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Forced dewetting on porous media
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We study the dewetting of a porous plate withdrawn from a bath of fluid. The micro-
scopic contact angle is fixed to zero and the flow is assumed to be parallel to the plate
(lubrication approximation). The ordinary differential equation involving the position of
the water surface is analysed in phase space by means of numerical integration. We show
the existence of a critical value of the capillary number ηU/γ, above which no stationary
contact line can exist. An analytical model, based on asymptotic matching is developed,
that reproduces the dependence of the critical capillary number on the angle of the plate
with respect to the horizontal for large control parameters (3/2 power law).

1. Introduction

When sea retreats from the shore, sand structures appear as solid granular particles
are transported via the liquid. Liquid motion and particularly film retraction on an
erodible medium are known to create impressive erosion patterns, such as sand ripples
for oscillatory waves (Stegner & Wesfreid 1999; Scherer et al. 1999) or sand furrows
(Daerr et al. 2003; Schorghofer et al. 2004). The case of liquid retraction from a granular
bed can be understood as a dewetting dynamics on a porous erodible bed. Such physical
phenomena have been reproduced in the laboratory by pulling a plate covered with a
bed of grains out of a liquid tank (Daerr et al. 2003). This situation is similar to the
well-known experiment investigating a moving contact line on a non-porous plate (Blake
& Ruschak 1979). In this latter case, a contact line exists for small removal speed U ,
whereas for higher speed (above a well-defined critical value Ucr) a macroscopic water
film (the so-called Landau-Levich-Derjaguin film (denoted LLD later on), see Landau &
Levich (1942); Derjagin (1943)) covers the whole plane (Eggers 2004a). We propose here
to investigate this transition for a saturated porous medium, in connection with recent
experiments involving granular materials by Daerr et al. (2003). There, a motor-driven
plane, covered with a granular layer, is withdrawn from a water tank at constant speed
U . The solid plane is tilted to an angle θ. At high enough velocity, erosion river networks
and mudflows are observed, whereas only light patterns appear at smaller speed. We
investigate the loss of a static contact line and seek to relate it to the transition between
various erosion regimes. We therefore seek the critical velocity above which no static
contact line can exist on a granular bed. Below this critical velocity, almost no grain
motion is observed so that we identify the granular bed with a rigid porous medium.
Dewetting on a porous medium has already been studied in different configurations (see
Raphaël & de Gennes (1999); Aradian et al. (2000); Bacri & Brochard-Wyart (2001)
and references herein). The case of a porous plate removed from a liquid was studied
by Raphaël & de Gennes (1999), but the focus was on the spatial evolution of the LLD
film, the existence of which was assumed. The contact line dynamics was also studied
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�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

liquid

contact line

moving porous plate

θ

x

y

h(x)

U

g

Figure 1. A porous plate of conductivity k is being withdrawn from a liquid bath with speed
U at angle θ.

(Aradian et al. 2000) for a wet horizontal support in which the liquid is sucked in the
dry porous medium.

From a more theoretical point of view, the problem of a moving contact line on a
porous solid is pointed out by de Gennes (1985) as a natural regularization for the contact
line dynamics equations. The bulk liquid flow through the porous solid indeed removes
the usual stress singularity that one would encounter at a contact line with a no-slip
condition (Dussan & Davis 1974). No additional assumption, such as the introduction
of a Navier slip at microscopic scale, is then required. However, another question arises
when considering a porous medium: what is the relevant condition for the contact angle
at the contact line? As discussed below, we propose here for a saturated system to take
a zero contact angle.

The paper is organized as follows: in the next Section, we use the lubrication approx-
imation to deduce the equation for the static interface shape, both for the contact line
and a zero-flux LLD film. In Section 3, we exhibit the transition between these two con-
figurations as the pulling velocity increases by means of a shooting method. Then, we
propose to interpret the solutions in the framework of dynamical systems (Section 4).

2. Principles

2.1. Lubrication approximation

Our approach seeks to determine the velocity (if any) above which the static contact
line can no longer exist in a granular bed withdrawal experiment. Below this velocity,
we can consider that the grains almost do not move relatively to the withdrawn plate.
Thus the granular material is represented by a non-erodible porous medium (see Figure
1) of permeability k, and we only have to investigate the stationary problem. The fluid
is characterized by its density ρ, dynamical viscosity η and surface tension γ. Assuming
invariance in the z-direction, we consider the two-dimensional problem where the water
surface is described by the function h(x). For the plate velocities pertinent to the problem
(typically 0.5 cm.s−1) and the estimated porosity of the granular bed (k ≈ 10−12 m2) we
can consider that the porous medium remains fully saturated with water at any distance
from the free water level.

We will restrict our analysis to small angles θ so that the lubrication approximation
can be employed (i.e. θ , ‖h′‖ ≪ 1 where the ′ stands for the x-derivative). Only the
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x-component u of the velocity has to be taken into account, for which Poiseuille profile
is assumed, with a vanishing tangential stress on the gas side:

∂u

∂y

∣

∣

∣

∣

y=h(x)

= 0. (2.1)

Another boundary condition has to be written at the porous surface. The classical no-
slip condition, as required at the solid-fluid interface on an impermeable plate, leads to
the following equation for h(x) (its derivation is similar to the one presented in Appendix
B):

h′′′ − h′ + θ =
3Ca

h2
, (2.2)

where lengths h and x have been made dimensionless by the capillary length lc =
√

γ/ρg (lc ≈ 2.8 mm for water) and Ca is the capillary number, defined by

Ca =
ηU

γ
.

Equation (2.2) and any derivative of its solutions are singular at the contact line, where
h = 0 (Duffy & Wilson 1997). For a non-porous surface, a short-length regularization is
invoked coming either from effective slip near the contact line (Huh & Scriven 1971), the
existence of a pre-wetting liquid film and Van der Waals forces (de Gennes 1984; Hervet
& de Gennes 1984) or a ”diffuse interface model” (Seppecher 1996). Such a regulariza-
tion always involves a microscopic cut-off length (on the order of 1 nm) below which it
is claimed that hydrodynamics fails. The Navier slip condition is then mostly used in
numerical simulations investigating moving contact line problems (Renardy et al. 2001).
This condition reads at the solid-fluid interface: u − U = ΛN∂u/∂y at y = 0 where ΛN

is the cut-off length. If λN is the rescaled cut-off length (that is λN = ΛN/lc), Equation
(2.2) becomes

h′′′ − h′ + θ =
Ca

h2/3 + λNh
. (2.3)

Equation (2.3) can be numerically solved and analytically approached. A contact line
is then found to exist as long as the capillary number is smaller than a critical value,
above which a macroscopic LLD film is deposited on the solid (Eggers 2004a). Notice
however that not all the singularities discussed above are suppressed by the Navier slip
condition since the capillary pressure still diverges at the contact line (see Appendix A).

2.2. The case of porous solid

A porous solid allows for both interfacial slip (first proposed by Beavers & Joseph (1967))
and bulk flow. Using the Brinkman equation to describe the flow inside the porous
medium, Neale & Nader (1974) showed that, for a homogeneous porous media, the mag-
nitude of the slip is proportional to the prevailing shear stress:

u|y=0 − up|y=0 =

√
k

α

∂u

∂y

∣

∣

∣

∣

y=0

, (2.4)

where k is the permeability of the solid, α a coefficient of order one, and up the velocity
of the fluid in the porous medium. Darcy’s law holds in the solid so that
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up + U = −k

η

(

∂p

∂x
− ρgθ

)

, (2.5)

and finally the Equation hereafter describes the shape of the steady fluid film under
withdrawal (the detailed derivation is presented in Appendix B):

h′′′ − h′ + θ =
Ca

h2/3 + λh/α + λ2
, (2.6)

where λ =
√

k/lc. Such an equation is similar to those studied for the contact line on
a solid surface, using specific boundary conditions at the solid surface (Eggers 2004a;
Hocking 2001). It has been shown (in the case of a plate pushed into water) that the
details of the regularization do not influence the far-field fluid flow as long as the cut-off
length is small enough (Eggers 2004b). However, an important difference in our case lies
in the typical values of λ involved in porous media (≈ 10−2 in Daerr et al. (2003)) to be
compared with 10−6 for regular solids.

Here we would like to point out that in recent papers (Maurer et al. 2003; Hadji-
constantinou 2003) a second order-slip law is used to model the flow of gases at large
Knudsen numbers. This boundary condition (adapted to the present notations) reads

u|y=0 + U = ΛC
∂u

∂y

∣

∣

∣

∣

y=0

− αCΛC
∂2u

∂y2

∣

∣

∣

∣

y=0

,

where αC is a positive coefficient of order one, and ΛC is a slip length of the same
order than the mean free path of the gas. If such a boundary condition were used in the
case of a contact line, again Equation (2.6) would be obtained.

2.3. Boundary conditions

The limit for large positive values of x is well-defined: the water surface is horizontal far
from the plane, that is

h(x) ∼
x→∞

θx. (2.7)

For the two remaining boundary conditions, two different cases will be studied, de-
pending on whether a contact line is formed between the water surface and the solid
plate, or if a film of water remains on the solid surface. In the first case, the water level
vanishes at the origin and a contact angle θ0 is usually imposed; the contact line set of
boundary conditions is

{

h(0) = 0,
h′(0) = θ0.

(2.8)

Following Raphaël & de Gennes (1999), we will hereafter consider that the contact
angle θ0 is zero for dewetting on a porous media. We argue indeed that for saturated
porous media, the liquid film wets completely the surface, leading to an effective zero
contact angle.

When LLD film starts at the meniscus, the only boundary condition known a priori is

lim
x→−∞

h(x) = hf (2.9)

where hf is a constant solution of Equation (2.6). Notice that Equation (2.6) stands
only for zero-flux films, that neither add nor withdraw water from the tank. We omit
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the important case where a LLD film is continuously growing with time, a case that was
investigated by Hocking (2001). Our study is therefore relevant to determine the loss of
a static contact line solution, without any information about the dynamics. The stability
of the solution as well as the time-dependent dynamics of a moving meniscus cannot be
studied at this stage and will be the purpose of further work. However, we will see in
Section 4 that the film solutions of (2.6) satisfying (2.9) play an important role in the
dynamical system describing our solutions. Finally, for a solution to be acceptable, the
water level must always lay above the porous medium: ∀x, h(x) > 0.

2.4. Parameters

The parameter α comes from the detailed modelisation of the interface slip flow (Beavers
& Joseph 1967; Goyeau et al. 2003), and varies generally between 0.1 and 4 (Neale &
Nader 1974). Notice for instance that if α is smaller than

√
3/2, Equation (2.6) becomes

singular for some negative values of h. However, for the sake of simplicity the coefficient
α is fixed to one in the present study. Now, for α = 1, Equation (2.6) is an ordinary
differential equation (ODE) with three parameters: θ, Ca and λ. In fact, one should
notice that this equation is only a two-parameter ODE: defining h∗ = h/λ, Equation
(2.6) becomes

h′′′

∗
− h′

∗
+ θ∗ =

Ca∗

h2
∗
/3 + h∗ + 1

, (2.10)

where θ∗ and Ca∗ are defined as follow:

θ∗ = θ/λ = θ

√

γ

ρgk
,

Ca∗ = Ca/λ3 =
Uη

√
γ

(ρgk)3/2
.

Equation (2.10) is the one we will study later on, but we will omit the ∗ on h∗ for
the sake of readability. These nondimensional parameters were choosen because they are
proportional to the two experimental parameters that may be easily and continuously
tuned, namely U and θ. If the permeability of the porous solid is extremely low, both
θ∗ and Ca∗ tend to infinity, as well as the ratio Ca∗/θ∗ = Uη/(θρgk). In this case, the
velocity inside the porous medium is extremely slow compared to U . For the experimental
study of Daerr et al. (2003), the rescaled capillary number Ca∗ is of the order of 105.

2.5. Hydrostatic solutions

Any solution which respects the boundary condition (2.7) for large x verifies

lim
x→+∞

h(x) = +∞,

thus for large x, Equation (2.10) becomes

h′′′ − h′ + θ∗ = 0. (2.11)

The behaviour of the water surface at large x, hereafter denoted by h∞, is directly
obtained from Equation (2.11):

h∞(x) = A∞ + θ∗x + (θ∗ − θ∗ap) exp (−x), (2.12)
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Figure 2. Numerical solutions of Equation (2.10) for different capillary numbers. The rescaled
tilt angle θ∗ is fixed to 1

where A∞ and θ∗ap are two constants, corresponding respectively to the length of the dy-
namical meniscus and to the so-called apparent contact angle (note that the dimensional
apparent contact angle is actually θ∗apλ). Even though the lubrication approximation is
not expected to hold for large x since the water level is not small anymore, Equation
(2.11) leads to the classical static meniscus solution (remember that x has been scaled
by the capillary length lc). Consequently, we may consider that Equation (2.10) holds at
any position on the x-axis.

3. Numerical results

3.1. Contact line solutions

To seek steady contact line solutions, Equation (2.10) may be solved numerically using a
finite-difference algorithm. In the case of a contact line, two boundary conditions may be
fixed at x = 0 by the contact line conditions (2.8). The third condition comes from the
flat water level at infinity (2.7). With the new notations, we end up with the following
system:

h′′′ − h′ = f(h),

h(0) = h′(0) = 0, (3.1)

h(x) ∼
x→∞

θ∗x,

where

f(h) =
Ca∗

h2/3 + h + 1
− θ∗.

We use a shooting method (see Manneville (1990)), varying the initial curvature h′′(0)
in order to find the numerical solution which corresponds to the hydrostatic condition at
large x. Some numerical contact line solutions to Equation (3.1) are presented on Figure
2 for different Ca∗ at fixed θ∗.

As shown on Figure 2, the contact line zone is somehow streched as the capillary num-
ber is increased. In other words, the curvature h′′(0) at the origin tends to zero as Ca∗
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Figure 3. Curvature at the origin versus rescaled capillary number, for a contact line solution of
Equation 2.10. The rescaled tilt angle θ∗ is fixed to 1. No solution is found for capillary numbers
higher than Ca∗

c ≈ 1.0247.

tends to a critical value Ca∗c . Above this critical value, no contact line solution can be
found by the shooting mehod. This transition will be clarified below using the dynam-
ical system associated to (3.1). The disappearance of the contact line solution may be
represented in a kind of bifurcation diagram, plotting the curvature at the origin against
the capillary number, as shown in Figure 3. Notice that, even though the curvature at
the origin tends to zero as Ca∗c is approached, the contact line solution does not become
unrealistic for Ca > Ca∗c owing to a negative initial curvature, but rather disappears
by a bifurcation. Above the critical capillary number, no matching exists between the
behavior of the solution at the contact line and the gravity-capillary solution.

3.2. Film solutions

A LLD solution can exist whenever there is a positive value hf such that f(hf ) = 0,
which occurs as soon as Ca∗ > θ∗. Two major limitations have to be pointed out for these
film solutions: first, we might not be able to match this film solution to the hydrostatic
region with h remaining positive everywhere. Moreover we restrict our analysis here to an
already-established film of zero mass flux, whereas transitory and/or finite flux solutions
should be considered (Hocking 2001), and are likely to exist for smaller capillary numbers.
Numerically, above the critical capillary number Ca∗c , we have always been able to find
a zero flux LLD film of thickness hf in the limit x → −∞ that could match to the
hydrostatic solution without crossing h = 0 (see Figure 2). Such a solution may be
numerically approached, using a special shooting method described in Section 4.1.1. We
observed that as the capillary number is decreased, the film surface is shifted down along
the y-axis (see Figure 6), and we may define a second critical capillary number Ca∗c,2,
bellow which the film solution becomes negative in some region. Consequently, if Ca∗c,2

is smaller than Ca∗c , hysteresis may occurs, that is, two solutions, a contact line one and
LLD film one, may co-exist for same tilt angle and capillary number.
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Figure 4. Numerical solutions of Equation (2.10) for various capillary numbers, represented
in the phase space (projected on the (h, h′′)- and (h′, h′′)-planes). The rescaled tilt angle θ∗ is
fixed to 1. The trajectories correspond to the physical solutions shown in Figure 2: for subcritical
capillary numbers (the three dashed curves), the trajectory starts at a point on the h′′-axis which
corresponds to the contact line. On the opposite, the solid line correspond to a film solution,
and thus does not cross the h′′-axis. The insert shows the projection of the film solution in the
(h′, h′′)-plane, at smaller scale.

4. Dynamical systems interpretation

4.1. Phase space

In what follow, we interpret and develop the preceding results using dynamical system
theory (Strogatz 1994). Let us consider the phase space V corresponding to Equation
(2.10), that is, R

3 with coordinates (h, h′, h′′). Any solution of (2.10) is a trajectory of
V , parametrized by x, which satisfies

X′ = F(X) =





h′

h′′

h′ + f(h)



 . (4.1)

Some trajectories (the same as on Figure 2) are represented on Figure 4. Notice that
the film solution (solid curve) winds exponentially around a fixed point on the h-axis.

4.1.1. Hydrostatic solutions in the phase space

For large x, following the reasoning of Section 2.5, Equation (4.1) becomes linear:

X′ =





0 1 0
0 0 1
0 1 0



X−





0
0
θ∗



 . (4.2)

Any solution of (4.2) which satisfies the boundary condition (2.7) is included in a
plane called E∞, which may be parameterized by x and the apparent contact angle θ∗ap
introduced in Section 2.5. E∞ is defined by the equation h′ − h′′ = θ∗.

The solutions of the full Equation (4.1) which satisfy (2.7) are included in a two-
dimensional manifold, called W . This manifold tends to E∞ for large h. This allows us
to approximate numerically the LLD film trajectories, for which we impose boundary
conditions at x → −∞ and x → +∞. We may indeed use a shooting method with initial
conditions varying along a constant (large) h line on E∞. The boundary condition at
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Figure 5. Intersection of W (the set of trajectories that tend to a horisontal water surface as
x tends to +∞) with the (h, h′′) plane. These curves were obtained by a shooting method with
θ∗ = 2. Solid line: Ca∗ = 2.1; dashed line: Ca∗ = 3. Insert shows the solid curve at smaller scale.

x → +∞ is then approximatively satisfied at any step. The shooting method provides
an approximation of the only solution that remains constant as x tends to −∞.

Figure 5 represents the intersection of W with the (h, h′′) plane defined by h′ = 0,
obtained by the shooting method, for two different capillary numbers, above and below
Ca∗c , for θ∗ = 2. We observe numerically that the major effect of an increase in Ca∗ is a
translation in the higher h direction. The disappearance of the contact line solution may
be described in the following way: any contact line trajectory is embedded in W , and the
boundary conditions impose that it starts on the h′′-axis, consequently, it can exist only
if there is an intersection between W and the h′′-axis. Since the main effect of an increase
of Ca∗ on W is a translation along the h-axis, this intersection disappears above some
value Ca∗c of the capillary number. Thus, the existence of a fixed point creates a separatrix

on the boundary W , that would otherwise be defined over the whole (h, h′)-plane, which
allows for the sudden disappearance of its intersection with the h′′-axis.

4.1.2. Fixed points

A fixed point Xf in phase space corresponds physicaly to a film of constant height hf :

Xf =





0
0
hf



 .

The existence and values of fixed points depend on the parameters θ∗ and Ca∗, as
presented in Table 1. In the following, we will focus on the largest fixed point X+

f , since
it is the only one that may be acceptable physically (that is hf > 0). Let us linearize
Equation (4.1) around X+

f :

X′ = J+
f

(

X− X+
f

)

,

where J+
f is the jacobian of F evaluated at X+

f , that is
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Condition Fixed points hf

Ca∗ < θ∗

4
∅

Ca∗ = θ∗

4
− 3

2

Ca∗ > θ∗

4

3

2

„

−1 ± 1√
3

q

4Ca∗

θ∗
− 1

«

Table 1. Existence and values of the fixed points of equation (4.1).

Condition Eigenvalues

Ca∗ ∈ Υ(θ∗) a, b, c

Ca∗ ∈ ∂Υ(θ∗) a, −a/2, −a/2

Ca∗ 6∈ Υ(θ∗) a, −a/2 + iΩ, −a/2 − iΩ

Table 2. Eigenvalues of the jacobian J
+

f at the largest fixed point. a, b, c and Ω are real numbers

and Υ(θ∗) =
h

9θ∗3

2

“

1 −
q

1 − 1

9θ∗2

”

; 9θ∗3

2

“

1 +
q

1 − 1

9θ∗2

”i

. When the eigenvalues are real,

they satisfy: a < 0 < b < c.

J+
f =





0 1 0
0 0 1

f ′(h+
f ) 1 0



 .

The local behaviour of solutions around the fixed point depends on the eigenvalues of
J+

f , which are presented in Table 2. If the eigenvalues are real numbers, one is negative
and the two others positive. So there is an unstable manifold of dimension two where
the trajectories tend monotonically to the fixed point as x tends to −∞ and a stable
manifold S (separatrix) of dimension one. On the other hand, when the two eigenvalues
are complex conjugate their common real part is always positive, and the trajectories in
the corresponding unstable manifold wind around the fixed point while diverging from it
at exponential rate. In physical space, the fluid surface forms damped stationary waves
along the plate (see Figure 6). Therefore, the behaviour of W in the vicinity of the fixed
point may also be described by this linear expansion. Depending on the parameters, W
may either be defined over the whole (h, h′)-plane, or tend to the separatrix S (which
ends on the fixed point). In the latter case, W winds around the separatrix (as shown
in Figure 5) or tends to it monotonically. These various regimes are represented in the
diagram of Figure 7.
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4.1.3. Critical capillary number

At any point on the h-axis, X′ is parallel to the h′′-axis (see equation (4.1)). Con-
sequently, the intersection of W with the (h, h′′) plane (represented on Figure 5) has
vertical tangent vectors whenever it crosses the h-axis. This explains the behaviour of
h′′(0) close to the critical capillary number (see Figure 3), which may be interpreted as a
saddle-node bifurcation. This property is useful for the numerical determination of Ca∗c
at a given θ∗: since we know that the second derivative h′′(0) must vanish at the critical
capillary number, we may approximate Ca∗c by a shooting method which varies Ca∗ for
constant initial conditions (that is, h = h′ = h′′ = 0). We show in Figure 7 the evolution
of the critical capilary number with θ∗, together with the diagram showing the different
regimes described above. Notice that since θ∗ is a rescaled parameter, we have been able
to investigate a large range of values, up to θ∗ ≈ 107.

We did not find any reason for the disappearance of the contact line solution to coincide
with the appearance of the LLD film solution as Ca∗ is varied. It may well be possible
that, as W has already intersected the h′′-axis, the LLD film trajectory rolls up around
the fixed point without h ever becoming negative. Some numerical simulations give us
confidence that hysteresis indeed occurs (that is Ca∗c > Ca∗c,2): a slight hysteresis may
indeed be observed in Figure 6. Again, the present study is limited to LLD films of null
flux, and other solutions may exist for the same parameters values. Thus, the hysteresis
here observed can only describe a reduced part of the solutions set.

When the capillary number is decreased from a supercritical value, the height of the
stationary film hf decreases, and eventually the film thickness vanishes at some point
xmin (see Figure 6). This point must be a minimum and in that case both h(xmin) and
h′(xmin) vanish, so this film solution is also a contact line solution. This explains the
change of the sign of h(xmin) observed at point A in Figure 6.

The asymptotic behavior of Ca∗c at large θ∗ has also been investigated (Figure 7). We
find that the critical capillary number behaves asymptotically as a power law of the tilt
angle, that fits to:

Ca∗c ∼
θ∗→∞

0.3936 θ∗ 1,4998. (4.3)

This suggest that for high θ∗, Ca∗c behaves like θ∗ 3/2.

5. Asymptotic results

In the following section we describe a rough analytical approach, inspired from that
of Eggers (2004a), which leads to the power law (4.3) for the capillary number obtained
numerically in the previous section.

5.1. Overview

To determine the dependence of the critical capillary number with the angle, we need to
better understand how the solution near the contact line connects with the free surface
at infinity. We therefore seek to determine the matching between these two domains.
This has actually been done when considering the classical plate withdrawal problem. It
involves a matching between three regions: one near the contact line, a capillary-viscous
one and the gravity-capillary interface (Eggers 2004a). However, two major differences
arise in the present case compared to the usual problem. First, equation (3.1) is regular
over the whole range h ∈ [0; +∞[, whereas in the usual problem Navier slip condition
(2.3) leads to a pressure divergence at the contact line. However, it has been shown (in the
case of an advancing contact line) that the exact form of the slip law near the contact
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Figure 6. Above: Second derivative of the film height against the capillary number, for θ∗ = 1.
The solid line corresponds to h′′(0) for the contact line solution. The dashed line represents the
second derivative of h at the point xmin where in the case of a LLD film solution, the film is
thinnest. Large dashes are used if h(xmin) > 0, and short dashes otherwise.
Points A,B,C and D correspond respectively to the following values of Ca∗: Ca∗

c,2, Ca∗
c,1, θ∗ and

θ∗/4.
Below: Two LLD film solutions for θ∗ ≈ 66.62 at different capillary numbers. The curve below
correspond to point A, since h(xmin) becomes negative.

line does not influence the matching procedure with the far-field solution of the free
surface (Eggers 2004b; Dussan & Davis 1974). The second difference lies in the contact
angle condition that we consider null instead of small but finite for solid plates. Such
a condition is crucial as it can be seen from (Eggers 2004a) where the solutions are
expanded in powers of the small parameter Ca/θ3

e (θe being the static contact angle).
Consequently, we cannot obtain a proper matching between the behavior in the contact
line zone (cubic polynomial at leading order) with the famous logarithmic behavior in
the capillary-viscous region:

h′(x) = [9Ca ln(
π

22/3β2x
)]1/3

However, we can bypass this difficulty by a slight change in the equations leading to
a single approximation valid over the first two regions (contact line zone and capillary-
viscous one).

5.2. A two-zones matching

The procedure hereafter presented is based on the assumption that the linear term in
the right-hand term denominator of equation (3.1) is not of fundamental importance. In
particular, the coefficient α was arbitrarily set to one at the beginning of this study, but
numerical investigations have shown that it may be set to much different values, changing
the results of only a few percent. For values of 1/α greater than 2/

√
3, equation (3.1)

becomes singular for negative values of h, which are physically meaningless. We therefore
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Figure 7. Behaviour of W close to the largest fixed point J
+

f . ∅: no fixed point; +: positive fixed
point; −: negative fixed point; a: spiraling trajectories; b: monotonic trajectories. Continuous
lines delimit the various behaviors. The dashed line represents the critical capillary number
above which the contact line solution disappear Ca∗

c . Insert: asymptotic behavior of the critical
capillary number for large θ∗, (logarithmic scale).

set from now on 1/α = 2/
√

3 without any change in the equation properties, so that
equation (3.1) reduces to

h′′′ − h′ + θ∗ =
Ca∗

(h/
√

3 + 1)2
. (5.1)

Close enough to the contact line, the film slope h′ may be neglected due to the boundary
condition (3.1). In addition, close to the critical capillary number, Ca∗ ≫ θ∗ (this is
suggested by the assymptotic behavior (4.3)), and equation (5.1) becomes

h′′′ =
Ca∗

(h/
√

3 + 1)2
,

solved analytically (as performed by Duffy & Wilson (1997)) after the rescaling

x =

√
3

(3Ca∗)1/3
ξ, h(x) =

√
3(y(ξ) − 1).

This rescaling leads to Tanner’s problem:

y′′′ =
1

y2
, y(0) = 1, y′(0) = 0.
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Its solution may be parametrized in terms of Airy functions Ai and Bi:

ξ = 21/3 Bi(s0)Ai(s) − Bi(s)Ai(s0)

Bi′(s0)Ai(s) − Bi(s)Ai′(s0)
, yin =

1

π2(Bi′(s0)Ai(s) − Bi(s)Ai′(s0))2
, (5.2)

where s0 is an integration constant, and s varies between consecutive solutions of
equation

Bi′(s0)Ai(s) − Bi(s)Ai′(s0) = 0. (5.3)

It was shown in Section 4.1.3 that, at the critical capillary number, h′′ vanishes (and so
does y′′). This property sets s0 to zero and the range for s to [s1, 0[, where s1 ≈ −1.98635
is the largest solution to equation (5.3). Matching solution (5.2) with the meniscus solu-
tion should provide a condition on Ca∗ and θ∗. At large ξ, the behavior of yin is

yin = aξ2 + bξ + c + O(
1

ξ
)

where a,b and c have the following expressions (if we define z(s) = π(Bi(0)Ai(s) −
Bi(s)Ai(0))) :

a =

(

Bi′(0)

21/3Bi(s1)

)2

≈ 0.758947, b = 2a

(

21/3Bi′(s1)

Bi′(0)z′(s1)

)

≈ 1.12697,

c =
b2

4a
+

Bi′(s1)z
′′(s1) − Bi′′(s1)z

′(s1)

Bi(s1)z′3(s1)
≈ 2.06713.

Matching yin with the second-order Taylor expansion of h∞ for vanishing x leads to:

θ∗ − θ∗ap = 2a31/6Ca∗ 2/3
c , A∞ =

√
3(c − 1) − θ∗ + θ∗ap, θ∗ap = b(3Ca∗c)

1/3.

When the critical capillary number tends to infinity, the first of the previous equations
reads

Ca∗c ∼
θ∗→∞

1

(2a)3/231/4
θ∗ 3/2. (5.4)

This fits remarkably well with the numerical estimation (4.3), since 1/((2a)3/231/4) ≈
0.40631 (the above numerical fit giving 0.3936). The matching is compared to numerical
results in Figure 8 for a high value of θ∗, and we observe a remarkable agreement with a
reasonably large overlap region.

Moreover, this matching procedure provides the following law for the apparent con-
tact angle, at the critical speed: θap = b(3Cac)

1/3 (notice that the rescaling term λ
disappears). This is reminiscent of the famous Tanner law which relates the contact line
velocity to the apparent contact angle (Tanner 1979).

6. Discussion and conclusions

In this work, a continuum model of the forced dewetting on a porous material has been
presented. In the framework of lubrication, an ordinary non-linear differential equation
was derived, close to the one investigated by Hocking (2001). Even if the (microsopic)
contact angle is assumed to vanish, a stationary contact line is found to exist for low
dewetting velocity. Moreover, a transition between this steady contact line and the deposit
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Figure 8. Comparison between numerical results (solid line) and the matching presented in this
paper (long and short dashes), for θ∗ ≈ 1886.19 and Ca∗ ≈ Ca∗

c ≈ 32871.1, in logarithmic scales.
Long dahes: analytical solution to Tanner’s problem; short dashes: capillary-gravity meniscus.

of a LLD-film must occur, since there is a critical capillary number above which no contact
line solution can exist.

In the present study, the apparent contact angle (as defined by Eggers (2004a), that
is θ∗apλ in the present notations), does not vanish at the critical capillary number (see
Section 5). This behavior is different from the one obtained by Eggers (2004a), where
the apparent contact angle was found to vanish at the transition from a contact line to a
LLD film in the case of finite microscopic contact angle θe. This discrepancy is surprising
since one would expect the problem studied by Eggers (2004a) to correspond with the
present one when θe → 0 and λ → 0. However, in the latter limit the rescaling by λ
used here cannot hold. Also, as previously mentioned, the expansion in powers of Ca/θ3

e

performed by Eggers (2004a) becomes ill-defined.
Different conclusions can be drawn from our results regarding the erosion experiment

performed by Daerr et al. (2003). First, the existence diagram of the contact line can be
drawn using the experimental values of the physical parameters. In the present theory, the
permeability k of the porous material is crucial, as is the characteristic slip length at the
solid-liquid interface. The value of this parameter may depend strongly on the compaction
of the granular material (say between 10−12 m2 and 900 .10−12 m2, respectively the value
measured by Daerr et al. (2003) and the square of the grain size). Figure 9 presents the
critical velocities obtained for these two extremal values of the permeability. For the
lowest permeability, and down to the smallest withdrawal velocities of the erodible plate,
no contact line can exist. On the other hand, when choosing the largest permeability, the
critical speed line is of order of those of the experiement.

The flow acts on the granular medium mainly through the bottom shear rate τ =
∂u/∂y, which is known to trigger the erosion process (see Charru et al. (2004)). From
this shear rate, we can define the Shields number S, which compares the viscous force
applied to the grains by the flow, to gravity force:

S =
ητ

(ρg − ρ)gd
,

where ρg is the density of the grains (this expression stands only for small angles).
Though the erosion prossess on a granular bed results from discrete and complex phe-
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Figure 9. Critical speed for two values of the permability k. For each value of the permeabiblity,
a contact line can exist only above the corresponding solid curve. The dashed line represents
constant Shields numbers Sc. The values of the physical parameters used in this model are
those of Daer et al. (Daerr et al. 2003): g = 9.81 m.s−2, ρ = 1000 kg.m−3, ρg = 2750 kg.m−3,
η = 10−3 kg.m−1.s−1 and γs = 0.07 N.m−1. The velocity and inclination ranges are those of the
experiment.

nomena, classical models assume that it starts at a threshold value of the shear rate, at
which a critical Shields number Sc is defined (Charru et al. 2004). A typical value for
Sc is 0.05 (see among others Fredsoe & Deigaard (1992)), but Daerr et al. (2003) used
Sc = 0.12 to fit their data. In addition to this large range of possible values, note that
the critical Shields number is a function of the slope of the bottom: the more inclined
it is, the easier it is for the flow to lift grains, thus the tilt reduces the value of Sc. The
shear rate may be deduced from our model, as a function of the dimensionless height of
the film h:

τ =
Uh√

k(h2/3 + h + 1)
.

This expression admits a maximum value τmax = U/(
√

k(1 + 2/
√

3)) for h =
√

3, that
is necessarily reached in the case of a contact line, since h stretches from zero to infinity.
If the Shields number is assumed to be independent of the tilt angle of the plate (to first
order), S = Sc defines a vertical line in Figure 9 (represented only for k = 900.10−12 m2).
On the left of such a line, no erosion should occur since the Shields number is smaller
than the critical value, thus to account for the erosion patterns observed by Daerr et al.

(2003) at small velocities, a low value of Sc is required.
Now, if a LLD film covers the plate, h admit a minimum value hmin which is found

numerically to increase with the plate velocity. Once hmin is larger than h =
√

3, the
maximum value of the shear rate becomes smaller than τmax, and could decrease as the
capillary number increases. Thus, the transition from contact line to LLD film could
induce a strong change in the stress regime. If the physical parameters are choosen
in the experimental range, no stress jump is observed numerically at the transition,
but two assumptions should be relaxed in order to evaluate precisely the bottom stress
close to the critical capillary number: the permanent regime, and the constraint of null
outflow (Q = 0). In particular, if a negative outflow appears in reality (that is, if water
is withdrawn from the bath), the shear rate should be reduced. Such a sharp stress
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variation could provide an explanation for the transition between the different erosion
patterns observed by Daerr et al. (2003).

At the transition from contact line to LLD film, transient regimes should not be ig-
nored. They have been studied in the litterature for non-vanishing contact angles (Hock-
ing 2001), and future studies will aim at understanding the case of null contact angle,
which has been shown here to be quite different.

It is our pleasure to thank Daniel Lhuillier, Pierre-Yves Lagrée, Eric Clément, Florent
Malloggi and Jens Eggers for stimulating discussion.

Appendix A. Pressure divergence at the contact line

We aim here to demonstrate briefly that the classical Navier slip condition, leading to
Equation (2.3), is not sufficient to eliminate all the singularities at the contact-line, even
for a non-vanishing microscopic contact angle (θe > 0). Indeed, the first order expansion
of Equation (2.3) is (Eggers 2004a; Hocking 1983)

h′(x) ∼ θe −
3Ca

θ2
e

(

1 + ln

(

xθe

λN

))

,

where h is dimensionless but not rescaled (that is, h is the height of the water surface
divied by the capillary length). In the lubrication approximation that we have used
throughout, the pressure at the plate reads

p|y=0 = ρg cos(θ)h − γh′′,

and since h′′(x) ∼ −3Ca/(θ2
ex) the pressure diverges at the contact line. In the present

paper, due to the permeability of the porous plate, the expansion of h near the contact-
line is a third order polynomial (h ∼ h′′(0)x2/2+ (Ca∗− θ∗)x3/6), and thus the pressure
does not diverge.

Appendix B. Derivation of the fundamental equation

In the following, we aim to derive Equation (2.6) from the two-dimensional Navier-
Stokes equation. x and y refer to the axes of Figure 1. In the frame of the lubrication
approximation, and assuming both a permanent regime and small Reynolds number,
momentum conservation reads

−1

ρ

∂p

∂x
+ g sin(θ) + ν

∂2u

∂y2
= 0 (B 1)

−1

ρ

∂p

∂y
− g cos(θ) = 0,

where u and v stand for the water velocity components respectively parallel and per-
pendicular to the plate. The second equation may be integrated to give

p = ρg cos(θ)(h − y) + pL

where pL is the pressure due to surface tension. Now, if θ is small enough, the slope h′

of the free surface should remain reasonably small, so that h′′ approximates its curvature,
and pL ≈ −γh′′ (and, similarly, sin(θ) ≈ θ and cos(θ) ≈ 1 at first order). The boundary
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conditions on u at the bottom and the top of the film are (see Equations (2.1), (2.4) and
(2.5))

u|y=0 + U =

√
k

α

∂u

∂y

∣

∣

∣

∣

y=0

− k

η

(

∂p

∂x

∣

∣

∣

∣

y=0

− ρgθ

)

∂u

∂y

∣

∣

∣

∣

y=h(x)

= 0,

thus integrating Equation (B 1) we obtain

u =
1

ν

(

1

ρ

∂p

∂x
− gθ

)

(

y2

2
− hy −

√
k

α
h − k

)

+ U. (B 2)

The mass flux is

ρ

∫ h

0

u dy = Q.

In steady state, mass conservation imposes that Q is a constant which vanishes in the
case of a contact line. This condition provides the non-linear equation studied throughout
this paper: Q = 0 reads

γ

ρ
h′′′ − gh′ + gθ =

νU

h2/3 + h
√

k/α + k.

which, after rescaling x and h by the capillary length lc, reduces to Equation (2.6).
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