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commonly-used method consists in computing the monodrom
matrix of the linear periodic system governing the evolutas

of a harmonic-based numerical method to determine the local the perturbed solution and compare its eigenvalues (Ftaquke

stability of periodic solutions of dynamical systems. Blase
Floquet theory and Fourier series expansion (Hill methog,
propose a simple strategy to sort the relevant physicalreigke

tipliers) moduli to one. Two well known numerical strategare
classically used. The first technique consists in a timegirgtion
of the Jacobi matrix of the initial dynamical system over pee

ues among the expanded numerical spectrum of the linear pe-riod [1]. In the second technique, the monodromy matrixnis-si

riodic system governing the perturbed solution. By miximg t
Harmonic Balance Method and Asymptotic Numerical Method
continuation technique with the developed Hill method, Wwe o
tain a purely-frequency based continuation tool able to pota

the stability of the continued periodic solutions in a reddcom-
putation time. This procedure is validated by consideringea-
ternally forced string and computing the complete bifui@ati-
agram with the stability of the periodic solutions. The partar
coupled regimes are exhibited and found in excellent ages¢m
with results of the literature, allowing a method validatio

Introduction

Determining the local stability of a dynamical system pe-
riodic solution is of primary interest in an engineering €on
text since only stable solutions are experimentally entared.
Moreover, a change in the stability can lead to significaraigu
tative, and possibly dramatic, changes in the system regpdn

*Address all correspondence to this author.

ply a by-product of a shooting continuation method [2].

The efficiency of those methods has been proved for year:
but, inherently, the eigenvalues accuracy depends on ttseoh
time-step size, leading to possible long time computatiéns-
thermore, those time-domain approaches are not necgdsestl
suited for nonlinear periodic solution computed, for insk,
with a harmonic balance method. In the latter, eigenvaldes o
the linear operator can naturally be computed with Hill'snoel
also based on Fourier series expansion. This harmoniabas
method deals with linear periodic systems and has beenintrc
duced by Hill one century ago for the determination of theatun
perigee [3]. Since then, it has been applied to a wide range c
physical problems like the computation of energy eigeraslu
of the Schédinger equation [4, 5], the stability of limit cycles in
electrical circuits [6] or the vibratory behavior of flexébtotating
machines [7,8]. However, although Hill's method often pdes
satisfactory results, the meaning of the computed eigaasak
generally misunderstood and may lead to wrong results. -Actu
ally, this method is not of a trivial use since it requires ppiXx-
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imate the spectra of infinite-dimensional operatases, to sort

the most converged eigenvalues among all the numerical ones

Substituting (2) into (1), assuming thgitis at least twice con-
tinuously differentiable, expanding the result in a Tayderies

A recent work of the authors proposes a simple numeri- aboutxz, and retaining only linear terms in the disturbance, we

cal strategy to sort these eigenvalues and therefore pyoper
terminate the stability of periodic solutions of dynamisgks-
tems [9]. A simple criterion, based on the energy distritnutf
the computed eigenvectors, is proposed and enables takiea
most converged eigenvalues (Floquet exponents) of thedtad
problem, and therefore determinate the local stabilityhefdolu-

tion. By mixing the standard harmonic balance method wiéh th

so-called asymptotic numerical method continuation tepia
based on the quadratic recast of the dynamical system [1@; i
comes a straightforward and efficient procedure to contthee
periodic solutions as well as their associated Floquet eapts.

Whereas the case of a forced Duffing oscillator is proposed]in [

as a validation example, this article focuses on another one

obtain:

y(t)=J @)yt @)

with

()= T(@o (1)1 00) = 9 (@0 (1)1, 00). (@)

J (t) isthe N x N Jacobi matrix off, atx = xo and\ = .
The stability study of periodic solutiom, consists in finding if
the disturbancey(t) solution of (3) fades away or is amplified

The main features of the developed harmonic-based contin- @St is increased. Since, (t) is T-periodic in time,J (t) is also

uation tool are first exposed. Then, the case of an exteragily
cited string is considered. This problem is interestingsiih ex-
tends the results obtained on the Duffing oscillator in twgsva
Firstly, more than one mechanical degree of freedom is drezlu
Secondly, since both transverse polarizations are comrslda
the model, one-to-one internal resonances are presenwiradj
a particularly complicated bifurcation diagram and shaysev-
eral stable and unstable solutions as well as additionethfoitk
bifurcations. Finally, this problem is qualitatively silani to the

T-periodic in time considering its definition (4). Consedilgn
the system (3) is a linear system with periodic coefficiefitse
Floquet theory [13, 14], used in the following, specificallgals
with this kind of dynamical systems.

Floquet theory

The following developments are classical and can be foun
e.g. in the textbooks [1, 15]. Thé&/-dimensional linear system
(3) hasN linearly independent solutiong, (¢), so that any solu-

one of a perfect circular plate, where one to one resonarmees a tion y(t) of (3) can be written:

observed between companion modes due to the symmetry of rev-
olution. In the case of the string, out of plane motion are ob-

served, which are equivalent to the travelling waves oleskfor
the circular plate [11,12].

STABILITY OF PERIODIC SOLUTIONS
General formulation

N
y(t) = Z CnYn (t) )
n=1

wherec,, are N constants that depend upon the initial conditions.
First of all, we gather these fundamental solutions intdy" &
N matrix: Y (t) = [y1(t) y=(t) ... yn(t)]. Since anyy,(t)

We consider continuous-time dynamical systems governed verifies (3), it is obvious thay () verifies

by the general equation

@ (t) = f(xz(t),t,\) (1)

wherex is a N-dimensional state vector arfdis a nonlinearV-
dimensional vector field that depends on a control parameter
In the following, f may explicitly depends on (the system is
non-autonomous) or not (the system is autonomous).

We consider a periodic solutiory (¢) of (1), with minimal
periodT, at the particular control parameter valve= \q. The
stability of this periodic solution is studied by superirspg a
small disturbance (¢):

@ (t) = wo () +y (1) 2

Y (t) = J)Y (2). (6)
By recalling thatJ (¢) is T-periodic, one obtains
yn(t+T) = J(t+T)yn(t+T) = J(ﬁ)yn(t—’—T)v (7)
so thaty,, (t + T') verifies the system (6). Consequently, since
the y,,(¢t) are N independent fundamental solutions of (3), the
yn(t +T) can be expressed as linear combinations ofthe).

It thus exists @V x N constant matrix®, called the monodromy
matrix, so that:

Y(t+T)=Y(1)®. (8)
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This matrix can be used to study the stability of the periadic-
tion x((t) since it maps a particular set of fundamental solution
Y (¢) at timet into their values at time + T, thus defining a
Poincaé map. The stability study is conducted by considering
the eigenvalueg,, of ®, the so-called Floquet multipliers.
Considering again the fundamental solutions introduced
above, everyy, (¢), foralln = 1,..., N, can be expressed in
the Floquet form

ant

Yn(t) = pn () e ©)

wherep,, (t + T) = p, (t) is aT-periodic N-dimensional com-
plex vector andy,, is a complex number. Then, it follows from
(9) and from ther-periodicity ofp,, that

yn(t+T)=p, (t+T) eon(t+T) — yn (1) e T, (10)

The above equation, compared to Eq. (8), proves that.thare
linked to the Floguet multipliers by, foratl = 1,..., N:

1 27k
pn=eT o mlziﬂn&ﬁhgfﬁ k=0,41,42,....
(11)
The «,, represent the so-called Floquet exponents. Whereas

the Floquet multipliers are uniquely defined, the above equa
tion shows that thev,, are unigue to within an additive integer
multiple of 2ix /T [14]. This last result can also be viewed by
replacingw,, by «,, + 2ikx /T in (10).

Considering Egs. (8), (9) or (10), the values of either the
Floguet multipliersp,, or the Floquet exponents,, can be used
to determine the stability of periodic solutions.

If R(a,) < 0 (0r |py| < 1) for all n, all fundamental so-
lutionsy,, converge toward zero ass increased, so as dis-
turbancey(t). The periodic solution is said to be asymptot-
ically stable;

If it exists a subscript such thatk(a,,) > 0 (or |p,,| > 1),

the corresponding fundamental solutions increase exponen
tially, so as for some disturbancg$t). The periodic solu-
tion is unstable in this case.

The above statement stands for non-autonomous initial sys-

tems (1). If the initial system (1) is autonomous, one of tle F
quet multipliers is alwaye,, = 1. In this circumstances, only
the set of remaining eigenvalues can provide informatiothen
periodic solution stability.

Hill's method

which is used here to calculate the Floquet exponantsThis
method has been widely used together with perturbation -mett
ods to analytically obtain the stability of periodic soturts, for
instance in the case of the Mathieu equation é&sgg16]).

The unknown periodic functions, (¢) introduced in (9) are
expressed by the general Fourier series

(12)

+oo
k ikwt
E pyre

k=—o0

where the fundamental frequencyreadsw 27 /T and pk
are N dimensional complex vectors. By replacing (12) in the
Floquet form (9), any fundamental solutigg, (¢) is an infinite
sum of harmonic contributions

Z pk (ap+ikw)t

k=—00

(13)

Being T-periodic as well, the Jacobian matik(t) is also ex-
panded in the infinite Fourier series

(14)

—+oo
h ihwt
E J"e ,

h=—o00

where theJ” are N x N matrices. By replacing the solution

Yy, (1) and the Jacobiad () by their Fourier series in the linear
periodic system (3) one obtains the following vector et

foralln=1,...,N:
+oo
k=—oc0

+oo

Z Z Jh k [an+z k+h)w]t

k=—00 h=—00

(15)

Since the sums have an infinite number of term, replacingrsupe
scriptk by k — h in the left hand side term of the above equation
does not changes it. It leads to, foral= 1, . ..

, N

“+o00

+oo
SNDIRLUEE

k=—oc0 Lh=—00

— (ap + ikw) pt | elantike)t — g,

(16)

Hill's method is a harmonic-based numerical approach used By applying the harmonic balance method to the above eque

to determine the solutions of linear periodic systems li&g (

3

tion, i.e. by separately equating to zero each harmonic of (16

Copyright © 2010 by ASME



(for each value of), the above equation can be rewritten in the
following infinite-dimensional eigenproblem

(H—sI)g=0 (a7)
whereH is the infinite-dimensional Hill matrix
e IO I I g
H=]|- - J! Jo gt , (18)
J2 L L) P

s is a complex numbeg is an infinite dimensional vector ardd
is the identity matrix of appropriate size.

By comparing (17) and (16), the eigenvalues and eigenvec-

torss andgq are related tev,, andp,, by the following relations:

siL = ay +ilw and qﬁLT = [ .. p,:l*l pg*l p},fl ] (29)
valid for alll = 0,£1,... £ coandn = 1,...,N. In the
above equatioms” means the vector transposeeofThe above
relations show that each Floquet exponent for a givenn,

is associated to an infinite set of eigenvalués for all | =
0,%1,... = co. Consequently, knowing the infinite set gf
would enable to calculate the, and then to assess the periodic
solution stability.

However, for evident practical purposes and numerical com-

putations, the infinite-dimensional problem (16)-(18) rignt
cated to a finite dimension. Namely, matiX is truncated to a
N(2H+1) x N(2H + 1) dimension, so thdt= 0, +1, ..., +H

in (19). Lets!, andg!, denote theV (2H + 1) approximate eigen-
solutions of Eq. (17). If thev,, are to be computed, two questions
need to be solved: (1) do ti¢/,, §.,) tend to(s!,, ¢',) asH tends
to infinity and (2) for a giverm, among all the computes!,,
which ones, asis varied, can be used to compuig.

Firstly investigated by Poincar[17] more than one cen-
tury ago, those questions were still arguing twenty yeacs gy
particular for the computation of Sakdinger equation [4]. Re-
cently, papers based on Fredholm theory provide rigoroosfpr
of the convergence [18,19].

Since all the above developments are based on the assumpti
that the Fourier series (12) and (14) are convergghtténds to
zero ask tends to infinity), among all the computed eigenvectors,
the components of th&’ ones associated with= 0 (the ¢°)
have almost symmetric shapes since they involve onlypthe
with |k| < H. For this reason, we assume that fjeconverge
faster tog? than the others, far# 0.

With the above assumption, the numerical procedure to comr
pute theN Floquet exponents,, is the following. The Hill ma-
trix H, truncated to ordef is assembled and it& (2H + 1)
eigensolutiongs! , ¢!,) computed. Then, th&/ ones associated
to [ = 0 are numerically selected by considering that fkie
eigenvectorg” are theN ones with the most symmetric shapes.
The N associated eigenvalues are thenih&loquet exponents:
a, =382 n=1,...,N. Their real part is then compared@do
assess the stability of the periodic solution.

n?

THE HBM-ANM-HILL METHOD

One of the crucial point in the numerical method mentioned
above is the expansion of the Jacobi(t) in Fourier series
(Eqg. (14)). Indeed, in the most general situation, the meali
evolution equation (1) shows nonlinearities of any kindd tre
same is true for the Jacobian dependence on the periodic sol
tion. Therefore, computation of its Fourier coefficiedts can
be very cumbersome.

However, in the special case where the harmonic-balanc
method (HBM) combined with the asymptotic numerical method
(ANM) is used to compute the Fourier coefficients of the pdido
solutionz, (as explained in [10]), the computation of té
is rendered very efficient. The leading idea, also used fer th
ANM, is to systematically recast the dynamical system (1 in
guadratic polynomial form. From (1), the new quadratic eyst
can be written as follows

m(z) =c(M\t)+1(z,1,0) +q(z 2,4, )) (21)

wherec, I (-), g (-, -) are constant, linear and quadratic operators
in z, respectively, andn (-) is a linear operator. The unkown
vector z contains the original components of the state veator
and some new variables added to get the quadratic form. Thi
procedure is fully explained in [10], which also shows thast

However, a delicate issue remains the choice of the eigenSO- quadratic recast can be app“ed to a |arge class of smooth sy

lutions of the truncated problem that can be used in a nuaderic
procedure to evaluate thg,, n = 1,..., N. A simple idea con-
sists in analysing the truncated problem eigenvectorsiuligion

Gl = [p,=t.opot p{j—l]T and considering the one
associated to = 0:
s =an, and ¢ = [p," ... p, o . D]
(20)
4

tems with a few algebraic manipulations and a few additidns o
auxiliary variables.

A periodic solution of (21), of minimal perio@ = 27 /w,
is expanded into the Fourier series

H
zo(t)= > zhemt, (22)
p=—H

Copyright © 2010 by ASME



The HBM combined to the ANM continuation method enablesto brating string can be written:

compute thezl, p = —H, ..., H andw for various contiguous

values of)\, detect possible bifurcations and compute different

branches of solutions. For externally driven systems, timgrol

parameter is often the forcing frequenky= w. Assuming the
quadratic recast (21), for any= X, the JacobiaW (¢) defined
by (4) may be expressed in the form

J(t) = Jc (Mo, t)+J1L (20 (1), t, Mo)+Jg (20 (), 20 () 1 £, Ao)

(23)
whereJ¢, Ji. (-) andJg (-, -) are constant, linear and quadratic
N x N matrices with respect tay. From then, it becomes
straightforward to find the Fourier coefficient&® of J(t) as
functions of those og, (). For each parametey,, the Hill ma-
trix H is expressed in terms of the already computgdndw
and the stability of the periodic solutiat (¢) is simply obtained
following the previous Hill's method.

The selection of théV eigenvectorg® among theV (2H +
1) eigenvectors of (17) is done by computing for ea¢h [ =
—H,...,H,n=1,...,N, the median value of its components
moduli. If ¢; is thei-th component of vectaj of dimension =
N(2H + 1), the median isy", i|¢;|/ >, |¢;|. The selected?
are theNV ones with the median value closestg2, which are

supposed to have the most symmetrical shape. Knowing those

eigenvectors, thé/ corresponding eigenvalues are thg used
for the stability study.

VALIDATION EXEMPLE: A FORCED STRING
Theoretical model

The case of a forced hardening Duffing oscillator is pre-
sented in details in [9]. Here, this example is extended &0 th
case of an externally excited string. Many works have foduse
on non-linear vibrations of strings in the past and the fussi
destabilization of the in-plane motion giving birth to odiptane,
possibly circular, motions, due to one to one internal rasces
between the two transverse polarizations. Among othees, th
interested reader can refer to [20] for an early qualitagéxe
planation of the out of plane motion, to [21, 22] for a two de-
grees of freedom model analytically solved to obtain thetsmh
branches as well as their stability, to [23] for experimémnea
sults. This problem shows qualitative similarities witmiinear
vibrations of circular plates, where the one to one interasb-
nance occurs between companion modes, giving birth toltrave
ling waves [11,12].

Following [16], the nonlinear equations of motions of a vi-

5

pSY + Elv gppe — (NO + N)U;(;_z - fy7 (242)
pSU} + Elw,xwmw - (NO + N)w7II = fz’ (24b)
ES [F 2 2

In the above equations,is the axial position(v, w) are the two
transverse displacements in theandz directions,V is the ini-
tial axial tension in the stringlV is the axial tension added by
the non-linear coupling with the transverse motignandf, are
the two components of the external force per unit lengtfs the
string length;p and £ denote respectively the mass density and
the Young's modulus of the string materidl;and are respec-
tively the string cross section area and second momentllysina
ande , denote the first partial derivative efwith respect to time
t andz, respectively. These equations are based on the classic
von Karman approximation that consists in keeping in the axial
strain the first non-linear terms. The flexural rigidity effdas
also been included.

In order to obtain a model with a minimum number of free
parameters, Egs. (24a-c) are transformed by introduciedoth
lowing dimensionless parameters:

;_ fi
=4

8l
Il
Ql

=l

N
N=_—
Ny’

-

with i = y, z. ¢ is the string cross section diamet&y.and f, are

a time constant and a force constant, whose values (givewpel
are fixed so as to minimize the number of free parameters. On
then obtains:

U+ €1V xzxx — Vgx — N'U,ww = fy7 (256\)
w + E1W zxxe — Wz — Nw,:p;v = fZ7 (25b)
1
N = %/ (’U?T + w2r) dx (25¢)
0

where all the overbars have been dropped since all quanditee
now dimensionless. The following parameters have beeon-intr
duced:

_ EI
T NoL?’

pS

Ny’

»No
L2

_ EA¢?

= — Ty =L
€2 NoLz@ °

fo=

€1

1 is the ratio between flexural and axial stiffnesses an a
measure of the non-linear terms amplitude. Those two param¢
ters are often very small as compared to 1.
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A solution to Egs. (25a-c) is obtain by the following trun-
cated modal expansion:

K K
v(x,t) = Z Dy (x)pr(t), w(z,t) = Z D (x)qr(t), (26)
k=1 k=1
where®,(z) is the k-th deformed shape of the string, solution
of the linear part of Egs. (25a-c)€. with N = 0), identical for
bothy andz polarizations. It can be written:

Op(z) = V2sinkrz, wp =+/(kn)2+e,(km)t,  (27)
where®,,(x) has been normalized so that
1
/ ®? (z)dx = 1 (28)
0

andwy, is thek-th dimensionless angular frequency.

By introducing Egs. (26) into (25a-c), multiplying both egl
of equations withb, () and using the orthogonality properties of
the deformed shapes, one finally obtains, foka# 1, ..., K:

K
P + 26kwipr + wipk + N Y _i°n°p; = Fp,  (299)
i=1
K
Gk + 266@kk + @haqe + N Y i°mq; = G, (29b)
i=1
ZZZ 2 (p? + ¢?) (29¢)
i=1 j=1

In the above equations, a viscous damping term has been,added

with modal damping factaf;, for the k-th mode. It has also been
chosen to introduce a small detuning between the frequentie
the two polarizations, by defining, = 3wy, with 3 a given
small parameter. The forcing terms in (29) are defined by:

(Fu(t), Gu()} = / (fy(@.t), fola, )} @4 (x)de.  (30)

It must be noted that the same coefficiefit? appears in (29a,b)
and in (29c) becaus@;(0) = ®4(1) = 0 and the special nor-
malization of (28).

HBM-ANM-Hill formulation

the problem to solve has only quadratic nonlinear terms and i
naturally adapted to the HBM-ANM-Hill method [9, 10]. We
focus on a harmonic forcing with frequency, on they po-
larization only, concentrated at the middle of the stringt |
writes: f,(z,t) = Fod(x — 1/2) coswt, f. = 0, so thatF, =
Fyocoswt, Gy = 0, with Fg = Fy\/2sin kr /2.

The first step is to recast Egs. (29a-c) into the following firs
order system:

(31a)
(31b)

Dk =Tk
G = Sk
K

7 = Fro cos wt — 2Epwrry — W/%pk - N Z i’m2p;, (31c)
i=1

K
S = —28@0KSk — DRqr — NZiZWQQi, (31d)
1=1
OfN——ZZz (P? + ¢2), (31e)
=1 j=1
If we define the vector of unknowns
T
zt) = [p1..-pxq1 ... qxr1...TKS1 ... Sk N]7, the
mass, constant, linear and quadratic termgz), c(w,t),

l(z,w,t) andq(z, z,w, t) are easily defined by comparing (31a-
e) to (21) (Since the system is non-autonomous, the bifiorcat
parameter is\ = w).

The Jacobian used for the stability computation is the one as
sociated to the dynamical system (31a-d), without equd8ar)
which is static. It can be written in the form of (23):

o I 0 0 o 0
J(t) = [_KO _CJ + [—KL(t) 0} * [_KQ(t) 0}
2 )
Ko = [“f) woz} 002{2%%25?@]’ bk

0 2.2}, i=1,... K

Ko(t) = whe, | WPPI PG 5y g
o(®) g [Z]pi%’ 1J4iq; T

In the above definitions, all matrices exceptre of size2K x
2K, 0 being filled with zeros and being the identity matrix.

Results
The simulations presented below have been performed fc
a string of circular cross section, so that= 7¢?/4 andI =

Thanks to the above described mixed formulation (the un- 7¢°/64, with the following physical parametergi = 0.5 mm,

knowns are the two displacementsw and the axial forceV),

L = 650 mm, p = 7800 kg/m®, E = 200 GPa,N, = 281.9 N so

Copyright © 2010 by ASME
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Amplitude
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3.45 35

1 = 1 1 1 1 1
3.1 3.15 3.2 3.25 3.3 3.35 34
Excitation frequency w

Phase [rtrad]

3.25 3.3 3.35 34 3.45 35
Excitation frequency w

1
3.1 3.15 3.2

FIGURE 1. RESONANCE CURVES OF THE STRING: AMPLI-
TUDE AND PHASE OF THE FIRST HARMONIC OF THE FIRST
MODAL COORDINATE OF BOTH y AND z POLARIZATIONS
(p1(t) AND qi(t)) AS A FUNCTION OF EXCITATION FRE-
QUENCY w. SIMULATIONS WITH HBM-ANM, STABILITY WITH
THE HILL METHOD, WITH H = 5 HARMONICS. '—: STA-
BLE BRANCHES; * - UNSTABLE BRANCHES. 'SN': SADDLE-
NODE BIFURCATION; 'PF’; PITCHFORK BIFURCATIONpby, gb;:
y,2-POLARIZATIONS OFi-TH COUPLED BRANCH.

that the fundamental frequency fs = w1 /(27Ty) = 330 Hz.

It approximately corresponds to the E4 string of a Guitare Th
small parameters arg = 5.15- 1075, &5 = 8.24 - 10°. The
detuning parameter has been adjustegsat 0.001, the damp-
ing is frequency proportionalt;, = 10~3w;, /w;, for all k, and
the external force i$, = 0.1 N.

Figure 1 shows the results of the HBM-ANM-Hill method
applied to the string model of Egs. (31). Only the first har-
monic of the first modal coordinates(¢) andg; (¢) of both po-
larizations are shown as a function of the excitation freqyev.
The shapes of the branches are qualitatively conform tortks o
obtained by perturbation methods for strings (seg[16, 21])

20

I v pol.
I - pol.

15

10

Amplitude

HO H1 H2 H3 H4 H5
Harmonic number

FIGURE 2. AMPLITUDE OF THE H = 5 SIMULATED HAR-
MONICS, FOR BOTH POLARIZATIONS WITHK = 3 MODES RE-
TAINED IN THE TRUNCATION, AT THE SN; POINT OF FIG. 1.

SNy

= =
3 o 3

o

q,-z polarization

-5

-10 -5 0 5 10 15
P,y polarization

FIGURE 3. MOTION OF ONE POINT OF THE STRING IN THE
(y, z)-PLANE, FOR VARIOUS POINTS OF COUPLED STABLE
BRANCHESb; AND b,.

and for circular plates [11, 12]. By increasing the exoiati
frequency, a pitchfork (PF) bifurcation is first observedjnyg
birth to one unstable uncoupled branch (withzpolarization,
¢1(t) = 0) and two stable coupled branches with both non-zerc
y andz polarizations. The stability has been determined by the
Hill method. The saddle node (SN) bifurcations are pregisel
located at the turning points (the points with a verticabamt),
thus validating our method [24]. The major interest of this n
merical method, as compared to analytical perturbatiomaots,
is that all unstable branches are automatically obtainedaae
found to be connected to one another. All simulations haea be
obtained by truncating the Fourier seriedfo= 5 harmonics.
Another advantage of this numerical method is that the con
vergence, in term of harmonics number and modal truncatior
can be precisely checked. Several simulations have been pe
formed, by retaining up té/ = 5 harmonics and< = 3 modes

Copyright © 2010 by ASME
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FIGURE 4. THE 4 FLOQUET MULTIPLIERS MODULI |p,| AS
FUNCTIONS OF THE EXCITATION FREQUENCYw, CORRE-
SPONDING TO THE SIMULATION OF FIG. 1 WITHK = 1 AND
H = 5, WITHOUT THE MAIN UNSTABLE BRANCH. 'o": p,
COMPUTED WITH THE HILL METHOD; ’e’: p, COMPUTED
WITH THE TIME DOMAIN DETERMINATION OF THE MON-
ODROMY MATRIX, FOR VARIOUS NUMBERSN, OF TIME SAM-
PLES PER PERIOD (URV, = 2000; BOTTOM: N, = 6000). GRAY
REGION CORRESPOND TO UNSTABLE PERIODIC SOLUTION.

in the truncation. In this case, it has been found tHat= 3

TABLE 1. RELATIVE (ABSOLUTE) TIME TO COMPUTE THE
DIAGRAMS OF FIG. 1 WITH THE HBM-ANM CONTINUATION
METHOD ON A STANDARD DESK PC WITH MATLAB R2007-
B, INCLUDING THE STABILITY COMPUTATION WITH THE

HILL METHOD AND WITH THE TIME INTEGRATION METHOD

TO COMPUTE THE MONODROMY MATRIX WITH Ny SAMPLE
POINTS OVER ONE PERIOD.

No stab. Hill Time-domain
Ny = 2000 Ny = 6000
1(182s) 1.11(202s) 6.34(1155s) 16.63 (3026 s)
0.05 .
Sl'l
al’]

© 9 000

G Or )
| |
T O\
-0.05 . . . N
3.1 3.15 32 3.25 33 3.35 34
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FIGURE 5. REAL PART OF EIGENVALUES OFH AS A FUNC-

TION OF THE EXCITATION FREQUENCYw, CORRESPONDING
TO THE SIMULATION OF FIG. 1 WITHK = 1 AND H = 5,

WITHOUT THE MAIN UNSTABLE BRANCH. 'e: ALL ¢, FOR

n =1...4AND k = 0,+1,...,+H; 'o" an, n = 1...4

COMPUTED WITH THE HILL METHOD. GRAY REGION CORRE-
SPOND TO UNSTABLE PERIODIC SOLUTION.

whereas it is a-7/2 phase difference for branch lfcompare
gbs andphby). This explains the almost circular orbits of Fig. 3
(they would be perfectly circular if both polarization hauet
same amplitude) and also that the string motion is clock¥dse

harmonics and< = 1 mode give a very accurate model, with  b; and counterclockwise for,b
almost zero truncation errors for this excitation amplgudnge. The performance of the Hill method for computing the sta-
This can be observed on Fig. 2, that shows that only the first bility is now addressed. Figure 4 enables to compare ouilisgab
harmonics ofp, (t) andq,(t) have a significant amplitude. A  results to those obtained with a classical time domain ntetho
conclusion is that no noticeable non-linear coupling iseobsd The latter consists in integrating (6) in time over one pexidth
between the first modé: (= 1) and higher order mode$ (> 1). initial conditionsY (0) = I, wherel is the N x N identity ma-
The stable coupled regime of the branches between PF andtrix. Then, the monodromy matrix is simp# = Y (T") and
SN; bifurcations of Fig. 1 can be observed on Fig. 3. Two dif- the stability is obtained by comparing the Floquet mulési
ferent branches (band by of Fig. 1) share the same amplitude p,, moduli (its eigenvalues) to one. The time-integration ische
with different phases: the-polarization of branch p(gb;) has performed by a fourth-order Runge-Kutta algorithm. As com-
a-+n /2 phase difference as compared to ghpolarization pb;) pared to the Hill method, one has to set an additional paemet

8 Copyright © 2010 by ASME



the numberN, of sample points over the computed period for
the numerical integration. Figure 4 shows,|, n = 1,...4,
as a function ofv, computed with the Hill method as well as
with the above described time-domain method, with varials v
ues of N. It shows that the Hill method appears as a limit to
the time domain method as; is increased. EveiV, = 6000
time integration points over the computed period are ndi-suf
cient to recover the right stability results and especitdlplace
the saddle-node bifurcation points at the turning pointshef
solution branches. This large amount of integration poiots
the time-domain method is also related to an increased compu
tational cost, as compared to the Hill method. Table 1 shows
the needed running time to compute the continuation diagram
of Figure 4. The frequency method is by far the more efficient
approach to obtain the continued stability map of the dyeami
system.

Figure 5 highlights the relevance of our strategy to sort the
most converged eigenvalues among all the compéftedSince
for a givenn, the real parts of the!, are equal®(s!,) = R(a,,)
forall I = 0,+1,...,+00), it would be theoretically possible
to use any of them to determine the periodic solution stgbili
However, among the truncated spectréy it may exists a set
of eigenvalues with a real part that leads to erroneousliyabi
predictions, for values df| close toH, which is clearly shown
on Figure 5. Thus, a stability criterion based on the comside
ation of the real part of all eigenvalues would have led to-err
neous results. Sorting the most symmetric eigenvedlpseems
definitely a simple and correct method to follow tNemore con-
vergent physical eigenvalues among all the numerical ones.

CONCLUSION

In this article, a purely frequency-based numerical method
to determine the local stability of periodic solutions ofhdyni-
cal systems, based on computing the eigenvalues of thegmnobl
Hill matrix, has been presented. Its efficiency, in term afuac
racy and computation time, has been shown when associated to
a harmonic balance based continuation method. While the mon-
odromy matrix is simply a by-product of a shooting continua-
tion method in the time-domain approach, here, the Hill madr
simply a by-product of a harmonic-balance continuationhoet
in the frequency domain. The main interest of this methodclvh
explains its efficiency, is that there is no need to switcimfiane
domain to another for computing the stability.
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