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We show that the Kelvin-Helmholtz instability excited by a localized perturbation yields a self-
similar wave. The instability of the mixing layer was first conceived by Helmholtz as the inevitable
growth of any localized irregularity into a spiral, but the search and uncovering of the resulting
self-similar evolution was hindered by the technical success of Kelvin’s wavelike perturbation the-
ory. The identification of a self-similar solution is useful since its specific structure is witness of
a subtle nonlinear equilibrium among the forces involved. By simulating numerically the Navier–
Stokes equations, we analyze the properties of the wave: growth rate, propagation speed and the
dependency of its shape upon the density ratio of the two phases of the mixing layer.

PACS numbers: 47.20.Ft

Wind over water yields waves. Similarly, a liquid jet
destabilizes and atomizes into a cloud of droplets. This
mechanism is the shear-layer instability. Herman Ludwig
von Helmholtz in 1868 publishes a controversial approach
to fluid dynamics where surfaces of discontinuity play a
central role [1]. He makes use of the recent theories of
complex variables to manage his singular fields within
the differential framework of the Euler equation. The in-
centive for this novel approach was his interest in sound
generation in pipe organs. He found that these surfaces
of discontinuity—vortex sheets—are highly unstable, this
instability being the key element linking the continuous
flow in the organ mouth to oscillating motion and sound.
He showed as well how atmospheric convection cells at
the planetary scale dissipate their energy in large vor-
tices through the destabilization of sheared surfaces. In
his pioneering article, Helmholtz states that “wherever
an irregularity is formed on the surface of an otherwise
stationary current, this must give rise to a progressive
spiral unrolling of the corresponding part of the surface”
but neither Helmholtz himself nor anyone to our knowl-
edge ever published a description of this response to a
localized perturbation. The goal of the present letter is
to report this experiment and describe the self-similar
growth we have observed.

The difficulty which Helmholtz encountered in quanti-
fying mathematically the evolution of a localized pertur-
bation opened the way for the successful approach which
Kelvin made popular through his 1871 paper: small
amplitude perturbations combined with sinusoidal ini-
tial conditions [2]. Indeed, the nonlinear/localized con-
ception of Helmholtz is critically opposed to the lin-
ear/wavelike theory of Kelvin. The difference between
these two approaches is illustrated in figure 1 where we
see the response of a mixing layer to a localized initial
perturbation (Helmholtz) and a wavelike initial pertur-
bation (Kelvin).

For a detailed account of fluid mechanics in the times of

FIG. 1: Kelvin-Helmholtz instability excited by two types of
initial perturbation, shown by the deformation of the inter-
face. We = 1000, Re = 100. The two fluids have the same
density (r = 1). For the wavelike initial condition, we observe
the familiar roll-up of the interface in vortices whose size is
fixed by the initially imposed wavelength. For the localized
initial perturbation, we observe the creation of a system of
two vortices growing in size without alteration in shape.

Helmholtz and Kelvin, see [3]. There has been a renewed
interest for the mathematical analysis of vortex sheets,
following the analysis by Moore [4] of the formation of
a shape singularity in finite time. Also, for a review of
singularities in fluid mechanics, see [5]. For a book on
the dynamics of vorticity, see Saffman [6].

Our numerical experiment consists of a two-phase mix-
ing layer with interface initially at height y = 0. The two
fluids have the same viscosity ν, and density ρgas and
ρliq = 1. The bottom fluid is at rest and the top fluid
has free-stream velocity U = 1. Gravity is not included.
Owing to viscosity, the shear profile varies continuously
through the interface. We use an initial velocity profile
in the form of an error function in the liquid and the gas,
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FIG. 2: Measured wave size L =
√

A growing in time for
several density ratios. We observe an algebraic growth of the
wave. The speed of growth depends on the density ratio r:
the lighter the gas, the slower the growth. As inset, we scale
the growth with the law in square root of r according to the
theoretical analysis L ∝

√
rUt. The wave shapes for r �= 1

are shown in figure 4.

with matching at the interface satisfying the stress con-
tinuity. The height of the mixing-layer is defined by the
parameter δ = 1 in both fluids. The Reynolds number
for both fluids is Re = Uδ/ν = 100, based on the mix-
ing layer height and velocity difference. We will see that
the density ratio r = ρgas/ρliq will play a central role in
the dynamics. The interface is characterized by its sur-
face tension σ. The capillary resistance of the interface
to aerodynamic deformation forces is quantified by the
Weber number We = ρgasU2δ/σ = 1000.

We simulate the evolution of this system using the
Navier–Stokes equations for a two-fluid system. The
equations are discretized using a finite volume scheme,
and the interface is traced in the framework of the vol-
ume of fluid method (VOF) [7]. The open source software
Gerris Flow Solver is used which allows for octree adap-
tive grid refinement [8]. Results obtained with this code
have been compared to stability theory for mixing layers
in [9]. The refinement criterion is based on a combination
of interface curvature and fluid vorticity with a smallest
cell size of 0.0635. The numerical simulations are per-
formed in a large domain (width 260, height 130) with
periodic boundary conditions in the streamwise direction
and symmetry boundary conditions at top and bottom.
A perturbation is induced at initial time in the center
of the domain, in the form of a localized upward force
of extent L0 = 1 and amplitude low enough such as to
initiate the instability without creating a vertical jet.

A first quantitative description of the wave growth is
given in figure 2. The size of the wave is measured from
the simulation output as L =

√
A with A the area of

liquid which has crossed through the initial interface lo-
cation y = 0. We observe an algebraic growth, whose
slope decreases with the density ratio r.

Let us first ignore capillarity and viscosity. The evolv-
ing vorticity field for instance is parameterized as ω =

FIG. 3: Schematic representation of the wave as an obstacle to
the gas stream. The acceleration of the gas stream above the
wave induces a pressure drop. The pressure gradient (P+ −
P−)/L sucks liquid into the wave.

ω(x, y, t, U, ρgas, ρliq, δ, L0), function of the two spatial
coordinates and time, as well as five parameters speci-
fying the system and the initial excitation. There are
three independent physical dimensions, ω can thus be
written

ω =
U

δ
f(

x

Ut
,

y

Ut
,
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ρliq
,

δ

Ut����
→0

,
L0

Ut����
→0

)

where f is a dimensionless function. As the wave is grow-
ing, the inertial length Ut becomes arbitrarily larger than
the initial mixing layer thickness δ/Ut → 0 which ap-
pears at the scale of the wave as a vorticity sheet. Sim-
ilarly, the initial forcing appears as a Dirac; the vortic-
ity thus becomes (U/δ)f(x/Ut, y/Ut, r, 0, 0) where time
enters exclusively through the length scale: the wave is
steady in the coordinates x� = x/Ut, y� = y/Ut; this is
the self similar law. The density ratio r is the single
remaining parameter.

We will see that the shape and phenomenology change
very much with r. We can nevertheless attempt to de-
rive a scaling for one particular wave property: its size
L. For this we need to model the forces in balance. To
this aim, an idealized wave anatomy is proposed in figure
3. In essence, the head of the wave is an obstacle to the
gas stream, leading to an acceleration of the gas above.
Thanks to self-similarity, the streamline pattern does not
change in time, thus the speed above the wave remains
proportional to U . We denote P+ the ambient pressure,
and P− the low pressure above the wave. This low pres-
sure is communicated to the liquid in the wave head as
shown on the figure. The Bernoulli equation relating
pressure and velocity in the gas yields P+−P− ∝ ρgasU2

if we neglect the nonstationary terms. The same law ap-
plied inside the wave, gives P+ − P− ∝ ρliqv2, where v
is the velocity at which the liquid feeds the wave. Since
the pressure drop is the same in the liquid and the gas,
we have v ∝

�
ρgas/ρliqU : the suction velocity v de-

pends linearly on U and is impacted by the density ratio
through a square root law. Note also that v is constant
in time throughout the evolution of the wave, just like
U .

We may now derive the evolution law for the wave size:
the wave area A grows in time as liquid is sucked through
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FIG. 4: Evolution of the wave represented as a spatiotemporal diagram for three representative density ratios. The characteristic
cone delimited from the virtual origin by the liquid and gas speed is represented as a frame of reference. The speed of
advancement of the wave is compared to the Dimotakis speed, characteristic of propagation in this two-phase system. The
origin of the self-similar shape (x0, t0) is visualized as the tip of the characteristic cone. We observe that it differs from (0, 0).
This effect is due to the transient from the initial forcing.

its bottom of size L, thus ∂tA ∝ Lv. Also, A ∝ L2, and
since v is a constant, we obtain a differential equation for
the wave size ∂tL ∝ v, thus our final result

L ∝
�

ρgas

ρliq
Ut.

This law is confronted against simulated data in the inset
of figure 2 by drawing the measured

�
A/r as a function

of Ut. We observe indeed collapse of the slopes for values
of the density ratio up to 0.1. For two phases of similar
densities (r > 0.1), our model anatomy is not representa-
tive: the wave tends to a symmetric shape with respect
to y = 0 and cannot be reduced to an obstacle against
the gas flow.

Based on dimensional analysis, we know that the wave
cannot be self-similar if viscosity, capillarity or gravity is
large compared to inertia, at least not self-similar in the
way we describe in this paper. Capillarity imposes a min-
imum wave size: the wave cannot grow when it is so small
that the fixed driving pressure drop ρgasU2 is balanced
by the capillary pressure jump σ/L across an interface
with radius of curvature L. This lower bound is Lcap ∝
σ/ρgasU2. Viscosity will slow down the growth of small
waves for which the driving is of the order of the Poiseuille
pressure drop µv/L. Gravity on the other hand imposes
a maximum size, that for which the hydrostatic pressure
ρgL from foot to head equals the driving. This upper
bound is Lgrav ∝ rU2/(1−r)g. The self-similar wave so-
lution is thus allowed as an intermediate asympotics (see
[10]) between the small capillary and viscous scales, and
the large gravity scale. This intermediate range is made

comfortable for fixed fluid properties µ, σ, g by choosing
an intense free-stream velocity. These results in terms of
characteristic lengths can equivalently be expressed with
the Reynolds, Weber and Froude numbers built on the
wave size: the evolution of a wave of size L is self similar
if ReL = ρgasUL/µ >

√
r,WeL = ρgasU2L/σ > 1 and

FrL = U2/gL < (1− r)/r.
We now turn to the description of the wave shape as r

varies. Being a self-similar shape, the wave has a virtual
origin (x0, t0). We measure t0 by extrapolating back in
time the algebraic law for its size. For the origin in space
we need an other robust characteristic of the wave: we
chose the position of the point b at its back as shown on
figure 3. The downstream location of this point is found
to increase algebraically as the wave advances and grows;
it can be extrapolated back in time to yield the location
x0 of the virtual origin. Figure 4 represents the evolution
of the wave in time for three density ratios, in the form
of spatiotemporal diagrams.

We now define the characteristic cone: it originates
from the virtual origin and is delimited by two charac-
teristic lines, the line of the fastest speed of the system—
the speed of a gas particle—and the slowest speed in the
system—that of a liquid particle. At equal density of liq-
uid and gas (r = 1), the wave must be symmetric with re-
spect to the point b as indeed observed. The wave is large
and occupies most of the cone width. For smaller gas den-
sities, the wave is asymmetric, with a shape resembling
that of our model analysis. Its position remains close to
the upstream limit of the cone: the wave grows slowly.
Unlike gravity or capillary waves, this structure does not
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FIG. 5: Wave interface overlapped in time, recast in the self-
similar reference frame (x�, y�) for density ratio r = 0.1. We
can observe the self-similar shape of the wave, disturbed by
instationarity at the wave tip and drop shedding. We see on
figure 4 that the initial transient for r = 0.1 lasts until about
t = 70.

propagate at its own phase speed, it merely grows, with
its back pinned at the cone upstream edge. To provide a
further velocity reference for the wave displacement, we
have indicated the Dimotakis speed VD = U

√
r/(
√

r +1)
with a red line (see [11]).

The scaling law for the measured wave area is now
verified. We must proceed to assess whether the complete
shape grows homothetically. We make use once more
of the virtual origin. The wave height and width are
rescaled as x� = (x−x0)/U(t− t0), y� = y/U(t− t0). The
scaled wave interfaces are represented overlapped in time
in figure 5 for r = 0.1.

The flow structure is represented in figure 4 by instan-
taneous streamlines at time t = 100. For r = 1 it consists
in a pair of co-rotating vortices reminiscent of two consec-
utive vortices of the usual wavelike scenario, except that
here the two vortices are not aligned horizontally (see
figure 1 for a comparison). This configuration is rem-
iniscent of the simultaneous roll-up of two semi-infinite
vortex sheets into Kaden spirals (see [6]). When reducing
the gas density—here for r = 0.1—the upstream vortex
no longer forms and is replaced with an elongated gas
recirculation bubble. The downstream vortex also fails
to roll gas and liquid together, but takes the form of a
gas vortex sheltered from the main stream by the liquid
body of the wave. The wave grows a tongue which un-
dergoes flapping. Liquid drops are torn from the wave
through this flapping motion, and sent partly off to the
gas stream and partly into the vortex core. For still lower
gas densities, r = 0.01, the wave grows much slower and
is found pinned at the upstream limit of the character-
istic cone. The tongue flaps and detaches from time to
time; the liquid being now completely thrown out to the
fast gas stream. We observe periodic detachment of the
downstream vortex in a typical vortex shedding sequence.
The streamline pattern of figure 4 shows two gas vortices:
one is in the instance of leaving the shelter of the wave,
and the second further downstream is the fruit of the
previous shedding event.

This vortex shedding for low r is to our knowledge a
new mechanism which the study of the self-similar wave
allows to identify. Indeed, we understand now that the
wave grows slowly for low r and that its back travels at

the speed of the liquid. There must thus be a qualita-
tive transition when reducing r, toward a regime where
the wave appears to the gas stream as a fixed obstacle,
with the ensuing vortex shedding. The wave’s tongue is a
fragile object, periodically teared into drops through the
interaction of its own inertia and violent vortex depar-
tures. The ejection angle, drop size and frequency could
be analyzed along the lines of this atomization scenario.

“Since a general solution must be judged impossible
from wants of analysis, we must be content with the
knowledge of some special cases, and that all the more,
since the development of various cases seems to be the
only way of bringing us at last to a more perfect knowl-
edge.” (Euler in [13], cited from Craik [14]). The self-
similar response of the Kelvin-Helmholtz instability to a
localised perturbation may indeed be a special case in
this spirit. The growth law in the square root of the den-
sity ratio L ∝

√
rUt was derived from an idealized wave

anatomy. The quantitative success of this simple analysis
tells that figure 3 depicts a realistic idealized configura-
tion, ensuring that the underlying nonlinear mechanism
for growth was indeed uncovered. We have described the
intimate structure of the wave in figure 4, showing the
mutations of the system of two vortices accompanying
the liquid wave, and its impact on the dynamic behavior
of the wave.

We are grateful to Marco Fontelos, Christophe
Josserand and Sergio Chibbaro for comments on the
manuscript.
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