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Abstract

This paper unveils the basic mechanisms underlying rectified diffusion processes. The exact solution of the radial
transport of species in both phases, gas and liquid, turns to be crucial to accurately predict the growthrate in the
context of lithotripsy. The Direct Numerical Simulation of the temporal evolution of an spherical bubble is used to
gain new insight on the effect of two phenomena: Transient effects related with the gas diffusion in the liquid and
non uniform concentration gradients inside the bubble. The special characteristics of the process impedes a direct
application of usual hypothesis usually applied in studies related with bubble growth in ultrasonic fields.

Nomenclature

Roman symbols
D diffusion coefficient (m2s−1)
e internal energy (Jkg−1)
h enthalpy (Jkg−1)
j flux (kgm−2s−1)
J Total mass flux (kgm−2s−1)
N Number of species(−)
p pressure (Nm−2)
q heat flux (Jm−2)
r radial coordinate (m)
R bubble radius (m)
Rg gas universal constant (Jkg−1K−1)
Ṙ interface velocity (ms−1)
t time (s)
T Temperature (K)
v fluid velocity (ms−1)
W molecular weight (molkg−1)
z decaying coefficient (s−1)
Y mass fraction (kgkg−1)

Greek symbols
α species name(−)
β accommodation coefficient(−)
∆ Increment (−)
δ Boundary layer thickness (m)
φ viscous dissipation (Jm−3s−1)
η mass loading (−)

κ thermal conductivity (Wm−1K−1)

µ viscosity (kgm−2s−1)
ρ Density (kgm−3)
σ surface tension (Nm−1)
τ viscous stresses (Nm−2)
ω angular frequency (rads−1)
Subscripts
c characteristic
f final
g gas
i interface
l liquid
max maximum
o initial
r radial component
ref reference

Superscripts
diff diffusion
dis disequilibrium
p Particle
sat saturation
∗ Nondimensional number

Introduction

The phenomenon of rectified diffusion in oscillating
bubbles has been widely studied during the past two
decades. When a bubble expands and its pressure
decreases, part of the gas dissolved into the liquid
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is transfered to the bubble. When the bubble is
compressed, the gas contained inside the bubble is
re-dissolved in the liquid. Naively we could think that
for weak oscillations these effects would balance over a
cycle. However, non-linear effects associated with the
mass transfer processes can lead to a net gas intake that
makes the bubble grow significantly even over a single
cycle (Blake Jr 1949). The larger area of the bubble
during the expansion, when the gas enters the bubble,
and the stretching of the gas boundary layer during this
stage are the two main mechanisms responsible for this
bubble growth (Brennen 1995).

In ultrasonic applications, where the bubble is
steadily oscillating for hours, two different time scales
are present. One is the excitation period which deter-
mines how the bubble behaves mechanically during one
cycle, the other one is the timescale associated with
gas diffusion from the bubble interface into the liquid.
Typical values of the short timescale are of the order of
tens of microseconds, whereas the second one occurs on
much longer time scales, typically, on the order of min-
utes (Crum 1980; Eller 1969). However, this distinction
does not apply to all the processes involving rectified
diffusion. In shock wave lithotripsy (Cunningham et al.
2001; Church 1988), the bubble expands and collapses
in response to an incoming pressure wave, which is
repeated with a frequency between 1 and 100 Hz. In
this case, the bubble mass can be significantly increased
during the pass of the shock wave but it slowly tends to
be dissolved until the next shock wave arrives.

Different theories and models have been developed
to describe both bubble dynamics and the mass transfer
processes across the interface. The early models
proposed by Hsieh and Plesset (1961) and by Eller and
Flynn (1965), as well as later improvements proposed
by Crum (1980), solve the diffusion problem from a
pure gas bubble into the surrounding liquid. Using the
proper time averages during one cycle to obtain the
average concentration at the interface, these theories
solve analytically the diffusion equation in the liquid
to obtain expressions for the cavitation threshold and
growth rate for the radius of gas bubbles. More recently,
Lohse et al. (Toegel and Lohse 2003; Hilgenfeldt et al.
1996) have used similar models to predict the stability
of bubbles in single bubble sonoluminescence, where
the equilibrium radius is governed by a very slow mass
transfer process. Also, Fyrillas and Szeri (1994) have
improved previous theories for the prediction of the
growth rate of bubble radius.

All theories resort to simplifications that can be un-
acceptable in some situations. In this work, a complete

model based on Hauke et al. (2007) is extended in order
to investigate the processes underlying mass transfer in
applications where rectified diffusion is important. The
gas intake of a bubble is shown to be sensitive to the
bubble radius evolution and the transport of species in
each of the phases. In those situations where the liquid
pressure falls below the liquid vapor pressure, an intense
evaporation is produced, significantly influencing both
the transport of species across the interface and also
the bubble radius evolution. Thus, the inclusion in the
model of mass transfer effects across the interface along
with the diffusion equation of gas in the liquid coupled
with the diffusion equation inside the bubble is needed
to obtain an accurate prediction the net gas intake.

In the first part of the paper, the basic equations are
presented. Based on these equations, different simplifi-
cations are discussed in order to solve the Navier-Stokes
equations inside and outside the bubble coupled with the
energy and species diffusion equations. Finally, the nu-
merical results are used to scrutinize the importance of
different mechanisms on rectified diffusion.

1 Governing equations

1.1 Conservation Laws
The time-dependent dynamics of a single bubble and
its surrounding liquid assuming spherical symmetry are
governed by the following set of partial differential
equations
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represents the substantial derivative,
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The notations used are defined in the Nomenclature.
The system defined by Eqs. (1-4) is supplemented by

a state equation that relates the thermodynamic proper-
ties, an equation describing the rheology of the fluid and
a law for the diffusive mass flux. As these equations de-
pend on the model applied, they are described later.
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1.2 Boundary conditions
In order to solve the system of equations presented
above, symmetry conditions are established at the
bubble center. Far from the bubble, we assume that
the bubble has no effect on the liquid temperature and
concentration, which considered to be constants T∞ and
Yα,∞, respectively.

The pressure is spatially uniform in the bubble far
field. The expression for its temporal evolution is given
in the examples.

At the interface we can apply local balances to relate
the variables on both sides. The continuity condition es-
tablishes a relation between the the net mass flux across
the interface, J , the interface velocity Ṙ, and the gas and
liquid velocities at the interface, vg(R, t) and vl(R, t)

J = ρg

[

vg(R, t) − Ṙ
]

= ρl

[

vl(R, t) − Ṙ
]

. (5)

Analogously, we can apply the continuity condition
to every species. The total flux of species α across the
interface, jα, is the sum of the advective flux related with
the mass exchange across the interface, jadv

α = JYint,α,
and the diffusive flux, jdiff

α

jα = JY l
α − ρlD

l
α

∂Y l
α

∂r
= JY g

α − ρgD
g
α

∂Y g
α

∂r
, (6)

where the total flux of mass across the interface is

J =
∑

α

jα. (7)

In order to relate the pressures at both sides of the
interface, the momentum balance at r = R(t) yields
(Yasui 1997; Sochard et al. 1998)

pg = pl +
4µlṘ

R
+

2σ

R
+ J2

(

1

ρl
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1
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)

(8)

where the gas viscous stresses and liquid compressibil-
ity have been neglected.

The heat balance at the interface establishes the rela-
tion among the heat fluxes in the liquid and gas sides
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N
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+ (vg − Ṙ)ρghg − ρg

N
∑

α=1

hg
αDg

α

∂Y g
α

∂r
, (9)

and finally, a continuous temperature profile across the
interface is assumed

Tg = Tl, r = R(t). (10)

The spatial boundary conditions required to solve the
set of PDE is completed by establishing another relation
at the interface. Previous models developed for the
study of SBSL have applied models based on the kinetic
theory of gases to relate the flux across the interface
with the instantaneous conditions (Yasui 1997; Storey
and Szeri 2000), details about the model implemented to
obtain the results included in this work are contained in
Section 2. However the experimental validation of these
models in different conditions is difficult and accurate
values of the coefficients appearing in the model that
should be experimentally measured are unknown (e.g.
accommodation coefficient). As an alternative, we can
avoid the use of a mass transfer model by assuming that
equilibrium conditions prevail at the interface at every
moment. This hypothesis is especially suitable for weak
oscillations when the conditions at the interface do not
reach supercritical conditions and the disequilibrium
encountered at the interface is expected to be negligible.
To assume equilibrium conditions at the interface im-
plies that the uncertainty due to the evaporation model
is avoided. From dimensional analysis, this assumption
seems to be valid for weak amplitudes, irrespective of
the frequency, or low frequencies. Further details about
this analysis and numerical validation are currently
under preparation. For the case of water, the partial
water pressure is related with the interface temperature
and pressure by means of the Clausius–Clapeyron
equation. For soluble gases, Henry’s law can be used to
relate the concentrations across the interface.

Initial conditions
In order to specify the initial conditions it is assumed
that the bubble is initially in mechanical equilibrium
with the surrounding liquid. This implies that the initial
interface velocity is zero (Ṙ = 0), the bubble tempera-
ture is constant and equal to the liquid temperature, and
the initial fluid velocities are zero. The liquid pressure
far away from the bubble, p∞, is given, so the initial
internal bubble pressure can be calculated by means
of the momentum balance at the interface from Eq.
(8). The initial gas density can be calculated from the
bubble pressure and temperature. Finally, the initial
water concentration is given by the equilibrium condi-
tions. In the cases presented in this work, only binary
mixtures composed of a volatile liquid and an partially
soluble gas are considered. The liquid vapor pressure
determines the concentration of gas and vapor inside the
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bubble. At the same time, the gas concentration inside
the bubble determines the concentration of gas at the
interface.

Surface tension effects induce a concentration gra-
dient between the bubble interface and the liquid bulk
so that the bubble tends to dissolve. The correct initial
concentration profile in the liquid is not clear. In this
work, we assume that the concentration profile in the
liquid comes from the steady-state solution of the
species equations.

2 Model

In this work a model based on the one presented
in Hauke et al. (2007) is used. This model resorts
to the Rayleigh-Plesset equation with the additional
compressibility terms of Keller and Miksis (1980). This
equation is used to work out the bubble radius evolution
as a function of the forcing pressure wave.

The model is extended in order to include mass trans-
fer phenomena inside and outside the bubble. The ra-
dial diffusive heat and mass fluxes follow the Fourier
and Fick’s laws, respectively,

qr = −κ
∂T

∂r
+

N
∑

α=1

jdiff
α hα, (11)

jdiff
α = −ρDα

∂Yα,

∂r
(12)

At large frequencies, mass transfer effects can be
important and the equilibrium hypothesis is question-
able. However in this paper we neglect non equilibrium
effects and thus apply the equilibrium conditions at the
interface for the gas concentration (Henry’s law) and
partial pressure and the water vapor. In other words the
gas is considered as a partially soluble substance.

3 Numerical method

As pointed out by Hao and Prosperetti (Hao and Pros-
peretti 1999), special care must be taken when the com-
plete Navier-Stokes equations are coupledwith the equa-
tions describing the mass transport inside the bubble and
in the liquid. In this section, we present a consistent
method to solve the equations presented above. We sum-
marize the method in the form of an algorithm
1. Consider an instant t in which the solution is known
(Y t)

Y =
(

R, ρg, ug, T g, Y α,g, T l

)

,
(13)

As an initial guess, for the solution at t + ∆t,
all the required variables are extrapolated using a
forward Euler step

Y
t+∆t
n+1 = Y

t
n +∆t · Ẏ

t

n, (14)

where the subscript n denotes the iteration number.

2. The net gas mass flux, Jgas, across the interface at
t+∆t is obtained. This flux is directly given by the
local balance at the interface (Eq. 6), the concen-
tration field estimated at t +∆t and the total mass
flux (J).

3. The interface velocity and acceleration are found
from the Rayleigh-Plesset equation. In this equa-
tion, the acceleration appears (R̈b) and as a con-
sequence the interface velocity (Ṙb) is treated as
an unknown variable that is integrated with a back-
ward Euler method.
Once the interface velocity is known, the velocity
field inside the bubble is assumed to be linear
whereas the velocity field in the liquid is worked
out based on the incompressibility hypothesis.

4. The system of differential equations consisting
of the continuity, species and energy equation
in both phases (Eqs. 1-4) is segregated. Every
equation is discretized in space using a Finite
Element Method (FEM). The system of equations
constitute a tridiagonal system which can be solved
by encoding efficiently the procedure for the LU
decomposition (Press et al. 1992). This method
saves a substantial amount of time in comparison
with more complex techniques.

An Arbitrary Langrangian Eulerian (ALE) formu-
lation allow us to move the mesh independently and
to track the interface at every moment. The mesh
node position at t+∆t is updated using the velocity
um,t+∆t which is evaluated as

um,t+∆t =















Ṙb

(

r

Rb

)

r ≤ R(t)

Ṙb

(

Rb

r

)2

r > R.
(15)

The mesh is initially adapted concentrating the
nodes near the interface, where the larger gradients
must be well resolved in order to correctly predict
the heat and mass transfer across the interface.

With the new mesh, the segregated method pro-
ceeds as follows.
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a) The species equations inside the bubble (Eq.
2) is solved for the vaporY t+∆t

α,g . Zero deriva-
tive is imposed at the bubble center whereas
at the interface two different boundary condi-
tions are considered. When transient effects
are taken into account, the total vapor flux
obtained from the Hertz-Knudsen-Langmuir
equation is imposed.

b) The diffusion equation for the partially solu-
ble gas is solved in the liquid domain. Dirich-
let boundary conditions are imposed at both
boundaries; the concentration at the interface
is given by the Henry’s law and the concen-
tration at infinity is assumed to be known.

c) The equation in both phases, liquid and gas, is
coupled using the heat balance at the interface
(Eq. 9). Symmetry at the bubble center and
the temperature at infinity are imposed.

5. The convergence error is then obtained from com-
parison of the initial guess and the updated values.
At the n iteration step, we take the maximum of the
convergence error of all the variables considered in
the problem

ε = max

(

Y
t+∆t
n+1 − Y t+∆t

n

Y
t+∆t
n

)

(16)

If ε is larger than a given tolerance tol, a new
iteration starts in step 3. If after nmax iterations
( nmax=50 in the simulations contained in this
work) the method has not converged, a new
∆tnew = ∆t/5 is tried.

The convergence of the method with the number of
nodes in the gas phase and in the liquid phase is checked
for an air/vapor bubble of 10 µm exposed to a shock
wave (further details about the conditions of the simula-
tion can be found in the next section) In these conditions,
the bubble behavior is strongly non-linear and a signifi-
cant gas intake is predicted. As we are interested in the
accuracy of the method to predict the growth-rate, the
net gas intake after one shock wave is taken as a repre-
sentative variable of the process. Tables 1 and 2 show
that the method converges, but only for a sufficiently
large number of nodes in both phases. For the simula-
tions contained in this paper we choose ng = nl = 200.
The tolerance of the iterative solver is set to 10−5 and
the minimum mesh size, located at the bubble interface
is hmin = 10−4R0.

Table 1: Net gas intake as a function of the number of
nodes inside the bubble at t= 0.1 ms (domain size = 5
mm, nl = 200 )

n mf/m0 − 1

50 0.1179316
100 0.1776510
200 0.1921281
400 0.1949811
800 0.1956019

Table 2: Net gas intake as a function of the number of
nodes in the liquid at t= 0.1 ms (domain size = 5 mm,
ng = 400 )

n mf/m0 − 1

50 0.2056242
100 0.1950348
200 0.1949811
400 0.1949618

4 Numerical examples: Relevant phenomena
modelling rectified diffusion

In this section, we discuss the validity of common as-
sumptions used to simulate single bubble dynamics in
the context of lithotripsy. In these situations the far field
pressure is given by the following expression

pl(t) = p∞+2∆p exp(−zt) cos(ωt+π/3) 0 < t < T
(17)

where T is the interval between successive pulses. As
an example, we take characteristic values for pulses
induced in lithotripsy (Church 1988) (f=83.3 kHz and
z = 9.1 105s−1). We consider the case of air/vapor
bubbles in water (properties included in Table 3).

The characteristic bubble response is depicted in Fig-
ure 1. In general, four different stages can be distin-
guished. When the wave arrives, the bubble collapses as
a response of the sudden increase of pressure. After that,

Table 3: Properties for the liquid and gas used in the
simulations contained in this work
Variable Gas Liquid Units

W 28 18 kg mol−1

µ 10−5 10−3 Pas
κ 0.5 0.04 Wm−1K−1

σ 0.069 Nm−1

Dg 2.0 · 10−9 2.5 · 10−4 m2s−1
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Figure 1: Temporal evolution of the bubble radius and
the mass of the bubble for a bubble of 10 µm (up) and
100 µm (bottom) for a wave of 5 MPa. The 10 µm
bubble tends to grow due to the large of degree of ex-
pansion experienced during the tail of the shock wave.
As the bubble size increases, the non-dimensional max-
imum radius decreases, tending to be dissolved.

the negative tail of the wave induced by the lithotripser
and the high pressure reached during the first collapse
makes the bubble grow.

During this stage, part of the gas dissolved in the
liquid is fed into the bubble. The bubble continues its
expansion until its pressure falls below the reference
pressure and then, the bubble undergoes a series of
rebounds until the bubble reaches a mechanical equi-
librium with the surrounding liquid. Finally, the bubble
tends to dissolve due to the concentration gradient
between the interface and the bulk liquid until a new
pulse arrives.

4.1 Gas diffusion in the short time
scales

In this section we discuss the effects of the short time
scales on the process of rectified diffusion.

As it can be seen in Figure 1, most of the gas
intake takes part during the expansion process after
the initial bubble collapse. Even for the relatively low
amplitude tested here, the mass of gas inside a bubble
of 10 µm increases by approximately 20 % in each
cycle. Once the shock wave has gone away, the bubble
equilibrates its pressure with that of the liquid and,
due to the concentration gradient between the interface
and the bulk liquid, the bubble tends to dissolve. The
dissolution rate between the instant when the bubble
equilibrates its pressure with the surrounding liquid and
the time at which the following bubble arrives, could be
computed using the analytical solution found by Epstein
and Plesset (1950). However, in saturated liquids the
process of dissolution of gas is usually much slower
than the repetition frequency of shock waves. Therefore
the dissolution between the pressure equilibration and
the repetition period T is completely neglected.
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Figure 2: Relative mass increment after the pass of one
shock wave as a function of the initial bubble radius for
a wave of 5 MPa. The vertical line represents the inter-
section point (zero growthrate). The relative mass incre-
ment diverges as the radius of the bubble decreases. This
phenomena is a direct consequence of the sharp bound-
ary layer in the liquid phase which is responsible of the
net gas intake during one cycle. The bubbles growth for
bubbles of the order of tens of microns is negligible and
larger bubbles tend to dissolve.

From Figure 2 we can conclude that the larger the
bubble the smaller the relative amount of gas is fed into
the bubble. Indeed, we can define a threshold radius,
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Rc, which has zero growthrate once the bubble pressure
has been equilibrated with that of the liquid. This
threshold radius provides an estimation of the value
around which the bubble radius distribution should be
centered in lithotripsy experiments. Bubbles smaller
than Rc grow quickly up to values around Rc, whereas
bigger bubbles tend to dissolve (Figure 2).

One of the conclusions of this analysis is that, irre-
spective of the initial cavitation nuclei distribution of
the liquid, after passing some dozens of shock waves
the bubble distribution will be centered around values of
tens of microns. As it can be seen in Figure 3, this result
is not especially sensitive to the pressure wave amplitude
and it is in agreement with previous findings by Church
(1988); Cunningham et al. (2001). Thus, we can define
stability diagrams similar to those of Toegel and Lohse
(2003) to determine the values around which the bubble
distribution of bubbles tend to be centered.
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Figure 3: Equilibrium radius as a function of the am-
plitude of the wave for a wave of f=83.3 kHz. For large
amplitudes, the equilibrium radius become independent
of the pressure wave amplitude

We emphasize that the threshold value in this case is
given by the short time scale. Fyrillas and Szeri (1994)
have presented a model to obtain growthrates of bubbles
in ultrasonic fields in the long term evolution. One of the
main conclusions of their work is that, in ultrasonic ap-
plications, the transient effects related during one cycle
are irrelevant and the gas intake is only governed by the
long time scale. This model has been successfully used
to predict the stability ranges in Single Bubble Sonolu-
minescence by Lohse (Toegel and Lohse 2003). How-
ever, the applicability of this model is based on the as-
sumption that the bubble is steadily oscillating, so that
the effects on the short time scale have no impact on the
long term solution. A simplified expression to work out

the bubble gas intake during one cycle is (Toegel and
Lohse 2003):

mf

m0
= 4πDl

Rmax

f

(

c∞
csat

−
< pi >

p∞

)

(18)

where < pi > is a temporal averaged whose expression
is (Toegel and Lohse 2003; Fyrillas and Szeri 1994)

< pi >=

∫ T

0
piR4

bdt
∫ T

0
R4

bdt
(19)

This expression is problematic when applied to
lithotripsy. Firstly, the definition of T is not clear. As
a first attempt, one could take T as the inverse of the
frequency at which shock waves is induced in the body.
However, in this case Eq. 18 would give values of
the growthrate that could be make sense, in the most
favorable case, over thousand or millions of shock
waves.

Then, we can then conclude that the solution of the
transport equation of the species α in the liquid is
mandatory in processes where the short time scales, of
the order of the excitation frequency, control the process.
The growth rates of small bubbles can be extremely large
even for the small amplitudes tested here, and large bub-
bles tend to slowly dissolve.

4.2 The influence of mass transfer on
the internal bubble profiles

Models assuming uniform properties inside the bubble
are widely used in the literature. The validity of the
pressure uniformity inside the bubble has been already
discussed by (Lin et al. 2002) proving that, even for
moderately intense collapses, pressure uniformity holds.
Only very intense collapses (Xu et al. 2003) when
pressures rise above 10000 atm, and the presence of
chemical reactions (Hauke et al. 2007) can induce
important pressure gradients during the implosion
that must be taken into account in order to accurately
describe the bubble implosion.

The variations of other properties like the bubble
temperature, density and concentration are usually
included in the model by defining averaged values
inside the bubble and resorting to different models to
obtain the mass and heat transfer fluxes at the interface
(Preston et al. 2007; Prosperetti et al. 1988). The sim-
plest models assume that the bubble oscillates around
an equilibrium radius. When the mass of gas inside
the bubble does not change significantly, the definition
of an effective polytropic coefficient and an effective
viscosity is usually enough to describe the bubble radius
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evolution. However, when the mass of gas during one
cycle varies significantly, these models can fail.

When the bubble has a positive mass net flux most
of the gas diffusion from the liquid to the bubble is
produced during the expansion (e.g. Figure 1a). For
an accurate prediction of the gas intake, the main
mechanisms influencing the bubble radius and gas
intake must be captured.

In this stage, the mass transfer effects play a role on
both, the bubble radius evolution as well on the gas
diffusion inside the bubble. The evaporation flux across
the interface changes the velocity of the interface,
significantly modifying the expansion rate. The internal
concentration profiles, modify the transport of gas
inside the bubble, which ultimately have an impact on
the gas intake.

The dimensionless number J∗ = J/(Ṙρg) is used
as a parameter whose absolute value gives us an esti-
mation of the importance of the evaporation flux on the
interface velocity, irrespective if condensation of evapo-
ration takes place. For values of J∗ much smaller than 1,
the flux of mass across the interface has no influence on
the interface velocity. For values around one, the mass
transfer controls the expansion velocity. As depicted in
Figure 4, the evaporation significantly influences the in-
terface velocity during the expansion, therefore, we can
conclude that to accurately estimate the maximum ra-
dius, a correct prediction of the evaporation flux is re-
quired.
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Figure 4: Temporal evolution of the bubble radius and
the dimensionless flux J∗ for a bubble of 10 µm exposed
to a shock wave of amplitude 5 MPa. The evaporation
flux has an important impact on the expansion velocities
when the bubble expands.

The evaporation flux during the expansion is con-
trolled by the diffusion of water vapor inside the bubble.
That is, both parameters, the expansion velocity and the
diffusive transport of gas inside the bubble, are governed
by the diffusion processes inside the bubble. Figure
5 contains the temporal-spatial distribution of water
vapor content inside the bubble. Especially during the
first stage of the large expansion, when the gas intake
is maximum, large concentration gradients inside the
bubble are encountered. Whereas the concentration at
the interface reaches values around 1, the concentration
at the bubble center is around 0.1. These effects
are completely missed by models based on uniform
properties. Equilibrium conditions are not sustained
inside the bubble, only at the interface. Moreover, the
large variations on the concentration gradients inside
the bubble make it difficult to develop simplified models
able to accurately predict the evaporation flux.

Thus, we can conclude that for an accurate prediction
of the evaporation flux, the internal concentration gradi-
ents must be solved. The evaporation flux controls the
diffusion of gas inside the bubble and also the interface
velocity during the expansion. Both parameters have an
important impact on the predicted growthrates.

Figure 5: Temporal evolution of the profiles of mass
fraction of water vapor inside the bubble for a bubble
of 10 µm exposed to a shock wave of amplitude 5 MPa.
The important internal concentration gradients inside the
bubble control the evaporation flux during the expansion
processes.

5 Conclusions

A new model for rectified diffusion has been proposed.
The current model allows taking into account temper-
ature, concentration and pressure gradients both inside
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and outside the bubble.

In the context of lithotripsy, the growthrate of the
bubbles is shown to depend significantly on the transport
of gas in the liquid in a time scale of the order of the
pulsating frequency.

The simulations reveal that irrespective to the initial
bubble distribution, bubbles present in the liquid will
tend to quickly reach an equilibrium radius of the order
of tens of microns. This conclusion should be relevant
for the radius distribution used for the analysis of the
effects of cavitation in lithotripsy.

The inclusion of liquid vaporization has an important
for an accurate prediction of the growth rates, especially
for bubbles of the order of microns. The mass transport
related with the liquid phase change influences the
expansion velocity. The evaporation and condensation
flux is given by the vapor diffusion rate inside the
bubble. Thus, it is required to compute the species
concentration gradient inside the bubble for an accurate
prediction of the gas intake.
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