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Abstract

We present and analyse two new Volume-of-Fluid (VOF) reconstruction algorithms
that approximate the interface separating two immiscible fluids as a linear function
in each grid cell (PLIC - Piecewise Linear Interface Calculation). The first one is
based on two simple geometrical criteria for the reconstruction of a linear interface,
the second one minimizes a distance functional to find the plane coefficients. Their
performance is tested for several smooth surfaces. The geometrical nature of oper-
ator split advection is quicklyreviewed and a new three-dimensional split advection
algorithm is presented. It is exactly mass conserving for a divergence-free velocity
field and its accuracy rapidly increases as the CFL number is decreased. Second-
order convergence is found in the case of velocity fields with not uniform vorticity
at high grid resolutions in the asymptotic regime.

1 Introduction

In fluid mechanics, many techniques have been used to track the evolution of a curve
or surface. These methods have been successfully applied to industrial and natural
flows such as sea waves, jet atomization, splashes, droplet/bubble oscillations and
their breakup and coalescence. Among the most popular tracking methods there
are the particle tracking or surface-marker method, the level-set method and the
Volume-of-Fluid (VOF) method.

In the surface-marker method the interface is approximated by a set of straight lines
(or splines) joining marker points on the interface, or a triangulated mesh in three
dimensions. Marker particles are advected in a Lagrangian manner following the
velocity streamlines and triangulations need to be redefined at regular intervals (see
for example [1]).

In the level-set method, a smooth function F is initialized to the signed distance
function to the interface, then the interface coincides with the zero level of this
function. After advection, the level-set function has to be reset to the distance
function after a prescribed number of time steps.

In the Volume-of-Fluid (VOF) method, a color or volume fraction quantity C is
initialized in each cell to the fraction of the volume of the cell filled with a reference
phase. It is based on the characteristic function χ that has the value 1 in the
reference phase and 0 in the other phase or vacuum. If the two fluids are immiscible
each elementary fluid parcel does not change its phase in time, therefore the function
χ is passively advected by the flow and satisfies

D χ

D t
≡ ∂ χ

∂ t
+ (v ·∇)χ = 0 . (1)
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The three methods have often been combined to yield hybrid or mixed methods.
Markers and level sets have been proposed in [2], level set and VOF in [3] while
VOF and markers have been studied in [4]. Each method has drawbacks and ad-
vantages. Marker or tracking methods are usually piecewise-linear approximations
to the surface in three dimensions, but may be higher-order approximations in two
dimensions [5].

This paper is about the design of a practical, three-dimensional, standalone VOF
scheme, which is nearly second-order accurate. The main focus will be to improve
the algorithms for the computation of the normal in the reconstruction step and for
the conservation of mass in the advection step which, so far, remain open problems.

The volume of fluid method has a unique advantage which is its potential to conserve
volume. Limits to this potential come from the numerical methods in use and, in
practice, it is very hard to find a good VOF method that satisfies this property
exactly.

Most popular VOF methods solve the advection equation with a split technique. In
a two-dimensional split method, the fluxes along one coordinate drection are first
computed and the C data are updated to an intermediate level. The interface is then
reconstructed and the fluxes along the other direction are calculated to update the
volume fraction field to the next discrete time level. Errors to the exact conservation
of mass may come from the fact that adding the fluxes leads to inconsistencies in
the C field. In fact, as we update the C data in some locations the consistency
property ( 0 ≤ C ≤ 1) of the volume fraction may not be verified. Another form of
inconsistency may occur when we get C < 1 in the middle of a region where C = 1
everywhere at the previous time step. On the other hand in the past few years a
lot of effort has been devoted to improve the VOF method by making it unsplit
[18, 6, 7].

In this paper some effort has been devoted to investigate the consistency and volume
conservation of the split method in three dimensions. Recently, the authors have
suggested a method in two dimensions which is both consistent and conserves volume
exactly [8, 9]. This method is here extended and tested in three dimensions.

In VOF/PLIC (Piecewise Linear Interface Calculation) methods the interface is
approximated by a portion of a plane in each cut cell [10, 11, 12, 13]. The other
topic discussed in this work is the searching of schemes that make the computation
of the interface normal easier and more accurate. The ELVIRA method [14] is
second-order accurate, but rather expensive in three-dimensions [15]. In this paper
we discuss two simple geometrical criteria to select a preliminary reconstruction
among a set of candidates. Points on this reconstructed interface are then selected
in order to minimize a distance functional that yields a new planar interface in each
cut cell. This new reconstruction algorithm is second-order accurate when applied
iteratively, and it is not computationally very intensive.
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We begin in Section 2 with the description of reconstruction algorithms and their per-
formance with grid refinement by considering the reconstruction of several smooth
surfaces, such as planes, spheres and a sinusoidal surface. In Section 3 we quickly
review split advection schemes in one and two dimensions and then discuss the new
three-dimensional split algorithm. We first study its performance with velocity fields
that do not deform the initial shape of the fluid body, such as solid body translations
and rotations, and then with a divergence-free flow that stretches considerably the
fluid object. Finally we present our conclusions.

2 Interface reconstruction algorithms

We consider a three-dimensional computational domain with cubic cells of side ∆x =
∆y = ∆z = h. The volume fraction C represents the discrete version of the function
χ

Cijk(t) =
1

Vijk

∫

Vijk

χ(x, t)dx , (2)

where Vijk is the volume of the computational grid cell (i, j, k). In VOF/PLIC meth-
ods the interface is represented in each cut cell by a portion of a plane, perpendicular
to the local gradient ∇C of the volume fraction C, defined by the equation

m · x = mx x + my y + mzz = α . (3)

The problem is to determine the constants (mx, my, mz, α) so that the cut volume
V under the plane (3) in the cell (i, j, k) is equal to h3C. The numerical methods to
calculate the normal vector are usually based on finite difference approximations of
the volume fraction gradient ∇C and may satisfy some other minimizing criteria. In
this paper we discuss different algorithms to approximate an interface in the central
cell of a 3×3×3 block of cells by using their volume fraction values. Once the normal
vector m and the cut volume h3C are known, then the value of α is computed by
enforcing volume conservation. Geometrically this constraint is applied by moving
the interface plane (3) along the normal direction, changing in this way the free
parameter α, until the volume under the plane is equal to h3C. In subsection 2.1 we
present an expression for the cut volume, area and its center of mass as a function
of α and in subsection 2.2 we discuss two new algorithms for the evaluation of the
normal vector m. Results of a few numerical tests are given in subsection 2.3.

2.1 Expressions for the cut volume, cut area and its center
of mass

The intersection of the plane (3) with a cube of side h is a polygon with a number
of sides varying from three to six, as schematically represented on Fig. 1. In our
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notation the vector m normal to the interface is pointing outside the region where
the reference phase is located, towards the secondary phase where C = 0. In the
case of Fig. 2 the three coefficients mi are positive and the cut volume V = h3C is
the volume under the quadrilateral ABCD of area A. The following expression for
the cut volume V = V (m, α; h) was derived in [16]

V = h3C =
1

6m1m2m3

[
α3 −

3∑

i=1

F3(α − mi h) +
3∑

i=1

F3(α − αmax + mi h)
]
, (4)

with mi ≥ 0, αmax = h
∑3

i=1 mi and Fn(z) = zn when z > 0 and zero otherwise. A
geometrical interpretation of expression (4) for the case depicted in Fig. 2 is that
the volume V is computed first by considering the volume of the right tetrahedron
under the triangle AEH of area A0, then by subtracting the volume under the two
triangles CEG and BFH, respectively of area A1 and A2 and finally by adding
back the volume of the tetrahedron under the triangle DFG of area A4, which was
subtracted twice in the previous operations. Furthermore, we notice that all the
tetrahedra and triangles involved in this computation are similar. The relation (4),
given the normal vector m and the side h, is a one-to-one function connecting C
and α, which implies that the inverse relation α = α(m, C; h) is uniquely defined.
Analytical relations for the direct and inverse functions can be found in [17].

It is also possible to derive an expression for the area A of the cut polygon. The
procedure is exactly the same, but instead of adding and removing the volume of
similar right tetrahedra we now operate with the area of similar triangles. With the
previous definitions and with reference to Fig. 2 we have A = A0 − A1 − A2 + A4,
while the more general expression for the area of the cut polygon is

A = M123

[
α2 −

3∑

i=1

F2(α − mi h) +
3∑

i=1

F2(α − αmax + mi h)
]
, (5)

where

M123 =

√
m2

1 + m2
2 + m2

3

2m1m2m3
.

Finally, we can easily compute the local coordinates of the center of mass xg of the
area A. For the geometry in Fig. 2 we have Axg = A0 x0 − A1 x1 − A2 x2 + A4 x4,
which is a particular case of

Axg = M123

[
α2 x0 −

3∑

i=1

(
F2(α − mi h)xi − F2(α − αmax + mi h)x3+i

)]
, (6)

where the position of the center of mass xi of the triangle Ai is easily determined.
Alternatively, one can determine the intersections of the plane with the sides of the
central cell, order consecutively this set of points, a variable number between three
and six, subdivide the area A in simpler geometrical figures whose center of mass
can be easily computed, and then find xg. We have developed such an algorithm
and even if this procedure is more suited for unstructured grids, the geometrical
approach previously described is about three times faster.
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2.2 Evaluation of the interface normal

We now describe two three-dimensional algorithms of increasing complexity and
accuracy to compute the normal vector. The first one is based on some heuristic
criteria discussed in the next section, while the second one minimizes a distance
functional to compute the constants mi of the plane equation (3).

2.2.1 The height function and two geometrical criteria for the recon-
struction of linear interfaces

Consider, as in Fig. 3, a linear interface in the 3 × 3 block of square cells of side
h. The volume fraction values can be added columnwise to define a local height
function y = f(x) or rowwise for the width function x = g(y). For example, the
height yi−1 at the abscissa xi−1, placed in the center of the column, is given by the
expression h yi−1 = h2

∑1
k=−1 Ci−1,j+k. In the case of Fig. 3a we write the equation

of the straight line as sgn(my) y = mx x + α′, where my = −∂C/∂y. The sign of my

is needed because we loose track of what phase is on the top or on the bottom when
we integrate the C data to get the height funtion; we compute the sign with centered
finite differences. The angular coefficient mx can be approximated with backward,
centered and forward finite differences, mxb = (yi − yi−1)/h, mxc = (yi+1 − yi−1)/2h
and mxf = (yi+1 − yi)/h, respectively. The coefficient mxb is equal to mx, since the
two local heights yi and yi−1 are on the interface. This happens when the straight
line cuts two opposite sides of the column. In the case of the centered and forward
estimates, the line intersects two adjacent sides of the column (j +1) and the height
yi+1 is not on the interface. A small area outside the block of cells is missing and
the last two schemes underestimate the value of mx. Therefore, if two estimates,
say mx1 and mx2, are available for the same angular coefficient mx, we select one of
them with the following criterion based on the reconstruction of a linear interface

|m∗| = max(|mx1|, |mx2|) , (7)

where the absolute value is required since the angular coefficients may also be
negative. We can also use the width function by considering the line equation
sgn(mx) x = my y + α′′. For the almost vertical line of Fig. 3b any finite difference
scheme calculates the correct value my, as the line cuts two opposite sides of each
row. On the other hand if we use the height function y = f(x), any discrete estimate
of mx satisfies |mx| ≤ 3, a rather crude approximation for a value that should go
to infinity as the line becomes vertical. Therefore, between any two approximations
mx1 and my1 for the angular coefficients mx and my, we now choose

|m∗| = min(|mx1|, |my1|) . (8)

In this way we use the form y = f(x) if the interface line is almost horizontal
and x = f(y) if the interface is about vertical. The above criteria optimize the
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reconstruction of a linear interface, but they may not select the best guess in the
case of a curved interface. In Fig. 3c the interface line y = f(x) has a vertical
axis of symmetry in the middle of the central column, where f ′(x) = 0. In this case
the best approximation is myc, since myc = 0, but this would require the minimum
value in Eq. (7). However, numerical tests show that on average the two relations
(7-8) are the best ones.

A different approach is considered in the ELVIRA algorithm that computes back-
ward, forward and central finite differences for both mx and my, for a total of 6
angular coefficients mi. For each mi the intercept α is computed and the straight
line is extended to the 3× 3 block of cells of Fig. 3, defining in this way a tentative
volume fraction C̃ in the neighboring cells. The selected coefficient mi minimizes
the sum of squares error between the actual C and the tentative C̃ data [14]. In the
extension to the three-dimensional space a 5×5×5 block of cells is considered with
a total of 72 to 144 candidate normal vectors and associated α. The minimization
involves a local height function, defined over columns of 5 cells along one of the
three coordinate directions, and not directly the C data [15]. The two-dimensional
and three-dimensional algorithms reconstruct any linear interface exactly.

In the three-dimensional space we define the local height function z = f(x, y) by
summing the C data along the vertical direction, h2zi,j = h3

∑1
l=−1 Ci,j,k+l. This

height will be correctly located on the linear interface only if the plane cuts the four
vertical sides of the square column. This is not the case for the plane x + y + z = α
in Fig. 4. An extra layer of cells must be considered on the top and the bottom of
the block. It is straightforward to show that for any 0 ≤ α ≤ 3, corresponding to
0 ≤ Cijk ≤ 1, the plane now cuts two consecutive columns in the x and y directions
so that an exact evaluation of mx and my is possible with finite differences. When
the three coefficients mi are not equal, the 5 cells are taken along the maximum
component of the numerically computed volume fraction gradient ∇C. However, a
stencil with 45 cells is still quite large and we consider only blocks of 3× 3× 3 cells.
With the local height z we write the plane equation as sgn(mz) z = mx x+my y +α.
Furthermore, the triplet (sgn(mz), mx, my) is normalized to (m0

z , m
′
x, m

′
y), with the

sum of the absolute value of the three components equal to 1. Because of this
constraint, if we have two competing planes written as z = f(x, y), instead of taking
the maximum of the sum |m′

x| + |m′
y| as required by relation (7), we consider

|m∗| = min(|m0
z1|, |m0

z2|) . (9)

Similarly, if we have two different planes, written as z = f(x, y) and y = g(x, z)
respectively, we select one of the two according to relation (8), now restated as

|m∗| = max(|m0
z1|, |m0

y1|) . (10)

The two criteria (9-10) do not involve the line constant α which is computed only
once when the selection process has been completed.
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2.2.2 Mixed Youngs-Centered (MYC) method

To apply these criteria we need to consider a set of normal vectors. We compute them
with Youngs’ method, for its good behaviour at low resolution, and with the Cen-
tered Columns scheme, better at higher resolution, and call the scheme the Mixed
Youngs-Centered method. This method provides the preliminary reconstruction for
the least-squares fit procedure discussed in (2.2.3).

Youngs’ method

The interface normal is evaluated as the gradient of the C function, m = −∇hC,
with finite differences. The normal is first estimated at the eight corners of the
central cell (i, j, k), as shown in Fig. 5. In particular, the normal components
(mx, my, mz) in the vertex of coordinates (xi+1/2, yj+1/2, zk+1/2) are

mx =
1

h

(
Ci − Ci+1

)
; my =

1

h

(
Cj − Cj+1

)
; mz =

1

h

(
Ck − Ck+1

)
,

where, for example, Ci = (Ci,j,k + Ci,j+1,k + Ci,j,k+1 + Ci,j+1,k+1)/4. A similar finite
difference scheme is applied in the other seven vertices. The cell-centered normal
vector is finally obtained by averaging the eight cell-corner values.

Centered Columns (CC) method

We approximate the function z = f(x, y) in the central cell of the block with the
linear equation sgn(mz) z = mx x + my y + α. The sign of the coefficient mz =
−∂C/∂z is computed with finite differences by using the C data in the top and
bottom layers of Fig. 5. For the other two components of the normal vector we
consider a centered scheme based on the height function z

mx =
zi+1,j − zi−1,j

2h
=

1

2

( 1∑

l=−1

Ci+1,j,k+l −
1∑

l=−1

Ci−1,j,k+l

)

and

my =
zi,j+1 − zi,j−1

2h
=

1

2

( 1∑

l=−1

Ci,j+1,k+l −
1∑

l=−1

Ci,j−1,k+l

)
.

We also consider the height function along the x and y directions, define the two
linear functions x = h(y, z) and y = g(x, z) and calculate the corresponding normal
vectors.

We have now a set of four different planes. First we select the best of the three
computed with the CC scheme by using (10), then we select between this best one
and the plane obtained with Youngs’ method with (9).
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2.2.3 Least-Squares Fit (LSF) method

In this method we extend to the three-dimensional space a two-dimensional tech-
nique described in [8]. The procedure is divided in three steps: 1) choice of a
convenient set of points inside the 3× 3× 3 block of cells; 2) costruction of a weight
function and weight assignment to each point in the set; 3) minimization of a suit-
able distance functional in order to find the plane coefficients. To define the set
of points we consider the interface reconstructed with the MYC method and select
one point in each cell crossed by the interface. This point is the center of mass xg

of the area of the polygon cut by the reconstructed plane and the grid cell. We
then consider a Gaussian function to weight the point contribution to the distance
functional. In particular, we denote with xc = (xC , yC, zC) the position of the center
of mass of the central cell and define

di =
√

(xgi − xC)2 + (ygi − yC)2 + (zgi − zC)2 ,

dm =
∑np

i=1 di/np ,

σ2 =
∑np

i=1(di − dm)2/(np (np − 1)) ,

where np ≤ 27 is the total number of points, di is the distance of each point from
xc, dm the average distance and σ2 the variance. The weights ωi are first defined as
ωi = exp

(
− d2

i /(a σ2)
)
, where a is a free parameter (here a = 0.75), and then their

sum is normalized to one, ωT =
∑np

i=1 ωi and ωi = ωi/ωT . From the preliminary
reconstruction based on the the two relations (9-10), we know if the plane equation
is written as z = f(x, y), rather than x = h(y, z) or y = g(x, z). In the first case
we store the sign of mz and move the origin of the local coordinate system to the
center of mass of the np points with coordinates (XG, YG, ZG), where, for example,
XG =

∑np

i=1(ωi xgi). The functional H for this case is defined by

H =

np∑

i=1

(
ωi(Zgi − (mxXgi + myYgi))

2
)

, (11)

and is minimized by taking ∂H/∂mx = ∂H/∂my = 0. The solution of this simple
linear system provides the values of mx and my and then we complete the interface
reconstruction in the central cell by computing the intercept α [17].

2.3 Reconstruction tests

We now examine the accuracy and convergence properties of the methods previously
described for well-behaved interfaces. The choice of the surfaces is motivated by their
local mean curvature, which is zero for a plane, constant for a sphere and variable,
in both magnitude and sign, for a sinusoidal surface.
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2.3.1 Error measure, convergence rate and numerical integration

Let χ(x) be the characteristic function associated to a fluid body and χ̃h(x) be its
approximation obtained with a VOF reconstruction method in a grid with cubic
cells of side h. A natural measure of the difference between the exact interface and
the reconstructed one is the geometrical error Eh in L1

Eh =

∫ ∫ ∫
|χ(x) − χ̃h(x)| dx dy dz . (12)

The order of convergence O of a reconstruction method can be numerically calculated
by considering the errors Eh, obtained with grid spacing h, and Eh/2 with

O =
ln(Eh/Eh/2)

ln(h/(h/2))
=

ln(Eh/Eh/2)

ln(2)
. (13)

In general, this expression is a function of the fluid body shape, its position and
orientation with respect to the grid lines, and of the grid spacing h. The error Eh

should decrease with h, however at very low resolution by halving h it decreases
much more than at very high resolution. Therefore, the expression (13) is usually a
decreasing function of the resolution h converging towards the asymptotic order of
convergence in the limit as h → 0. We initialize the volume fraction C and calculate
the error Eh numerically, in a unit cube partitioned in n3 cells, with n = 1/h. As
an example, suppose that around the cell (i, j, k) we can write the surface equation
as f(x, y) − z = 0, then the value of C in the cell (i, j, k) is defined by

h3C =

∫ ih

(i−1)h

∫ jh

(j−1)h

∫ kh

(k−1)h

χ(x) dx dy dz =

∫ ih

(i−1)h

∫ jh

(j−1)h

z∗dy dx , (14)

where z∗ = min(h, max(f(x, y) − (k − 1)h, 0)) is in the range [0, h]. We subdivide
the base of the cell in l2 squares, compute the z∗ values in the four corners of each
square and calculate (14) numerically with a two-dimensional Simpson’s rule. For
reliable results, the error Eh defined in (12) should be several orders of magnitude
bigger than the error between the exact value of the C function and the numerical
data (14). On the other hand, the CPU time increases linearly with the number
l2 of squares, and we have found a good compromise for l = 30. Furthermore, for
each geometry we consider 100 different cases with randomly generated coefficients
in order to stabilize the error Eh. This is necessary because the error could be
particularly small due to favorable alignments between the interface and the grid
lines. Finally, we consider five different partitions of the unit cube in n3 cells, with
n in the set (10, 20, 40, 80, 160).

2.3.2 Reconstruction of a plane

We consider the plane equation mx x + my y + mz z = α, where the four coefficients
(mx, my, mz, α) are randomly generated. We see in Tab. 1 that Youngs’ scheme has
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the worst performance, the CC and MYC methods are intermediate, while the error
of LSF is at least two orders of magnitude smaller that the other ones. As expected
from the discussion in section (2.2.1) none of the proposed reconstruction methods
can reproduce exactly all linear interfaces. However, notice that the two criteria
(9-10) select efficiently between Youngs’ and the CC schemes. Moreover, the LSF
method can be used as a starting guess for another LSF procedure. We observe that
the errors decrease by at least 5 orders of magnitude with the first iteration and after
the second one are below machine accuracy. The use of a weight function in the
distance functional accelerates the convergence towards the exact linear interface.
A second-order method is expected to reconstruct all linear interfaces exactly, but
this would require at least one further application of the LSF method. However, the
next tests demonstrate that with a curved interface we only need the very first LSF
reconstruction and still the algorithm performs as a second-order accurate method
even at high grid resolutions. Therefore, in all the following tests we reconstruct the
interface only once with the least-squares fit.

2.3.3 Reconstruction of a sphere

We consider the sphere equation (x − xc)2 + (y − yc)2 + (z − zc)2 = R2, where
R = 0.325 and the center coordinates (xc, yc, zc) are randomly generated near the
point (0.5, 0.5, 0.5) in order to keep the whole sphere inside the unit cube. The results
are shown in Tab. 2 and are consistent with the results obtained in two dimensions
with a circle. Youngs’ scheme is competitive only at a very low resolution, the MYC
algorithm performs better than Youngs’ and the CC methods in all but one case,
while the LSF scheme provides the best results. More particularly, the convergence
rates of Fig. 6 show that Youngs’ scheme is quickly degrading to first-order, while
the CC and MYC methods are not yet close to an asymptotic regime. Nevertheless,
since the resolution n = 160 is very high, the convergence rate of these two methods
can be considered between 1 and 2 in most applications. The LSF method performs
as a second-order algorithm and in Fig. 7 the reconstructed spherical interface is
rather good even at the lowest resolution with n = 10. Thus on average, in three
dimensions we need a local radius of curvature at least three to four times bigger
than the grid spacing for an accurate interface reconstruction. The thickness of a
filament should be similar, to avoid the presence in the same stencil of interface
regions with opposite normal vectors.

2.3.4 Reconstruction of a sinusoidal surface

Here we consider the sinusoidal function z = 0.5 + sin(πax) sin(πby), where the
two parameters a, b are in the range [0, 1] and are randomly generated. In Fig. 8
the convergence rates are similar to those of the previous test, while the computed
reconstruction errors are about two to three times bigger. The interface has a more
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complex structure and the absolute value of the radius of curvature is locally smaller
than in the sphere test. In Fig. 9 at the lowest resolution n = 10 the sinusoidal
surface is not well reproduced even by the LSF reconstruction, but at n = 20 the
interface is much better resolved. As previously stated, when the local radius of
curvature is comparable with the grid spacing h the surface is poorly approximated
by a plane and the interface discontinuity at the cell boundary is of order h [8].

3 Interface advection

We consider again the advection equation (1) for the characteristic function χ recast
in conservative form for an incompressible flow

∂ χ

∂ t
+ ∇ · (χv) = χ∇ · v = 0 . (15)

We integrate it over the cell volume V to find the evolution equation for the volume
fraction C [4]

h3 ∂ C

∂ t
+

∫

Γ

χv · n d Γ =

∫

V

χ (∇ · v) d V = 0 , (16)

where Γ is the boundary of the grid cell and n its outgoing normal. The surface
integral represents the net reference phase flux through Γ. In the reconstruction
step we approximate the interface with a portion of a plane, defining in this way a
function χ̃ that satisfies

h3 C =

∫

V

χ d V =

∫

V

χ̃ d V .

We then advect the interface in a given velocity field by computing in (16) the
boundary fluxes of χ̃, to update the C data at the next discrete time. Either
multidimensional (unsplit) schemes or a sequence of one-dimensional (operator split)
schemes have been considered. In the first category the fluid flowing in the time
step ∆t through a cell face comes from different neighbouring cells and the fluxing
volume is a rather complex geometrical figure. A Cartesian geometry is usually
adopted in the second category. All the points on a plane perpendicular to the
direction of propagation move with the same velocity and the fluxing volume is a
right hexahedron. The reference phase flux is then given by the portion of this
hexahedron cut by the reconstructed interface and is computed by using analytical
expressions [17]. A two-dimensional example is shown in Fig. 10, where the fluid
volume flowing into the central cell from the left side is the rectangle A′ADD′ and
the reference phase flux is represented by the shaded portion of this area. Once the
one-dimensional cell boundary fluxes are computed, the volume fraction is updated
independently along each coordinate direction. In the next subsections we first
review in 3.1 a few advection schemes in one and two dimensions, then in 3.2 we
present a new three-dimensional algorithm, while the numerical tests are discussed
in 3.3.
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3.1 Advection schemes in one and two dimensions

Let us consider first the monodimensional version of (16) along the x coordinate
with a cell-averaged approximation of the term ∂u/∂x. This term represents a com-
pression or expansion along x that may differ from zero even if the multidimensional
flow is incompressible [18]. We discretize this equation on a staggered MAC grid
[19], with cells of side h and use a simple forward scheme in time with ∆t = tn+1−tn

Cn+1
ijk = Cn

ijk + Fleft − Fright + C̃ijk(uright − uleft) , (17)

where u is from now on the CFL number (u ∆t/h → u) and Fleft and Fright denote
the volume fraction fluxes across the left and right faces of the cell (i, j, k). We
consider two monodimensional schemes, corresponding to a different value of C̃ijk.
A simple geometrical interpretation shows that both schemes satisfy the consistency
property: 0 ≤ Cn+1

ijk ≤ 1.

3.1.1 Eulerian-Implicit (EI) scheme

We set C̃ijk = Cn+1
ijk , the scheme is implicit and (17) becomes

Cn+1
ijk =

Cn
ijk + Fleft − Fright

1 − (uright − uleft)
. (18)

A two-dimensional geometrical interpretation of this equation is shown in Fig. 10,
where the grid cell is the square ABCD. The two ”Eulerian” fluxes F are computed
from the volume fractions at time n and are defined by the gray areas inside the
rectangles A′ADD′ and B′BCC ′.

3.1.2 Lagrangian-Explicit (LE) scheme

We now set C̃ijk = Cn
ijk in Eq. (17) and the scheme is explicit

Cn+1
ijk = Cn

ijk

(
1 + (uright − uleft)

)
+ Fleft − Fright . (19)

The fluxes are now the grey areas inside the rectangles A”ADD” and B”BCC”
of Fig. 11: the reconstructed interface is first advected and then the fluxes are
computed. The Lagrangian advection by a one dimensional flow of a VOF/PLIC
reconstruction changes its orientation, as shown in the figure, moreover the areas
computed in the LE method are expanded or compressed by the divergence term,
hence the EI and LE fluxes are different [8].
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3.1.3 The combined EI-LE scheme

We can combine these two schemes into a two-dimensional advection technique which
can be either split or unsplit. If the flow is incompressible, the discrete version of
∇ · v = 0 is written as (uright − uleft) + (vup − vdown) = 0. With reference to Fig.
12, the computational domain is meshed with square cells, such as ABCD, and
the advection scheme corresponds to a mapping from a tessellation of the plane,
with rectangles A′B′C ′D′, into another tessellation of the domain with rectangles
A′′B′′C ′′D′′. The mapping is given by the following piecewise linear affine transfor-
mation

Πxy =

{
x′ = a (x + uleft)

y′ = b y + vdown ,
(20)

where a = 1/(1 − uright + uleft) and b = 1 + vup − vdown. The implicit step is in
the x direction and maps A′B′C ′D′ into ABCD; it is followed by the Lagrangian
step in the y direction mapping ABCD into A′′B′′C ′′D′′. The method is split if an
intermediate reconstruction is performed after the first step. The Jacobian J of the
linear transformation Πxy is J = a b. It is equal to one if the flow is incompressible,
then the scheme conserves the area exactly [9]. Finally, the direction of the first
implicit advection should be alternated in time in order to avoid a preferential
direction of propagation [20].

3.2 Three-dimensional split advection schemes

In this section we consider a series of consecutive advection steps to advance the in-
terface in three dimensions. We recall that a split VOF/PLIC technique requires an
interface reconstruction before each advection step, therefore the change in the total
error of the method at each time step comes from both the reconstructions and the
advection steps. The sequence of one-dimensional propagations along the coordinate
directions should be changed at each time step to remove possible asymmetries.

3.2.1 Three-dimensional split LE scheme

We advance the interface with a sequence of consecutive monodimensional LE ad-
vections, each of them described by (19). We have shown that in two dimensions,
when the vorticity field is not constant, this method does not conserve the mass [8].
In three dimensions this method was implemented in the SURFER code [16] and it
is here considered only for comparison reasons.
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3.2.2 Three-dimensional advection with three EI-LE steps

Let the three-dimensional velocity field v = (u, v, w) be incompressible, then we
define three new fields v1 = (u1, v1, 0), v2 = (u2, 0, w2), v3 = (0, v3, w3) and re-
quire each field to be incompressible, ∇ · vi = 0, and their sum to be equal to
the given field,

∑3
i=1 vi = v. We have six scalar equations for the the six un-

knowns (u1, v1, u2, w2, v3, w3), but only five of them are independent. For example,
if v1,v2 satisfy ∇ · v1 = ∇ · v2 = 0, we can compute v3 = v − v1 − v2, but then
∇ · v3 = ∇ · (v − v1 − v2) = 0 is automatically satisfied. We can use this degree
of freedom and let u1 = u/2, then u2 = u − u1 = u/2. From the boundary, where
we set v1:i,−1/2,k = vi,−1/2,k/2, we use the discrete form of ∇ · v1 = 0 on a staggered
MAC grid

v1:i,j+1/2,k − v1:i,j−1/2,k + u1:i+1/2,j,k − u1:i−1/2,j,k = 0 (21)

and solve it for v1:i,j+1/2,k. As we move away from the boundary there is only one
unknown in the previous equation and the field component v1 is readily available.
Then we compute v3 = v − v1. In a similar way we calculate w3, from ∇ · v3 = 0,
and w2 = w − w3. To reduce asymmetries, we should alternate at each time step
the velocity component that was set arbitrarily at the beginning of the procedure
in virtue of the degree of freedom. In the advection tests we have implemented a
slightly different approach. We first let u1 = u/2 and calculate (u2, v1, v3, w2, w3) as
previously described, then repeat the same procedure twice, first by letting v3 = v/2
and then w2 = w/2. The velocity field is then given by one third of the sum of these
three sets of incompressible fields and it is called EILE-3D. To illustrate its features
we also consider the following simplified decomposition (EILE-3DS)

u1 = u2 = u / 2 ; v1 = v3 = v / 2 ; w2 = w3 = w / 2 ,

where each velocity field vi is not divergence free.

3.3 Advection tests

In this section we analyze the performance of the reconstruction and advection
schemes over standard three-dimensional tests. First we consider simple flows such
as uniform translations and rotations where a smooth fluid body should be advected
without significant distortion and the mass should be conserved exactly. We then
study the performance of the proposed algorithms in three-dimensional flows with
not uniform vorticity.

3.3.1 Geometrical and mass errors

To quantify the results we consider two widely used discrete error norms in L1. The
first one is the relative mass error Em(t1) between the total volume occupied by the
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reference phase at the initial time t0 and that of the fluid body at time t1

Em(t1) =
|
∑

ijk Cijk(t0) −
∑

ijk Cijk(t1)|∑
ijk Cijk(t0)

. (22)

The second one is the geometrical error between the position of the reference phase
at the two instants (t0, t1)

Eg(t1) =

∑
ijk |Cijk(t0) − Cijk(t1)|∑

ijk Cijk(t0)
. (23)

In both equations the cell volume h3 has been simplified. The error Eg is meaningful
only when the fluid body at time t1 should be back to its initial configuration.

3.3.2 Translation and solid body rotation

The velocity field is not only incompressible, but also ∂u/∂x = ∂v/∂y = ∂w/∂z = 0.
Therefore, the monodimensional compression or expansion term in (17) vanishes and
this leads to the same geometrical and mass errors for all methods. For both tests
we consider a sphere of radius R = 0.15 and center in the unit box partitioned
with n3 cells of side h = 1/n and resolution n = 16, 32, 64, 128. In the trans-
lation test the sphere center is at (0.5, 0.5, 0.5) and the constant velocity field is
(h/2∆t, h/2∆t, h/2∆t) at t = t0. The sphere moves along the main diagonal and
it is back to its position after 2n steps when we change the sign of the velocity for
other 2n steps. Periodic boundary conditions are applied on the box boundary. In
Fig. 13 we show the fluid body motion after 0, (2n+1)/3, (4n− 1)/3 and 2n steps,
with resolution n = 64. The relative mass error is zero and the geometrical error
varies only with the reconstruction method. The results obtained with the MYC and
LSF reconstructions are given in Tab. 3. The least-squares fit performs on average
better, but its convergence rate is about 1.6. This is a somewhat expected result,
since there are three interface reconstructions and monodimensional advections at
each time step.

In the rotation test the sphere, with center at (0.7, 0.5, 0.5), performs a rotation in
3n steps, then we change the sign of the angular velocity and the sphere goes back
to the initial position in the same number of steps. The rotation axis is along the
line x = 0.5; y + z = 2. The results are given in Tab. 4. At high resolution, the
performance of the MYC scheme is close to that of the least-squares fit in terms of
errors and convergence rate. The same behaviour is found in the next test, therefore
results will be presented only for the LSF method.
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3.3.3 Single vortex test with not uniform vorticity

The velocity field v(x, y, z; t) in the unit cube is defined by

u(x, y, z; t) = sin2(π x) cos(π tn/2 n)
[
sin(π(y − 0.5)) − sin(π(z − 0.5))

]
,

v(x, y, z; t) = sin2(π y) cos(π tn/2 n)
[
sin(π(z − 0.5)) − sin(π(x − 0.5))

]
,

w(x, y, z; t) = sin2(π z) cos(π tn/2 n)
[
sin(π(x − 0.5)) − sin(π(y − 0.5))

]
,

where tn is the discrete time, 1 ≤ tn ≤ 2 n. A sphere of radius R = 0.15 and center
xc = (0.7, 0.5, 0.5) is immersed in this flow and stretched around the center of the
unit box. It reaches its maximum deformation at tn = n and then returns to its
initial position [21]. To study the convergence in space we consider the four grid
resolutions of the previous tests, n = 16, 32, 64, 128, and present the results obtained
with the LSF reconstruction and the split advection algorithms previously described.
The geometrical and mass errors given in Tabs. 5 and 6, where the maximum CFL
number is 1. The convergence rate for the EILE-3DS advection remains greater
than 2 and it is about one for the EILE-3D scheme, which however conserves mass
to machine accuracy. The sequence of three LE steps has the greatest geometrical
and mass errors, with a convergence rate of about 1 in this range of grid resolutions
and it will not be considered any longer.

In Fig. 14 we show the initial fluid body configuration and after n/2, n, 2n steps,
with n = 64 and the EILE-3DS advection. The geometrical error is about 1% and
can hardly be seen at this resolution. The local radius of curvature and thickness of
the deformed fluid body are at least a few cell size h, and the interface is well resolved
in the whole simulation. This is not the case at lower n, where the discontinuity in
the reconstructed interface at the cell boundary becomes of order h. The interface
is more and more poorly resolved as the simulation goes on, eventually inducing a
numerical breakup. However, this is a major issue with every VOF method that
limits the interface reconstruction to a single linear equation in a cut cell.

To study the temporal behavior of the reconstruction and advection errors we con-
sider a fixed grid resolution and decrease progressively the time step, or equivalently
the monodimensional CFL number, CFL = u∆t/h. The results with n = 32 for
the geometrical and mass errors are reported in Tab. 7. The geometrical error
is converging towards an asymptotic limiting value as the CFL number vanishes
[6, 7]. This constant limit is critical for the feasibility of the VOF technique since,
in applied dynamical simulations, stability requirements limit the CFL number to
rather small values. However, the EILE-3D advection is the only scheme where the
geometric error is consistently decreasing towards the asymptotic value, as shown in
Tab. 8. We note that at n = 128 and CFL = 0.01 the geometrical error is not yet
in the asympotic regime, but the convergence rate is at least second-order accurate.

Both the EILE-3D and EILE-3DS schemes require 6 reconstructions and monodi-
mensional interface advections, but they are based on different decompositions
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of the incompressible three-dimensional velocity field v. Each field component
vi (i = 1, 2, 3) of the EILE-3DS decomposition satisfies the boundary condition
vi = 0, but it is not divergence free, vice versa in the EILE-3D decomposition only
the sum of the vi satisfies the boundary conditions, but each vi is incompressible. In
particular, on the boundary where the velocity is found by the discrete divergence-
free condition (21), we observe a second-order convergence with grid refinement to
the actual boundary value. At high CFL numbers this error is predominant and the
convergence rate of the EILE-3D algorithm is only linear, the other one is second-
order. To decrease the CFL number we consider smaller time steps, then the total
number of steps increases and the error due the fact that ∇ · vi )= 0 accumulates
and becomes the most important one for the EILE-3DS scheme. The results show
that the performance of the EILE-3DS scheme deteriorates and the error converges
to the aymptotic value from below. For the EILE-3D algorithm the error decreases
with the time step and converges to a much lower value from above.

4 Conclusions

We have discussed two new PLIC algorithms to reconstruct interfaces in two-phase
flows with Cartesian three-dimensional grids. The algorithms approximate the in-
terface with a portion of a plane in each cut cell. In one case we select one plane
among a set of candidates with two geometrical criteria based on the reconstruction
of a linear interface. In the second scheme we consider the previous reconstruction
to select points in order to minimize a distance functional and find the plane coeffi-
cients. The former does not reconstruct exactly linear interfaces and its convergence
rate for curved surfaces is between 1 and 2. The latter reconstructs linear interfaces
exactly when applied iteratively and over a curved interface performs as a second-
order accurate method. After reviewing the geometric nature of split advection, we
have proposed a new split algorithm. It conserves mass exactly and its accuracy
increases rapidly as the CFL number is decreased towards an asymptotic value. For
flows that stretch and deform considerably the interface, we observe a second-order
convergence in the asymptotic regime.
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n=10 n=20 n=40 n=80 n=160
Youngs 5.743e-4 2.863e-4 1.431e-4 7.159e-5 3.580e-5

CC 1.578e-4 7.867e-5 3.939e-5 1.970e-5 9.848e-6
MYC 7.981e-5 4.023e-5 2.011e-5 1.005e-5 5.030e-6
LSF 2.555e-7 1.158e-7 5.490e-8 2.673e-8 1.318e-8

Table 1: Reconstruction errors for a plane with different meshes with n3 cells and
reconstruction algorithms
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n=10 n=20 n=40 n=80 n=160
Youngs 1.883e-3 5.300e-4 1.948e-4 8.635e-5 4.132e-5

CC 2.430e-3 5.379e-4 1.390e-4 3.895e-5 1.223e-5
MYC 2.151e-3 5.148e-4 1.285e-4 3.381e-5 9.658e-6
LSF 1.921e-3 4.767e-4 1.191e-4 2.980e-5 7.463e-6

Table 2: Reconstruction errors for a sphere with different meshes with n3 cells and
reconstruction algorithms
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n=16 n=32 n=64 n=128
Eg (MYC) 3.852e-2 4.436e-2 1.388e-2 2.862e-3
Eg (LSF) 4.401e-2 1.216e-2 5.247e-3 1.734e-3

Table 3: Geometrical error Eg for the translation of a sphere with different meshes
with n3 cells and reconstruction algorithms
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n=16 n=32 n=64 n=128
Eg (MYC) 8.538e-2 1.291e-2 3.796e-3 1.889e-3
Eg (LSF) 8.937e-2 1.092e-2 3.731e-3 1.785e-3

Table 4: Geometrical error Eg for the rotation of a sphere with different meshes
with n3 cells and reconstruction algorithms
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n=16 n=32 n=64 n=128
Eg (LE) 4.213e-1 1.703e-1 8.005e-2 4.115e-2
Eg (EILE-3D) 8.855e-2 4.351e-2 2.150e-2 1.085e-2
Eg (EILE-3DS) 1.835e-1 4.379e-2 9.532e-3 2.010e-3

Table 5: Geometrical error Eg for the single vortex test of a sphere with different
meshes with n3 cells and split advection algorithms
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n=16 n=32 n=64 n=128
Em (LE) 3.464e-1 1.664e-1 7.252e-2 3.505e-2
Em (EILE-3DS) 8.174e-4 1.065e-4 9.084e-6 1.444e-6

Table 6: Mass error Em for the single vortex test of a sphere with different meshes
with n3 cells and split advection algorithms
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CFL=1.0 CFL=0.1 CFL=0.01 CFL=0.001
Eg (EILE-3D) 4.351e-2 1.491e-2 1.555e-2 1.564e-2
Eg (EILE-3DS) 4.378e-2 5.024e-2 5.119e-2 5.127e-2

Em (3 EI-LE-S) 1.065e-4 1.323e-6 1.433e-8 2.247e-9

Table 7: Geometrical (Eg) and mass (Em) errors for the single vortex test of a sphere
on a 323 mesh with different CFL numbers and split advection algorithms
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CFL=1.0 CFL=0.1 CFL=0.01
Eg (n=64) 2.150e-2 3.658e-3 3.294e-3
Eg (n=128) 1.085e-2 1.200e-3 6.235e-4

Table 8: Geometrical error for the single vortex test of a sphere on a 323 mesh with
the 3 EILE-3D split advection, different meshes with n3 cells and CFL numbers
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Figure 1: The polygon cut by a plane and a right hexahedron: the number of its
sides varies from three to six
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Figure 2: The cut volume is the shaded volume inside the grid cell under the polygon
ABCD
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Figure 4: The two shaded hexagons define the intersection of a given plane with a
3 × 3 × 3 block of cubic cells and with its central cell, respectively
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Figure 5: The 3× 3× 3 block of cells used in the algorithms to compute the normal
vector. A few of the normals in the vertices of the central cell (i, j, k), that are
defined in Youngs’ method, are also shown
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Figure 6: The convergence rates for the reconstruction of a sphere obtained with
several reconstruction algorithms
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Figure 7: The reconstruction of a sphere in a grid with n3 cells, n = 10 (left) and
n = 20 (right)
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Figure 8: The convergence rates for the reconstruction of a sinusoidal surface ob-
tained with several reconstruction algorithms
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Figure 9: The reconstruction of a sinusoidal surface in a grid with n3 cells, n = 10
(left) and n = 20 (right)
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Figure 10: VOF/PLIC reconstruction in three consecutive cells and geometrical
interpretation of the Eulerian-Implicit (EI) scheme. The rectangle A′B′C ′D′, that
includes the central cell and the fluxing areas of the two adjacent cells, is mapped
into ABCD
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Figure 11: VOF/PLIC reconstruction in a cell (a) and geometrical interpretation
of the Lagrangian-Explicit (LE) scheme (b). The cell ABCD is mapped into the
rectangle A′′B′′C ′′D′′, that includes both the central cell and the fluxed areas into
the two adjacent cells
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Figure 12: In the EI-LE scheme the rectangle A′B′C ′D′ of a tessellation of the plane
is mapped into A′′B′′C ′′D′′ of a different tessellation. The two rectangles have the
same area, therefore the scheme is area-preserving
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Figure 13: Translation of a sphere along the main diagonal. Initial configuration
and after (2n+ 1)/3, (4n− 1)/3, 2n steps, with n = 64 (left to right, top to bottom)
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Figure 14: Advection of a sphere in a deforming velocity field. Initial configuration
and after n/2, n, 2n steps, with n = 64 (left to right, top to bottom)
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