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Abstract. Using an incompressible Navier-Stokes solver with a modified non-Newtonian viscosity, we imple-

ment the μ(I)-rheology and study the transient arrest for thick granular layers. In order to study the stopping

height phenomenology Hstop, we implement the steady-state-only approximate version of the non-local model

from [6, 7] and successfully incorporate this feature in the solver. We compare the velocity profiles for granular

layer thicknesses close to Hstop given by the model with discrete simulations, and discuss the ability of the non-

local model to describe the dynamics of the flow close to stopping height. We find that for flows with thickness

close to Hstop, the velocity profiles given by the model do not reflect the behavior of discrete simulation: discrete

velocity profiles remain self-similar when approaching Hstop, while the non-local rheology predicts a change of

concavity near the bottom.

1 Introduction

The flow of granular matter on a rigid or erodible bed

seems the simplest configuration one can think of, yet its

intrinsic complexity has long been a challenge to under-

standing and modeling. As a matter of fact, surface flows

and chute flows still form a much studied system. Those

flows have a lot of industrial and geophysical applications.

The existence of a finite range of slope values in which

the flow is stationary and the evolution of the rheological

properties of the flow within this range is well captured by

the μ(I)-rheology [3]. However, other features require the

introduction of non-local effects in the rheological model,

which allow for local information on the shear rate to prop-

agate in the system: a distant shear, for instance, or a solid

boundary.

In this contribution we are interested in the arrest of gran-

ular chute flows, either during the transient evolution to-

wards arrest, or during steady flow close to the critical

thicknesses Hstop and Hstart [11]. In particular, we try to

address the relevance of non-local modeling to describe

the arrest mechanisms.

2 Modeling non-local effects

2.1 The μ(I)-rheology and the non-local fluidity

μ(I)-rheology

We consider the case of a dense granular flow in the xz
plan, tilted at an angle θ and oriented in the x direction,

which develops a steady velocity profile u(z) as illustrated
in Fig. 1. As the flow develops, by analogy with the
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Figure 1. Diagram of the physical problem studied: dense

granular flow down an inclined plane. Gray particles corre-

spond to the periodicity of the domain.

Coulombic friction, the local normal stress p and the lo-

cal tangential stress τ are found in practice and assumed in

the model to be proportional:

τ = μp, (1)

μ being the analogue of a coefficient of friction, that may

vary from point to point in a granular flow. The strength

of the μ(I)-rheology lays in the fact that it relates the ef-

fective coefficient of friction μ to a dimensionless number

reflecting the local state of the granular packing, the iner-

tial number I [3], defined as:

I =
|γ̇| d√

p/ρ
, (2)

where |γ̇| = |du/dz| is the shear rate, d is the mean diameter

of the grains and ρ their density. The normal stress p is set

to zero at the surface (z = H). The following nonlinear

expression on I is adopted to account for the shape of the

μ(I) dependence [5]:

μ(I) = μs +
μ2 − μs

I0/I + 1
, (3)
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where the values of the coefficients μs, μ2 and I0 are

material-dependent. By analogy with Newtonian fluids,

we define an effective granular viscosity ηeff proportional

to the shear rate, such that

τ = μp = ηeff |γ̇| ,

from which we deduce the expression for the non-

Newtonian viscosity used in the model:

ηeff =
μp
|γ̇| . (4)

Therefore, the granular viscosity depends at the same time

on the material characteristics, on the inertial number, on

the local normal stress and on the shear rate itself. The

previous equations have been written for a pure shear flow,

see [5] for a 3D generalized formulation.

Non-local model

The non-local model implemented in this work, from [6,

7], consists in introducing a granular fluidity defined by:

g =
|γ̇|
μ
, (5)

and solving for each time step the following additional set

of equations with values obtained from the previous local

formulation, in order to obtain a global (non-local) value

for the granular viscosity (written here for a pure shear

flow: z dependence only):

gloc = |γ̇| / μloc(I), (6)

− [
ξ (μloc(I))

]2
d2g/dz2 + g = gloc, (7)

μ = |γ̇| / g, (8)

ηeff = μp / |γ̇|. (9)

The field g is a state parameter and ξ is the plastic coop-

erativity length, proportional to the grain diameter d and

calibrated with a constant A:

ξ(μ) = A
√

μ2 − μ

Δμ (μ − μs)
d.

In planar shear, d2g/dz2 = 0 and the above reduces appro-

priately to the local rheology (g = gloc), but in the pres-

ence of gradients, the second-derivative term spreads flu-

idity based on ξ.
An important characteristic of the model is the imposition

of zero-shear on the wall, which corresponds g(z = 0) = 0,

condition that will be propagated by the model. See [6, 7]

for more details.

We implemented the steady-state-only approximate ver-

sion of the model in Basilisk1, and solved the momentum

balance along the x and z axis, together with 3. Full de-

tails on the resolution will be found in [8]. Velocity pro-

files for steady flows with various values of H/d are then

compared.
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Figure 2. Numerical resolution of the granular fluidity g

shape varying the number of grains. In black, the fluidity

without the non-local model. g(z = 0) = 0 is imposed when

solving (7).

2.2 Asymptotic analysis for a chute flow

The previous system can be solved numerically. Fig. 2

shows the variation of the re-scaled g profiles

ḡ(z̄) = g(z̄)/max(gbag), z̄ = z/H,

with the layer thickness H/d. gbag stands for the fluidity

profile associated to the Bagnold solution, corresponding

to the local formulation, for which u(z̄) ∝ 1 − (1 − z̄)3/2.
We observe that the profiles superimpose on the charac-

teristic Bagnold profiles far from the wall, but close to

the wall the condition ḡ(z̄ = 0) = 0 creates a boundary

layer whose relative width z̄bl = argmaxz̄ (ḡ) decreases

with H/d. We want to use the fluidity profile to charac-

terize the velocity profile u in this boundary layer.

ḡ depends on two variables: the column height H/d and

the reduced ordinate z̄, so ḡ = ḡ(H/d, z̄). From Fig. 2,

we observe that in the boundary layer region ḡ can be well

approximated by a straight:

ḡ(H/d, z̄) ≈ ∂ḡ

∂z̄
(H/d, 0) · z̄ for z̄ < z̄bl.

In addition, one can verify linear dependence between

∂ḡ/∂z̄ on the wall and H/d:

∂ḡ

∂z̄
(H/d, 0) ∝ H/d,

so

ḡ (H/d, z̄) ∝ (H/d) · z̄ for z̄ < z̄bl. (10)

Thus the velocity profile u(H/d, z̄) on the boundary layer

can finally be obtained from the definition of fluidity

∂u/∂z = μg, which gives

u(H/d, z̄) =
∫ z̄

0

μ(H/d, ζ) · g(H/d, ζ) dζ.

Now, assuming μ nearly constant (it should actually equal

tan(θ)) and using (10), we finally get

u(H/d, z̄) ∝ μH/d · z̄2 for z̄ < z̄bl. (11)

1open source, available and documented on the website [2]
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The model proposed in [6, 7] to take into account non-

local effects introduces a boundary layer close to the

wall, whose relative width decreases with H/d and whose

growth behaves like H/d · z̄2.Hence, imposing a zero shear

rate at the boundary is crucial to recover the Hstop phe-

nomenology.

Note that using the steady-state approximate version of the

non-local model does not allow for a true arrest of the flow

(by contrast with the full model, see [7]). Hence, a cut-off

value for the velocity must be introduce to obtain an esti-

mate of Hstop.

3 Discrete simulations

A contact dynamics algorithm is applied to simulate the

flow of perfectly rigid grains interacting through contact

friction and non-elastic collisions [4, 9]. We consider 2D

simple chute flow configurations. The grains are perfect

disks of diameters distributed around the mean value d
within an interval of ±0.4d. This slight size difference al-

lows for the introduction of generic disorder without in-

ducing significant size segregation at the time scales con-

sidered. They form a bed of height H and width L with

periodic boundary conditions in the x direction (see illus-

tration in Fig. 1), tilted at an angle θ. H is varied between

4d and 35d to recover the Hstart / Hstop phenomenologies,

as well as to evidence finite size effects in the shape of

the velocity profiles. The numerical parameters setting the

values of contact friction and restitution were kept con-

stant and set to μ = 0.5 and e = 0.5.
The bottom of the flow is made of fixed glued grains of di-

ameter d, forming a bumpy bottom condition. The dimen-

sional values used for the simulations are d = 5 × 10−4 m,

gravity |�g | = 9.81m/s2 and grains density ρ = 0.1 kg/m2.

In the following, we perform series of discrete simulations

to obtain insights on the structure of granular flows close

to arrest and systematically compare them to the outcome

of continuum modeling.

4 Comparing discrete and continuum flow
behavior

4.1 Transient arrest

In a first configuration, we consider a discrete layer of

grains with H = 35d flowing at an angle θ = 20◦. For this
set of height and slope, the flow is steady and the veloc-

ity profiles is consistent with Bagnold’s prediction [1]. We

then tilt instantaneously the layer at a lower angle θ = 15◦,
for which the flow is no longer sustainable and comes to

rest. During the deceleration phase, the velocity profile

is plotted at consecutive instants averaged over a time in-

terval TS = 0.15TD, where TD is the full duration of the

deceleration phase (Fig. 3). We observe how the velocity

profile evolves from a Bagnold-like shape to lower veloc-

ity nearly linear shape, and finally changes convexity be-

fore vanishing.

The same evolution is simulated using the continuum μ(I)-
rheology described above and implemented in Basilisk [2]
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Figure 3. Discrete simulation: evolution of the velocity profile

for a thick-layer flow towards arrest.
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Figure 4. Continuum simulation: evolution of the velocity pro-

file for a thick-layer flow towards arrest.

with corresponding parameters, without introducing non-
local effects. For the same time periods spanning the de-

celeration phase, the velocity profiles are plotted in Fig. 4.

They compare well qualitatively with the discrete evolu-

tion shown in Fig. 3, and in particularly we observe that

the change in the flow structure is reproduced. This sug-

gests that the transient arrest of a granular flow does not

require introducing non-local effects, as shown in [10]; the

I dependence from the μ(I) is a sufficient physical ingre-

dient.

4.2 Steady flow close to Hstart / Hstop

In the previous configuration, the flow evolves towards

arrest in time, and eventually comes to rest. We now

investigate the case of a layer whose thickness is close to

the critical case for which no flow occurs at all, but which

is nevertheless able to flow in steady regime. Thereby we

want to evidence the possible emergence of changes in

the flow structure that could be seen as for-runners of the

arrest condition.

We consider discrete granular layers tilted at an angle

θ = 20◦, and of different thicknesses H = 8d, 9d, ... , 16d.
For H = 8d and 9d, no flow is observed, but for all
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Figure 5. Discrete simulation, normalized velocity profiles

for flows with H close to Hstart at an angle θ = 20◦. Profiles

observed are self-similar.
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Figure 6. Continuum simulation, normalized velocity pro-

files for a different material than the one from Fig. 5. At an

angle θ = 24◦, behavior as H → Hstop is characterized by a

change of concavity near the wall. Here Hstop ≈ 2d.

other cases a steady flow develops, giving an estimate of

Hstart ≈ 10d. Thus, we are studying configurations for

which H can reach remarkably close to Hstart.

For those cases in which the layer flows, namely H/d = 10

to 16, we superimpose the velocity profiles after re-scaling

them as ũ(z) = (u(z) − u0) / (max(u) − u0) , where u0 is

the bottom slip velocity (Fig. 5). We recover self-similar

profiles resembling the Bagnold prediction, with no

non-local effect noticeable on the velocity profile shapes.

We now perform a similar experiment applying continuum

modeling. Introducing non-local effects in the model

is necessary to recover the Hstop phenomenology. For

the continuum flow of a granular material similar to the

one from [7] at θ = 24◦, Fig. 6 shows the change on

the velocity profile shape for values of H close to Hstop.

Profiles are re-scaled by the max velocity value at the top

of the layer, u(H), and superimposed. As H → Hstop,

there is a change of concavity near the wall, as expected

from the analysis in Section 2.2. We notice a qualitative

difference of behavior between discrete results for Hstart

and continuum results for Hstop.

5 Conclusion

Using a continuum model, we were able to reproduce the

behavior of granular chute flows down an inclined plane

for the steady regime and for the transient arrest using

the local μ(I)-rheology model. These results were tested

against discrete contact dynamics simulations. The local

model, however, is not enough to reproduce the stopping

height phenomenology. Thus we implemented a non-local

model based on the propagation of a physical quantity

called granular fluidity [6, 7], which allowed us to get the

desired Hstop for granular media spreading a condition of

zero shearing on the contact with the wall.

We studied the impact of the steady-state-only approxi-

mate version of the model from [6, 7] on the velocity pro-

file shapes as H → Hstop. In order to question whether the

observed change of concavity near the bottom is physical,

we performed discrete numerical simulations using con-

tact dynamics for H close to Hstart.

The discrete simulations exhibit consistent self-similar

Bagnold profiles, until a sharp bifurcation causing the

grains not to flow anymore occurs. No non-local effect was

perceptible on the shape of the velocity profiles. These

preliminary results suggest that the flow arrest may not be

fully understood within the framework proposed in [6, 7].

Additional work need be done, including solving the full

time-dependent version of the model. It is worth stressing

that close to Hstop, only few grain diameters do compose

the layer, situation that might be challenging for contin-

uum modeling in general.
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