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This woodcut by the Dutch artist gives a graphic impression of the “im-
perceptibly smooth blending™ of one flow into another (p. 89) that is the heart
of the method of matched asymptotic expansions discussed in Chapter 3.
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Chapter VIII

VISCOUS FLOW
AT LOW REYNOLDS NUMBER

8.1. Introduction

We consider now incompressible flow past a body at low Revnolds
number, as exemplified by the sphere and circular cylinder (Fig. 8.1).
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Fig. 8.1. Notation for sphere and circle.

Every high-school student learns that Millikan calculated the drag of an
oil drop using the approximation developed by Stokes in 1851:

Cp= o~ as R= 20 (8.1a)
A second approximation was found by Oseen in 1910:
Cp~ %’ (1 + 2R) (8.1b)

However, only in 1957 was it shown how further terms [cf. (1.4)] can
be calculated using the method of matched asymptotic expansions.
The classical warning of singular behavior is absent; the highest
derivatives are retained in the Navier-Stokes equations in the limit
R — 0. However, the problem contains two characteristic lengths: the
radius @ and the viscous length v U. Their ratio is the Reynolds number,
so that in the limit R — 0 the viscous length becomes vastly greater than
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150 VIII. Viscous Flow at Low Reynolds Number

the radius of the body. Hence singular behavior can be anticipated
according to the physical criterion advanced in Section 5.3.

Viscous flows at low Reynolds number are easily observed experi-
mentally, in contrast with those at high Reynolds number. Fig. 8.2
shows the sequence of flow patterns for a sphere or circular cylinder as

Fig. 8.2. Flow patterns for sphere or circle at low Reynolds number. (a) No eddies.
(b) Standing eddies. (c) Unsteady flow.

the Reynolds number increases. At very low speeds the streamline
pattern 1s almost symmetrical fore and aft. A closed recirculating wake
or standing eddy makes its appearance at about R = 10 for a sphere and
R = 2.5 for a circle (our Reynolds number being based upon radius
rather than diameter). One may imagine that the eddies alwayvs exist
inside the body, and at these Revnolds numbers penetrate thrc;ugh its
surface (cf. Fig. 8.3). The flow becomes unsteady, with oscillations of

2-term Stokes
expansion for R = ®

(o]
N~ From photograph by
Taneda (1956), R=36.6

Fig. 8.3. Shape of standing eddy bchind sphere.

the downstream part of the wake, at about R == 65 for a sphere and
R =I5 for a circle. The flow becomes irregular, with separation of
vortices from the rear of the body, above about R = 100 for a sphere
and R = 20 for a circle.
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8.2. Stokes’ Solution for Sphere and Circle

Stokes reasoned that at low speeds the inertia forces, represented by
the convective terms in the Navier-Stokes equations, are ineffective
because they are quadratic in the velocity. Hence at low Reynolds num-
ber the pressure forces must be nearly balanced by viscous forces alone.
As a first approximation, Stokes neglected the convective terms. In plane
flow the result is the biharmonic equation for the stream function:

(O Ve L@ g
Vi = ( crt v or vt of? )l’b =0 (8.22)

This follows formally from (7.2a) by letting R — 0. In axisymmetric
flow, the corresponding result is

[ 2 sinf ¢ ( 1 e \)] b—0 (8.2b)

ot o ol
Let lengths be made dimensionless by reference to the radius a, and

velocities by reference to the free-stream speed U (I'ig. 8.2). Then the
boundary conditions of zero velocity at the surface are

$(1,0) = ¢,(1,6) == 0 (8.3a)
and the condition of uniform tlow upstream is
S(r, 0 \r sin 6, plane R (8.3b)
(r. ) 1352 sin? 6, axisvmmetric - )

For the circle a symmetry condition must be added to rule out circulation.
Consider first the sphere. The upstream condition (8.3b) suggests
separating variables, seeking a solution of the form s = sin® 0 f(r). This
leads to
. 5 1
J = sin? 6’374, v, —}f—{ (8.4)

The upstream condition shows that no term in 7* can be tolerated, and
that the cocflicient of the term in 72 is 3. Then the surface conditions
(8.3a) fix the coeflicients of » and 1 7, giving Stokes’ approximation:

1 ' l 9
b~ Zi(2;,2 — 3 - 7) sin2 8 (8.5)

The first term is the uniform stream, and the third a dipole at the
center of the sphere, both representing irrotational flows. The second
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152 VIII. Viscous Flow at Low Reynolds Number

term, which contains all the vorticity, has been dubbed a ‘“stokeslet”
by Hancock (1953), who used a linear distribution of these three elements
to simulate a swimming worm. For inviscid flow the stokeslet is absent,
and the cocflicient of the dipole 1s Linstead of 4. Calculating the
skin friction gives two-thirds of the drag (8.1a), the remaining third
being pressure drag (l'omotika and Aoi, 1950). The flow pattern is
symmetric fore and aft, and 1s therefore free of eddies as in Fig. 8.2a.
Consider now the circular cylinder. The upstrecam condition (8.3b)
suggests seeking a solution of the form b = sin 6 f(r), which leads to

¢ = sin 6:r3, rlogr, 7, %: (8.6)
Imposing the conditions (8.3a) at the surface reduces this to
PV TR (e S U e
b~ C[(l +2plogr — 5 — =5~ =3 ] sin 6 (8.7)

We can invoke the principle of minirnum singularity (Section 4.5),
choosing £ = 0 so that the stream function and velocity grow as slowly
as possible with 7. This leaves

}‘) sin @ (8.8)

b -

o~ C(yr log r —%r +

The second term is the uniform parallel stream, the third a dipole at the
origin, and the first a two-dimensional stokeslet containing the vorticity.
The solution cannot be completed, however, because no choice of the
constant C satisfies the upstream condition (8.3b). The difficulty is that,
in contrast with the solution for the sphere, the stokeslet is now more
singular at infinity than a uniform stream, and so predicts velocities that
are unbounded far from the body.

8.3. The Paradoxes of Stokes and Whitehead

The nonexistence of a solution of Stokes’ equation for unbounded
plane flow past any body is known as Stokes’ paradox. Stokes himself
(1851) regarded it as an indication that no stecady flow exists; a body
started from rest would entrain a continually increasing quantity of
fluid. However, this explanation is now believed to be incorrect, for
reasons discussed in the next section,

Indeed, analogous difficulties arise with three-dimensional bodies,
though they are deferred to the second approximation for finite shapes
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because, as usual, flow disturbances are weaker in three dimensions than
two. (For semi-infinite shapes see Exercise 8.2.) Thus Whitehead (1889)
failed in his attempt to improve upon Stokes’ approximation for the
sphere by iteration. The full Navier-Stokes equations give (Goldstein,

1938, p. 115):

| é ¢ Po | s
& DY = ,7;;@(1#95 — g 4 2cot O, — 2 7;) D% (8.92)
where
c? sinf ¢ ;1 ¢
2 — — | —_—
D= or* ' rr B 'sin B 50)

(8.9b)

Substituting the first approximation (8.5) into the convective terms on
the right-hand side of (8.9a) that were neglected by Stokes yields the
iteration equation

¢ sinbe 1 e 9 2 3 1y
[;_ L. 4)] Y= R[Sy — S+ —)sinbcost  (8.10)

cr? r> cf 'sin @ cf

2\ particular integral that satisfies the surface conditions (8.3a) is easily

found to be
R{2r2—3r—1 —%——1—) sin® 0 cos 6 (8.11)

¥

Bl

However, the velocity does not behave properly at infinitv, and no
complementary function can be added to correct it. In the next approxi-
mation the velocity would become infinite at infinity, as in the first
approximation (8.8) for the circular cylinder.

The nonexistence of a second approximation to Stokes’ solution for
unbounded uniform flow past a three-dimensional body is known as
Whitehead’s paradox. Whitchead himself regarded it as an indication
that discontinuitics must arise in the flow field associated with the
formation of a dead-water wake. However, this explanation too is now
known to be incorrect.

8.4. The Oseen Approximation

Just as d’Alembert’s paradox was resolved by Prandtl’s discovery that
flow at high Reynolds number is a singular perturbation problem, so
the paradoxes of Stokes and Whitehead were shown by Oseen to arise
from the singular naturc of flow at low Reynolds number. Whereas the
region of nonuniformity is a thin layer near the surface of the body at
high Reynolds number, it is the neighborhood of the point at infinity for
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154 VIII. Viscous Flow at Low Reynolds Number

low Reynolds number. "The source of the difhiculty can be undertood by
examining the relative magnitude of the terms neglected in the Stokes
approximation.

Far from the body the nonlinear convective terms are seen from the
right-hand side of (8.10) to be of order R 2. A tvpical viscous term—the
cross-product in the left-hand side of (8.10)—1s, from (8.5),

2 psinf e 1€ I 6, 1
< [JL A ¢ )]z/, =5 ) sintd = O( -] (8.12)

Gt LT 0 \sinfcd
Thus the ratio of terms neglected to those retained 1s

COMVECUNE  O(Rr)  as > (8.13)

viscous

Although this ratio is small near the bodyv when R 1s small, it becomes
arbitrarily large at sufliciently great distances, no matter how small R
may be. Thus the Stokes approximation becomes invalid where Rr1s of
order unity. This occurs at distances of the order of v [, meaning that
the viscous length is then the significant reference dimension. The same
objection applies «a fortiori to plane flow, where the incomplete Stokes
approximation (8.8) for the circle suggests the estimate
convective

—————— .= O(CRr logr) as 1 w0 (8.14)

viscous

These nonuniformities are the source of the singular behavior of the
Stokes approximation. In three-dimensional flow the difficulty tends to
be concealed because the first approximation is sufficiently well behaved;
in the region of nonuniformity where Rr == O(1) the velocity has already
effectively attained its free-stream value, so that it is possible to impose
the upstream boundary condition. This is an exceptional circumstance,
which arose previously in the inner solution for a round-nosed airfoil
(cf. Section 5.6).

This explanation of the difficulties encountered by Stokes and
Whitehead was given by Oseen (1910), who prescribed a cure at the
same time. Rather than neglect the convective terms altogether, he
approximates them by their linearized forms valid far from the body,
where the difficulty arises. For example, in the x-momentum equation
in Cartesian coordinates

uu, -+ v, + wu, -+

_i = V(ul’l‘ -\i u]/]/ “\ uZZ) (8'15)
P

Stokes neglects the first three terms altogether, but Oseen approximates

8.4. The Oseen Approximation 155

them by u, . In plane flow the dimensionless equation (7.2a) for the
stream function then becomes

{V'—’ ) Rﬁ:»\i)\—gl’// -0 (8.16)

T'his constitutes an ad hoc uniformization, of a sort to be discussed
turther in Section 10.2. The general principle s to identify those terms
whose neglect in the straightforward perturbation solution leads to non-
uniformity, and to retain them atter simphfving them insofar as possible
in the region of nonuniformity. If the resulting equations can be solved,
the result 1s a uniformly valid composite approximation, of the sort
discussed 1n Section 5.4.

Thus Oscen’s equations provide a uniformly valid first approximation
tfor cither plane or three-dimensional flow at low Revnolds number. In
principle, one could refine the solution by successive approximations,
and the result would presumably preserve its uniformity at every stage.
In practice, however, although the Oseen equations are linear, their
solution 15 sufficiently complex that no second approximations are
known. It 1s simpler to decompose the composite expansion into its
constituent inner and outer expansions, which mav subscquently be
recombined. This process will be carried out in the following sections.

The Oseen equations possess a second, essentially different, inter-
pretation. At an arbitrary Revnolds number theyv describe viscous flow
at such great distances from a tinite body that the velocity has nearly
returned to its free-stream value. From this small-disturbance point of
view, the Oscen approximation has been used to study the wake far
behind a body (Iixercises 8.1 and 8.3). In such applications,  in (8.16)
ordinarily represents a perturbation rather than the full stream function,
the distinction atfecting onlyv the form of the boundary conditions. This
sccond interpretation of the Oseen approximation of course remains
valid at low Revnolds numbers, and will be used in what follows.

"I'he solution of the Oseen equations was given for the sphere by Oseen
himself (1910) as

1

2 Uy
= {27 — 7) sin® 8 -

3
4 2

1 ,

o8 ) LR =c0s0) ;
ﬁ(l —eosB)[1 - e i RriL-rostn] (8.17)
I'he solution for the circular cvlinder was given by Lamb (1911) in terms
of Cartesian velocity components. For example, the component normal
to the free stream is

|

1 N —

log R) — 5 —

(— [log Rr = eiRr (‘()“"U]\-‘)(;}ZRI‘)]:

cy

xilv

(8.18)
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156 VIII. Viscous Flow at Low Reynolds Number

Herc y == 0.5772 ... is Euler’s constant, and K, 1s the Bessel function.

In both these solutions the surface conditions were satisfied only
approximately in a manner appropriate to the underlying assumption
that the Reynolds number is small. We shall reconstruct these results
later. Solutions for arbitrary Revnolds number were carried out by
Goldstein (1929) and T'omotika and \oi (1950). These more complicated
results are of limited value because, contrary to Oscen’s own views, the
approximation is qualitativelv as well as quantitatively invalid at high
Revnolds number. For example, the Oscen approximation gives boundary
layers whose thickness is of order R ! rather than R !2 asin Prandtl’s
correct theory. This discrepancy may be understood physically as arising
from the fact that in Oseen’s approximation the vorticity generated at the
surface by shear is convected through rather than along the surface. The
detailed flow patterns calculated by Tomotika and Aoi would be of
some interest had not Yamada (1954) pointed out that numerical inac-
curacy invalidates their qualitative nature even at low Revnolds number.
For example, T'omotika and Aoi predict the standing eddies of Fig. 8.2b
at arbitrarily low Reynolds number, whereas Yamada shows that they
first appear behind the circular cylinder at R — 1.51 in the Oseen
approximation.

8.5. Second Approximation Far from Sphere

We now improve Stokes’ solution for the sphere by applyving the
method of matched asymptotic expansion. Our analysis follows the
spirit of Kaplun and Lagerstrom (1957), but more nearly the notation
of Proudman and Pearson (1957).

Let Stokes’s approximation (8.5) be the leading term in an asymptotic
expansion for small Reyvnolds number, which we call the Stokes expan-
sion. We have seen that this series is invalid far from the body where »
is of order R 1. We therefore introduce an appropriate contracted radial
coordinate p by setting

p = Rr (8.19)

and envision a second asymptotic expansion valid in that distant region.
We call it the Oseen expansion, because the flow far from the body is a
small perturbation of the uniform stream. According to the convention
adopted in Section 5.9, the Qseen cxpansion is the outer, and the Stokes
expansion the inner expansion. We choose our notation accordingly
except for the radial variable where, because R is not available, we use p
for the outer and # for the inner variable.

We could, as in the last chapter, write down the two expansions with
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their asymptotic sequences left unspecified. However, we prefer to show
how matching automatically determines the form of cach term in
succession when, as in this problem, the matching proceeds according
to the standard order (Section 5.9).

Writing the Stokes solution (8.5) in terms of the Oseen variable (8.19)
and expanding for small R gives as its 2-term Oseen expansion:
1

=P sin? 4 (8.20)

AW

1 .
2-Oseen (1-Stokes) ¢ = ;12 ﬁp"’ sin?f -

where the first term is the uniform stream. In order to match this, the
Oseen expansion must have the form

11

‘/J\Eﬁp

Zsin* 6 + [17 by(p, 0) = -+ as R—0 withpfixed (8.21)

Substituting into the full equation (8.9) vields for i, the classical line-
arized Oseen equation (8.16) in the form

) ¢ sinf ¢\,
(&* — cos ¥ i 60,)“’/ o =0 (8.22a)
where
geo. 0 _sinf 1 C_) (8.22b)
Tt T B'sing b ’
Setting
Ly = ey - evcorny, (823)
reduces Eq. (8.22) to
(7% — 1)y — (8.24)
Seeking as before a solution of the form ¢, = sin? 4 f(p) gives
1" 2 1 o
T 29
The solution that vanishes at infinity is
: 2
— (1 = Z)ete (8.26)
feall = =)

and any other solution of (8.24) having the proper symmetry is more
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singular at the origin, and can therefore be rejected as unmatchable by
the principle of minimum singularity (Section 5.6).
Thus the original equation for (8.22) for s, 1s reduced to

Gy = o1 + i)efsmfcosw sin? 6 (8.27)
' P

A particular integral is
Py = —2¢y(1 = cos B)[1 — emipti-cos®)] (8.28)

where the first term is a potential source at the origin, which has been
added to cancel the sink in the second term, and so assure zero flux
through any surface enclosing the body. Any other complementary
function that possesses this property, gives no velocity at infinity, and
has the proper symmetry will be more singular at the origin and hence
unmatchable.

T'his is a fundamental solution of the Oseen equation, which describes
the disturbance field produced at great distances by any finite three-
dimensional nonlifting body. The constant ¢, depends upon certain
details of the flow near the body. We find it by applving the asymptotic
matching principle (5.24). Writing the Oseen expansion (8.21) in Stokes
variables and expanding for small R vields

1-Stokes (2-Oseen) p == S7% sin? 6 — cyr sin® 6 (8.29)

This matches (8.20) if ¢, = %.
We have thus found two terms of the Oseen expansion (8.21). When
rewritten in Stokes variables this becomes

1
7 U

o~ %"” sin® 6 — - cos P)[1 — e iRri-cosh]

(NSRS

as R—0 with Rr fixed (8.30)

We can construct a uniformly valid composite expansion by combining
this with the Stokes approximation (8.5) using the rule (5.32) for additive
composition. The result gives a uniform approximation to the perturba-
tion field. It is found to be just the solution (8.17) of the Oseen equations
given by Oseen himself. This confirms the statement in Section 8.4 that
his linearized equations yield a uniform first approximation. Near the
body the last term in (8.17) reduces to the stokeslet of the Stokes approxi-
mation; it may by analogy be called an “‘oseenlet.”
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8.6. Second Approximation near Sphere

We proceed to the second term in the Stokes expansion. The 2-term
Stokes expansion of the Oseen expansion (8.21) is found to be

2-Stokes (2-Oseen) ¢ = Z%(21/2 — 3r)sin? 0 -+ %er(l —cos f)sin2 6 (8.31)

In order to match this, the Stokes expansion must have the form
1, Ly ooy ‘
b~ 21(2;»— — 3+ 7) sin2 0 -+ RW,(r, 6) = - (8.32)

The cquation for ¥, is evidently Whitehead’s (8.10) without the factor R.
His particular integral (8.11) remains valid, and the original Stokes
approximation (8.5) provides the only complementary function with the
proper symmetry that is no more singular at infinity. Thus we set
) Ty, 3. 1 Ly
Y, = CZ(‘ZI“ —3r —- 7) sin?f — —33(21'3 el Bt 72—) sin® 6 cos 6

- (8.33)
The constant C, is found by matching. Carrying out the Oseen expansion
of (8.33) yields

BLRNIY.

2-Oseen (2-Stokes) ¢ = ;_

1 , 3, 3 .
— 20w — St cost o) sine (8.34)
and this matches (8.31) if C, = 3 32.

Thus we have found two terms of the Stokes expansion for the stream
function in the vicinity of the sphere:

1 waalie 3, L3 B
d~ = 1)sin 0[(1 LER2+ )RR+ ) Lose] (8.35)
This vanishes not only on the sphere and along the axis of symmetry,
but also along the curve
g
L) (8.36)

208 6 ==
o8 28 1 -1

81
5 &
T'his is the approximate description of the boundary of the standing
eddy. It is plotted in Fig. 8.3. The eddy appears only at Reynolds
numbers so large that one would not have expected the Stokes expansion
to have any validity. Nevertheless, the lower half of Fig. 8.3 shows
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striking agreement with the experimental observations of Taneda (1956)
at R = 36.6. The downstream end of the eddy lies at

r,=1(V1 F3R- 1) (8.37)

Therefore the eddy first appears in the flow field at R — §. Despite its
magnitude, this agrees well with the value of 12 measured by Taneda
and the value of 8.5 calculated numerically by Jenson (1959) using the
full Navier-Stokes equations. Indeed, Fig. 8.4 shows that good agreement

60

Experiment,
Taoneda (1956)
40 \ ~2-term
7 Stokes
Ua Numerical, )
R Jenson (/1959) expansion
'Y
20
O,
0
/ 2 3 4

v ™
i 5%

Fig. 8.4. Length of eddy behind sphere.

persists out to R -= 60, which is about the limit for observation of
steady flow. These remarkable results call for corroboration through
examination of the effect of further terms in the Stokes expansion.

Higher approximations can be found by continuing the preceding
analysis. Proudman and Pearson (1957) have carried it far enough to
show that the next Stokes approximation contains a term in R2 log R
as well as R? and that logarithms are thereby introduced also into the
Oseen expansion beginning with R3 log R. They have calculated only
the term in R? log R in the Stokes expansion. This provides the drag
formula (1.4) of Chapter 1.

According to these results, the Reynolds number at which the eddy
first appears is a solution of the transcendental equation

L, 9 ., .
I —gR R lg R+ O(R) =0 (8.38)
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Unfortunately, this has no real root if three terms are retained.
The logarithmic term limits the Stokes expansion to values of R small
compared with 1. Until some method is found of enlarging the range of
applicability of such a series (cf. Section 10.7), we cannot say whether
the striking predictions of the second Stokes approximation are more
than coincidence.

Because of symmetry, the second term in square brackets in (8.35)
contributes nothing to the drag, which according to the first term is then
(I — 3R) times the Stokes value. But the second term is the particular
integral of Whitchead for the nonlinear terms. For that reason, the
Oscen approximation, which neglects the nonlinear terms near the body,
nevertheless gives the drag correct to second order at least for symmetric
shapes (Chester, [962).

8.7. Higher Approximations for Circle

Stokes’ paradox for plane flow is more striking than Whitchead’s for
three dimensions. Its resolution by the method of matched asymptotic
expansions is correspondingly more dramatic, despite the practical
shortcoming that the solution cannot be carried to nearly as great
accuracy. We treat the typical example of the circular cylinder, using
a synthesis of the work of Kaplun (1957) and of Proudman and Pearson
(1957).

The analysis largely parallels that for the sphere, but interesting
differences appear. In particular, the matching is marginal, and the
asymptotic sequence correspondingly slow. It was for this problem that
Kaplun and Lagerstrom (1957) devised their sophisticated apparatus of
intermediate limits and expansions, and the intermediate matching
principle (Section 5.8). However, we shall see that the asymptotic
matching principle (5.24) is entirely adequate, although the simple limit
matching principle (5.22) does not hold.

We reconsider the solution (8.8) of the biharmonic equation as the
first term in a Stokes expansion:

ho~ AI(R)(T log r — %r . ,l) }1—) sin as R—0 withr fixed (8.39)
The multiplier 4, must be allowed to depend upon Reynolds number
because our asymptotic sequence is unspecified. Although this approxi-
mation cannot satisfy the condition (8.3b) of a uniform stream at infinity,
it can be matched to the uniform stream, regarded as the first term of an
Oseen expansion (Lagerstrom and Cole, 1955, Section 6.3). Again the
Oseen variable is taken as p = Rr so that lengths are referred to the

See
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162 VIII. Viscous Flow at Low Reynolds Number

viscous dimension v { rather than the radius a. Then the Oseen expan-
sion begins with the free stream in the form

lp\?le—psin@v—i"' a8 R—»0 with p=0 fixed  (8.40)

Writing the Stokes approximation (8.39) in Oseen variables and expand-
Ing gives
4(R .
1-Oscen (1-Stokes) s = ij%—) log ﬁl—p sin 8 (8.41)
'I'his matches (8.40) if 4,(R) = (log | R)~!, or more generally if 4,(R) —
(log | R — k) ',wherc kis any constant; and we shall later exploit this
freedom.

I'he overlap is so slight in this case that in order to match we have had
to accept a relative error of order 4, , which is enormous compared with
the error of order R in the Stokes approximation for the sphere. We are
thereby committed to a slow expansion in powers of 4, of which an
infinite number of terms correspond to only the first term for the sphere.

Expanding the Stokes approximation (8.39) further in Oseen variables
vields

2-Oseen (1-Stokes) i == 71?—[1 — A(R) (logp — k — 3)jpsinf  (8.42)
This requires, in order to match, that the Oseen expansion (8.40)
continue as

§~ plosin 6 — 4,(Ryhp, 6) — -] (8.43)

Substituting this into the full equation (7.2a) shows, of course, that ¢,
satisfies the linearized Oseen equation (8.16). 'I'he appropriate solution
can be found by proceeding as for the sphere (Proudman and Pearson,
1957). However, the stream function is disadvantageous here because it
can be written only as an infinite series, whereas the velocity components
are closed expressions.

We evidently seek the plane counterpart of (8.28), the oseenlet repre-
senting the disturbances produced by an infinitesimal drag at the origin.
This fundamental solution, due to Oseen (Rosenhead, 1963, p. 183),
gives as Cartesian velocity components

= (‘/JZ‘ — ) L4 o plpcost i (L _ pipcost i (L / ;
Uy = f(P sin 0) - zrl'f(p oS 0) [logp e f AO(?P)] e:f I\O(ZP)\ (844‘1)
= 58) = 20250 smpy o8 + e Kol (8.44b)

~ 6(pcosB) -

8.7. Higher Approximations for Circle 163

The term in log p is again a potential source at the origin that cancels the
sink in the term involving the Bessel function K. For small p thesc are

approximately
ey 4 . .
fosnt) ™ e|log . y - COS 8,) O(p log p) (8.452)
_ Gy ¢y sin B cos B — Ofp lo (8.45b)
(peosf) TS plogp) '

where Euler’s constant y — 0.5772 ..., and integrating gives
4 . R ;
gy ~ - oflog = 1 — ylpsind — Op* log p) (8.46)
P

Using this, we find that the Oseen expansion (8.43) behaves necar the body
like

. 1 . p .
1-Stokes (2-Oseen) ¢ = n [p sin - ¢,4,(R)(log i7" l)p sin 0] (8.47)

‘Then matching with (8.42) according to the asymptotic matching prin-
ciple gives ¢, — 1.

The second term in the Stokes expansion—and indeed the term of any
finite order—is cvidently again a solution of the biharmonic equation,
because the nonlinear terms of order R are transcendentally small on
the scale of powers of 4,(R). Matching, or applving the principle of
minimum singularity, shows that cach is simply a multiple of the first
approximation (8.8). It is convenient, following Kaplun (1957), to make
the sccond term vanish by choosing the constant & so that (8.42) and
(8.47) match perfectly: & — log 4 — v — 1. 'Then the Stokes expansion
assumes the form

< 1 11

b~ (Al — 2 (1”41”)("’ log r — 2-;; . 37 ) sin 6 (8.48a)
) n=3
where
4 B R 3.703 1
Al ES (IOg IT — Y - 2) == (log 'ﬁ*‘ (8A48b)

Forming a uniformly valid two-term composite expansion by additive
composition of (8.43) and (8.48) reproduces L.amb’s solution (8.18) of the
linearized Oseen equation.

Kaplun (1957) has carried the process through one more cycle to find
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the coecflicient of the third term in the Stokes expansion (8.48) as
a; ~ —0.87. Ilence he finds for the drag cocfficient

~ —[4y(R) = 0.8743(R) - O(4,Y)] (8.49)

The first term is the classical result of Lamb (1911, 1932). Comparison
with the measurements of I'ritton (1959) in Fig. 8.5 shows the limited
utility of this result. Also shown for comparison is Tomotika and Aoi’s
(1950) full numerical solution of the linearized Oseen equation (8.16).
Irom a formal mathematical point of view, we should exhaust all the
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Fig. 8.5. Drag of circular cyvlinder at low Reynolds number.
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powers of 4, in (8.48) before considering nonlinear corrections to the
Stokes equation, which are relatively of the transcendentally small order
R. In practice, however, such terms are significant. 'I'he first such term
(Exercise 8.5) is of order R, which is greater than 4,*for R > 0.00008.
Proudman and Pearson (1957) discuss briefly how these terms could be
calculated. They would be needed to show any asymmetry in the flow
pattern, such as the emergence of standing eddies.

EXERCISES

8.1. Oseen solution for flat plate and plane wake. In parabolic coordinates
(7.51) the Navier-Stokes equations give for the stream function in plane flow:

¢t et ‘ ¢ 01 e+, —0
R R e
Derive the corresponding linearized equation (8.16) of Oseen. Find by separa-
tion of variables the Oseen solution for a semi-infinite flat plate in a uniform
stream, and for the flow far from a finite nonlifting body. Show that in the
first case the boundary-layer approximation in parabolic coordinates is the full
Oscen solution. Compare the skin friction with the known value for the Navier-
Stokes cquations far downstream. In the second case express the constant
multipliers for both the term representing the wake and that for potential
flow in terms of the drag of the body. Relate the solution to (8.44). [The
first case was originally treated in a more complicated way by Lewis and

Carrier (1949); for the second, see Imai (1951) and Chang (1961).]

8.2. Viscous flow past slender paraboloid. In paraboloidal coordinates (cf.
Exercise 8.1), the Navier-Stokes equations give for axisymmetric flow

| >
wl >

|

lN

2 e o Ay 2 —
[V(gh*\n)l) *5(¢'557‘/})} y e §-) 2 ("7%_@‘5)]0‘;’*0

where

Find the Stokes solution for the paraboloid of revolution. Show that it can be
matched to the uniform stream in the same marginal way as for the circular
cylinder. Calculate the second term in the Oseen expansion. Describe how the
process would continue. What light does it shed on the accuracy of the known
Oseen approximation for the elliptic paraboloid (Wilkinson, 1955)? How does
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