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1 Introduction

In this report, we present the study of a dynamical system’s
stability : the Ziegler column.

This kind of structure can be met in the aerodynamic
field with wings equipped of flats or deflectors (in simple
flat cases) [1][2]. An issue then is that in addition to diver-
gence (too high loading), the structure may be subject to
undamped oscillations resulting into aero flutter [3].

The Ziegler column is a simple model made of two con-
secutive rods (slender rigid structure) bounded to each other
or to the ground by viscous torsion springs:

Figure 1: Ziegler column - at rest and deformed

This system obeys to the following non-linear coupled
non-dimensionalized differential equations:
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and it’s entirely defined by angles ✓↵ (↵ = 0, 1), pro-
vided one knows variables:

• ⌧ = !n.t adim time
!n =

p
k/(ml2) ;

• � = A/(8k/3l) am-
plitude force ;

• Q = 8k/(3.c.!n)
damping factor ;

• � = ⌦/!n pulsation
force ;

In this report, we want to characterize equilibrium of the
structure under a right hand side force, modelling incoming
flow for instance, that one can modulate in several ways:

• � controls the intensity of forcing term;

• � controls the pulsation of forcing term;

• ⌘ controls the direction of forcing term.

Given the system’s non-linearity it’s convenient to rewrite
the differential equations 1 under a more coding-friendly
shape A:
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⇤

Under this form, we can see the system as the combi-
nation of dynamic matrices and a non-linear vector. One
can then go from non-linear to linear case by linearizing
around rest state ✓↵=(0, 0) and removing this non-linear
vector, such that then ẏ = J.y. It’s then easy to go from
one formulation to the other one.

Besides, this differential system can now be easily im-
plemented in odeint python solver. Finally, in order to give
to this report some physical meaning, we will undergo some
stability study assuming we aim at answering the following
problematic :

For an application to a plane design, we would like to
know under which conditions on the force one can avoid low
amplitude resonances ?
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2 Overview stability system

Let’s first and foremost show different behaviors of the
structure for different sets of loading (⌘, �, �):

(a) non-linear

(b) linear

Figure 2: Miscellaneous dynamic behaviors of the system. For both

linear and non-linear cases : a) Bifurcation to an equilibrium state

for ⌘ = 0, � = 0 and � = 0.072. b) Flip bifurcation to a dynamic

state with a 2T̄ -period for ⌘ = 0, � = 0.584 and � = 0.036. c)

Hopf bifurcation to a periodic stationary state for ⌘ = 1, � = 0 and

� = 0.4. (d) Secondary Hopf or Neimark-Sacker bifurcation on a

quasi-periodic state for ⌘ = 1, � = 0.1 and � = 0.6. Insets show the

bifurcated stationary states in the state space (✓(⌧), ✓̇(⌧)), as well as

initial state with a green cross.

We observe here that the non-linearities one neglects in
the linear case in fact account for a part of the system’s
damping.

However, the approach adopted through the paper is
meant to highlight some characteristic behaviors of
the system, and to deduce conditions of stability/instabil-
ity. To this aim, in the following, we will linearize around
t [0, 0, 0, 0] position, in the undamped case (C = 0) and
try to characterize dynamic motion form the linear prob-
lem, while doing the link with physical non-linear prob-
lem.

3 Modulation parameters

We aim at understanding the system’s conditions of equi-
librium as well as physical links one may do with aforemen-

tioned aerodynamic fields.

3.1 Buckling - ⌘ = 0, � = 0, �
First, we look at how system is responding from an exterior
stimulation, the application of a constant horizontal force.
The system can be associated to the buckling of a horizontal
bar. As we consider rotation springs in two points of the
structure, this change of geometry is studied under stability
theory and not from a deformation point of view.

We then expect the system to be able to enter in res-
onance for specific sets of variables (⌘, �, �). We have
two approaches : first a mathematical point of view (eigen-
values) and then a physical (bifurcation diagram) point of
view:

Figure 3: Bifurcation diagram - buckling. a) imaginary part of the

eigen values of linear matrix J providing information on oscillating

behavior. b) real part of J matrix, telling when system is unstable in

function of loading value. Insets provides motion of eigenmodes 1 &

2

Figure 4: Supercritical Pitchfork bifurcation diagram - non linear case.

Non-linear case considered to show equilibrium states associated to

fig 3. We are in a supercritical case in non-linear case, but in the

subcritical case when in linear case.

In figure 3 we have both real and imaginary part of J ’s
eigenvalues, together with some insight on eigen-modes.

These insets tells us about first and second eigenmodes,
that one should combine through a linear system in order
to re-build dynamical behavior. The point here is to give
an idea of the vibration modes that are encountered in the
system, namely in phase (!1 = 0.29) and in opposite phase
(!2 = 1.94) behaviors.

Figure 4 provides associated equilibrium states that one
can observe in the non-linear case where energy provided
by user through force term leads to new equilibrium states.
Eventually, we get 3 different states : to the two stable
states of figure 3 are associated the upper and lower branches
while to the unstable state is associated position ✓ = 0 rad.
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This can be rephrased as : the system remains at equi-
librium (marginally or asymptotically stable) until we reach
limit load �b ⇡ 0.072 above which a simple offset from rest
state leads to a new equilibrium state in the non-linear case,
and instability in the linear case.

This brings some questions such as

• what is the dynamic motion of the system as a func-
tion of loading ?

• what changes in dynamic motion depending on � value?
on Q value ?

Dynamic behavior

We try to tackle the questions of system’s motion across
time:

Figure 5: Dynamic behavior - theta in radiant

It comes from figure 5 that linear and non-linear equa-
tions share same dynamic behavior as long as angles ✓alpha
remain low.

The difference comes once we are at � > �b where non-
linear case remains stable while linear case doesn’t. This
confirm the observation previously made : terms neglected
in non-linear case account for some of the system’s damp-
ing.

We then note that system’s behavior depends a lot on
damping in the structure. In practical terms, depending on
the value of C, the system can either be : marginally sta-
ble (e.g. undamped case at � < �b), asymptotically stable
(e.g. damped case at � < �b, or unstable (e.g. flutter load).

Physically, asymptotic stability is closer to real damped
case while marginal stability is the perfect not-much en-
countered undamped case. Once again, we consider this

last case in the study to observe characteristic behavior of
the structure.

We will develop furthermore these questions in the next
part, where we will extend our study to another case, the
non-conservative case ⌘ = 1.

3.2 Non conservative force - ⌘ = 1, � = 0, �
We now consider the case of a non-conservative compres-
sion force which is in direction of ✓2 (still constant of time).

A linearization of the differential system around the nat-
ural equilibrium point t [0, 0, 0, 0] allows one to study the
response of the system around this point. A modal analysis
shows the stable and unstable states as a function of the
applied non-dimensional load:

Figure 6: Modal diagram of the system - non conservative compression

force

This case is closer in modelisation to the aforementioned
airfoil with flap case (except we don’t consider deforma-
tion). For instance, the aeroelasticity field gather the study
of aerodynamic structures for which incoming flow has a di-
rect effect on the structure. Then, the incoming force and
structure are bounded such that dynamic motion depends
on flow, deformation, etc. One can then talk about aeroe-
lastic problem where we usually study divergence or flutter
speed.

While divergence speed is the speed at which there is
breaking of the wing under a too high forcing (static insta-
bility [4]), the flutter speed is closer in meaning to what we
study here. We talk about flutter and not divergence as the
system gets unstable by the growth of oscillations.

According to figure 6 we see that flutter takes place
when real part of J matrix’s eigenvalues is positive, namely
only when the load is greater than the critical value �f ⇡
0.47. If one applies a smaller force, then the real part of the
Jacobian’s eigenvalues is zero and so the response is stable.

On a physical point of view, one can think in terms of
bifurcation diagram. To this aim the maximum amplitude
of the system response has been plotted as a function of the
�/�f ratio. For a value of Q = 10 it came:
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Figure 7: Supercritical Pitchfork bifurcation diagram - non conserva-

tive case. Figure shows equilibrium states in the damped non-linear

case.

When plotting the bifurcation diagram, it appeared that
damping factor Q influences a lot first critical flutter load
�f .

Solving the differential system for different damping co-
efficient Q brought that the dependence of �f on Q is such
that the critical load tends to infinity when Q ! 0 then
decreases to its minimum around the value of Q = 15 with
�f = 0.31 and then increases to the asymptotic value of
�f = 0.47 when Q ! 1.

Figure 8: Evolution of the first critical flutter load with Q

For one to consider or not damping therefore radically
changes the dynamic of the system. That means graph 8
shows a qualitative behavior of the system in the non-linear
case, that one should put in perspective with value of damp-
ing coefficient.

To sum up, we now know our system can be a
simple model in the study of aerodynamic struc-
tures and we furthermore know that flutter will oc-

cur above critical load �f , while structure’s motions
is made of stable or unstable oscillations, depend-
ing on what parametrization one chooses (i.e. what
values of ⌘, �, Q, ...).

In addition to loading, the pulsation has a great effect
on stability, let’s develop this point.

3.3 Periodic force - ⌘ = 0, �, � = 0.75.�b

We no longer consider a constant load but rather a time
dependent one. In simple terms, we here alternatively ap-
ply compression and traction to the Ziegler column. Then,
depending on the force we apply and when we apply it, it’s
possible that the system will either stabilize across time or
on the contrary diverge from equilibrium state (0,0). When
working on such a system, studying its stability becomes
much harsher. However, a way of studying it appears when
one considers a periodic system. One can then use what is
known as Floquet theory.

The method is similar to the one we used so far : we look
at solution’s growth or decay along time without looking at
the solution itself. The difference stands in the fact we here
look at evolution across one period only:

ẏ(t) = J(t).y(t)

! ẏ(t+ T ) = J(t+ T ).y(t+ T )

! ẏ(t+ T ) = J(t).y(t+ T )

By looking at stability along 1 period, we can then ex-
trapolate for t ! 1. To do so, we use 4 unit initial vectors
: t [1, 0, 0, 0], t [0, 1, 0, 0], t [0, 0, 1, 0], t [0, 0, 0, 1]. We imple-
ment these in above system and it leads to 4 vectors at
t + T . The point then is to combine these states after pe-
riod T to build what is known as the monodromy matrix �.
Eventually, the eigenvalues �i of this matrix (i.e. Floquet
multipliers) tells if motion will be stable or unstable :

• |�i| < 1 ) the solution is stable ;

• |�i| > 1 ) the solution is unstable ;

Decomposing these Floquet multipliers into a real part
and an imaginary part, we have equivalently [5] :

�i = ⇢i.e
j.i
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log(⇢i)

T
+ j.

i ± 2k⇡

T
=

log(⇢i)

T
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⇣
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T
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⌘

with k 2 and where stability now reads

• |Re(fi)| > 0 ) the solution is unstable ;

• |Re(fi)| < 0 ) the solution is stable ;

Plotting the real and imaginary part of Floquet expo-
nent fi, we get for the set (⌘ = 0, � = 0.75.�b, �) the
following results:
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Figure 9: Modal diagram of the system - periodic compression force

From figure 9 we can see that instability occurs in spe-
cific zones only. By normalizing pulsation with respect to
lower eigenfrequency !1 ⇡ 0.29, we then see that the system
resonates when force is modulated at a multiple of eigen-
frequencies. Generally speaking, if one was considering a
larger scale for � we would observe some vibrations associ-
ated to 2nd eigenfrequency !2.

The lhs figure shows imaginary part of Floquet multipli-
ers, periodized every �, thus providing frequencies at which
structure vibrates. It appears then that when structure is
unstable it explodes while oscillating, namely flutter is ob-
served.

Let’s generalize our observation by looking to both pa-
rameters � and � and their influence on instability.

4 Instability tongues

We here extend Floquet theory to the mapping of instability
in function of both amplitude � and pulsation �:

Figure 10: Instability tongues in the undamped linear case with ⌘ = 0.
Instability is showed in orange while stability is represented in white.

The highlighted points are points we will look at in the following to

have some insight on dynamic behavior.

We observe that instability takes shape of tongues that

expand as we go towards increasing �. Then, the more we
load the more unstable the structure is, except pulsation
plays as well an important role.

We indeed note a finite number of these tongues, each
representing a resonance point. By association, we have
stable positions (white zones).

Graph 12 helps generalizing our study and displaying
multiple parameters at once. We thereby observe same be-
haviors than detailed in section 3, for an undamped system.

In order to conclude on our stability analysis, we will
now go through some points of the graph to confirm we
now understand stability of the system.

Highlighted points

In this part we show dynamic behavior of the 4 highlighted
points in Floquet instability tongues graph 12:

Figure 11: Highlighted points in figure 12. Vertical green bars are

meant to split signal in terms of period. Then, we are in same
loading state every period.

In graph 11 we show the dynamic behavior of the two
bars depending on where one stands in Floquet graph 12.
We confirm that stability depends on time at which we per-
turbate system and amplitude considered.

Comparing 2 first graphs of 11 with each others we
see that at a constant loading (constant value, still time-
dependent), the timing at which we load matters a lot.
Then, it looks like if one stimulates system when ✓↵ is at a
maximum, the system will most likely present flutter and
eventually be unstable.

On the other hand, comparing the two last graphs of
11, it comes that the force as well plays an important part.
Then, the more we load structure (i.e. the higher � is), the
more structure is unstable. In addition to timing there is
therefore the fact that the bigger the load the more energy
we provide to the structure and potentially the less it can
handle, resulting in an unstable behavior.
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We note that graph 12 presents only a part of the pos-
sible points one can consider. If we extend this graph to
higher load, it appears that stable states still exist in the
middle of more and more unstable cases. The point is to
note that there theoretically always is a stable state, pro-
vided one parametrizes system at good time B.

Eventually, these results would be helped by experimen-
tal observations. With confirmation of well doing of our
analysis, it would then be possible for one to work actively
(as opposed to passive approach here) on the system by try-
ing to change stimulation during motion, thereby provoking
or preventing instability at choice.

Conclusion & Perspectives

This paper allowed us to study the behaviour of the dy-
namic system’s stability: the Ziegler column, in particular
in the context of aircraft design. The aim then was to char-
acterise the loading conditions under which low frequency
resonance can be avoided.
A first loading mode was studied corresponding to a con-
stant conservative force, i.e. with constant direction. The
study of stability around the natural equilibrium position
showed the existence of a critical load: the first critical
buckling load at � = 0.072, below which the system re-
mains stable and above which there is a bifurcation and
the structure tends towards a new equilibrium outside its
initial position. This part introduced the possibility of a
first type of instability.

The second type of loading corresponded to a follower
force: the direction of the force remains collinear to the sec-
ond bar. Again, a critical loading value appeared: the first
critical friction load for a loading value � = 0.47 (for zero
damping). Beyond this force, the system maintains a oscil-
lating motion despite the constant applied force. It can be
seen that instability appears here at a higher force than in
the first case. A following force is therefore less critical at
first sight than a conservative force. This part highlighted
the possibility of more than one physical explanation for
instability.

Finally, the third type of loading was a periodic conser-
vative force. A more thorough stability analysis had to be
undertaken. Floquet’s theory was then used. It was then
observed that the stability depends on both the excitation
pulsation of the force and the value of the amplitude of
the force. A modal analysis shows that resonance frequen-
cies exist for forces with a pulsation multiple of the natural
frequencies of the structure. Coupled with the constraints
on the amplitude of the force, we obtain stability tongues
depending on the parameters of the structure.

This last part finally conclude on our problem-
atic, as we now under which condition will the sys-
tem be unstable at low amplitude (i.e. low �). For
one to prevent instability then it is necessary to
damp oscillations actively or to have some physical
insight to know well initialize system.
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A Matricial system

As we study dynamical system 1 we can use the usual ma-
tricial representation, with FNL term accounting for a part
of system’s non-linearities:

M.✓̈ + C.✓̇ +K.✓ + FNL = 0

M =


1 3

8c1�2
3
2c1�2 1

�
;

K =


3/8 �3/16
�3/4 3/4

�
.
1
Q ;

FNL =


3/8.✓̇2.s1�2 + �.c�.⌧ [c1.s⌘2 � s1.c⌘2]

�3/2.✓̇1.s1�2 + 4�.c�.⌧ [c2.s⌘2 � s2.c⌘2]

�
;

C =


1 �1/2
�2 2

�
.
1
Q ;

with c, s1�2 = cos, sin(✓1 � ✓2); c, s⌘2 = cos, sin(⌘✓2).
By setting y =

t
[✓1, ✓2, ✓̇1, ✓̇2] we then get differential ma-

tricial system ẏ = J.y + FNL.

B Extension Floquet instability tongue

graph

In this last appendix, we provide a graph giving an idea of
a more general stability theory where one can see the in-
teraction between load and pulsation is more complex than
the way it’s been tackled throughout this paper:

Figure 12: Instability tongues in the undamped linear case with ⌘ = 0.
This graph is an extension of graph 12

Note that upper part (above � ⇡ 0.6) exists but has not
been plotted due to long calculation time.

7


