄2 − 2z̄3) +O(uc)

so as the correction is small a good idea is to keep a global incompressibility
equations for Ū and V̄ :

(
∂Ū

∂x̄
+
∂V̄

∂ȳ
) = 0
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and the w̄ is of order O(uc) which is natural, but needed the previous equation.
Then, the trick is to look at the correction ūc from the momentum. The velocity,
comes from :

∂2ū

∂z̄2
= εRe(ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄
) +

∂p̄

∂x̄

this is integrated twice. We integrate each of the terms. First we start by inertia

(ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄
) = 36z̄2(1− z̄)2(Ū

∂Ū

∂x̄
+ V̄

∂V̄

∂ȳ
) +O(uc)

integrated twice
∫

0

∫
0
(36z̄2(1− z̄)2)dz̄dz̄ = 3z̄4 − 18 z̄

5

5 + 6
5 z̄

6.

Now looking at the second term, the pressure, ∂p̄∂x̄ , integrated twice it gives ∂p̄
∂x̄

z̄2

2 .

We have computed now after two integrations in z̄ the velocity ū :

ū = (z̄4 − 18

5
z̄5 +

6

5
z̄6)(εRe)(Ū

∂Ū

∂x̄
+ V̄

∂V̄

∂ȳ
) +

∂p̄

∂x̄

z̄2

2

we substract from this Ū6z̄(1− z̄) to obtain the correction field

ūc = −Ū6z̄(1− z̄) + εRe(3z̄4 − 18

5
z̄5 +

6

5
z̄6)(Ū

∂Ū

∂x̄
+ V̄

∂Ū

∂ȳ
) +

∂p̄

∂x̄

z̄2

2
.

We impose that the total flux of uc is zero
∫ 1

0
ucdz̄ = 0 so that the following

condition holds :

−Ū + εRe(
6

35
)(Ū

∂Ū

∂x̄
+ V̄

∂V̄

∂ȳ
) + (

1

6
)
∂p̄

∂x̄
= 0

and it gives the final new averaged system :

∂Ū

∂x̄
+
∂V̄

∂ȳ
= 0,

36

35
εRe(Ū

∂Ū

∂x̄
+ V̄

∂Ū

∂ȳ
) = −∂P̄

∂x̄
− 6Ū

36

35
εRe(Ū

∂V̄

∂x̄
+ V̄

∂V̄

∂ȳ
) = −∂P̄

∂ȳ
− 6V̄ ,

(9)

note that 36
35 = 1.02 is not one, and it was 6

5 = 1.2 in the simple previous method.

See Gondret & Rabaud, Ruyer Quill, Plouraboué & Hinch, Loiseleux & Doppler,
Lagrée

Figure 16 – Hele-Shaw set up(L = 1,2 m, H = 0,1 m et h = 0,35 mm).., right,

depending of the gas velocity , the regime is stable, neutral, or instable (size 1 cm 7 cm),

from Gondret Rabaud

6 Kelvin Helmholtz in Hele Shaw

Rabaud & Gondret constructed such Hele Shaw cuves, with two fluids (a liquid
and a gas), see figure 16). So they did a Kelvin Helmholtz configuration, as the
gas is injected. So, one can observe waves at the interface between the fluids. They
performed the stability analysis of this system (Plouraboué & Hinch).
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7 Other Topics and conclusion

Small Reynolds flow is a new ”à la mode” subject (even if it is old). Looking at
courses in micro hydrodynamics, there are some constants
• unicity, linearity of solutions.
• reciprocal theorem....
• property of minimal dissipation of energy for Re = 0.
• friction depends weakly on the exact shape...
• viscosity of suspensions...
• Moffat vorticies (see chapter on similitude)
• painting brush (Taylor’s scraper)....
• Lubrication equations between plates, between cylinders

Most of the courses on micro hydrodynamics do not present the complete solu-
tion of the flow around a sphere (except the Stokes drag in 6π) or a circle. So, this
chapter is the missing one, even if all the details are not given.

The fields covered is the interaction of small structures with a flow, for example
the study of swimming of micro-organisms. It is called Stokesian locomotion.
Those small organisms change there shape and move cilia and flagella. The aim of
this waving of organelles is usually to move the organisms. Indeed time-reversal
symmetry plays an key role in the selection of swimming strategies. There is then
the famous scallop theorem (Coquille Saint-Jacques, the best one are from Erquy
in the Bay of Saint Brieuc) [3] (from Purcell 78) ” Suppose that a small swimming
body in an infinite expanse of fluid is observed to execute a periodic cycle of
configurations, relative to a coordinate system moving with constant velocity U
relative to the fluid at infinity. Suppose that the fluid dynamics is that of Stokes
flow. If the sequence of configurations is indistinguishable from the time reversed
sequence, then U = 0 and the body does not locomote.”

The small Reynolds world is a new striking world...
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