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ABSTRACT
In this paper, we present a validation on a practical example

of a harmonic-based numerical method to determine the local
stability of periodic solutions of dynamical systems. Based on
Floquet theory and Fourier series expansion (Hill method),we
propose a simple strategy to sort the relevant physical eigenval-
ues among the expanded numerical spectrum of the linear pe-
riodic system governing the perturbed solution. By mixing the
Harmonic Balance Method and Asymptotic Numerical Method
continuation technique with the developed Hill method, we ob-
tain a purely-frequency based continuation tool able to compute
the stability of the continued periodic solutions in a reduced com-
putation time. This procedure is validated by considering an ex-
ternally forced string and computing the complete bifurcation di-
agram with the stability of the periodic solutions. The particular
coupled regimes are exhibited and found in excellent agreement
with results of the literature, allowing a method validation.

Introduction
Determining the local stability of a dynamical system pe-

riodic solution is of primary interest in an engineering con-
text since only stable solutions are experimentally encountered.
Moreover, a change in the stability can lead to significant quali-
tative, and possibly dramatic, changes in the system response. A

∗Address all correspondence to this author.

commonly-used method consists in computing the monodromy
matrix of the linear periodic system governing the evolution of
the perturbed solution and compare its eigenvalues (Floquet mul-
tipliers) moduli to one. Two well known numerical strategies are
classically used. The first technique consists in a time-integration
of the Jacobi matrix of the initial dynamical system over onepe-
riod [1]. In the second technique, the monodromy matrix is sim-
ply a by-product of a shooting continuation method [2].

The efficiency of those methods has been proved for years,
but, inherently, the eigenvalues accuracy depends on the chosen
time-step size, leading to possible long time computations. Fur-
thermore, those time-domain approaches are not necessarily best
suited for nonlinear periodic solution computed, for instance,
with a harmonic balance method. In the latter, eigenvalues of
the linear operator can naturally be computed with Hill’s method
also based on Fourier series expansion. This harmonic-based
method deals with linear periodic systems and has been intro-
duced by Hill one century ago for the determination of the lunar
perigee [3]. Since then, it has been applied to a wide range of
physical problems like the computation of energy eigenvalues
of the Schr̈odinger equation [4,5], the stability of limit cycles in
electrical circuits [6] or the vibratory behavior of flexible rotating
machines [7,8]. However, although Hill’s method often provides
satisfactory results, the meaning of the computed eigenvalues is
generally misunderstood and may lead to wrong results. Actu-
ally, this method is not of a trivial use since it requires to approx-
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imate the spectra of infinite-dimensional operators,i.e. to sort
the most converged eigenvalues among all the numerical ones.

A recent work of the authors proposes a simple numeri-
cal strategy to sort these eigenvalues and therefore properly de-
terminate the stability of periodic solutions of dynamicalsys-
tems [9]. A simple criterion, based on the energy distribution of
the computed eigenvectors, is proposed and enables to extract the
most converged eigenvalues (Floquet exponents) of the truncated
problem, and therefore determinate the local stability of the solu-
tion. By mixing the standard harmonic balance method with the
so-called asymptotic numerical method continuation technique
based on the quadratic recast of the dynamical system [10], it be-
comes a straightforward and efficient procedure to continuethe
periodic solutions as well as their associated Floquet exponents.
Whereas the case of a forced Duffing oscillator is proposed in [9]
as a validation example, this article focuses on another one.

The main features of the developed harmonic-based contin-
uation tool are first exposed. Then, the case of an externallyex-
cited string is considered. This problem is interesting since it ex-
tends the results obtained on the Duffing oscillator in two ways.
Firstly, more than one mechanical degree of freedom is included.
Secondly, since both transverse polarizations are considered in
the model, one-to-one internal resonances are present, allowing
a particularly complicated bifurcation diagram and showing sev-
eral stable and unstable solutions as well as additional pitchfork
bifurcations. Finally, this problem is qualitatively similar to the
one of a perfect circular plate, where one to one resonances are
observed between companion modes due to the symmetry of rev-
olution. In the case of the string, out of plane motion are ob-
served, which are equivalent to the travelling waves observed for
the circular plate [11,12].

STABILITY OF PERIODIC SOLUTIONS
General formulation

We consider continuous-time dynamical systems governed
by the general equation

ẋ (t) = f
(

x (t) , t, λ
)

(1)

wherex is aN -dimensional state vector andf is a nonlinearN -
dimensional vector field that depends on a control parameterλ.
In the following,f may explicitly depends ont (the system is
non-autonomous) or not (the system is autonomous).

We consider a periodic solutionx0 (t) of (1), with minimal
periodT , at the particular control parameter valueλ = λ0. The
stability of this periodic solution is studied by superimposing a
small disturbancey (t):

x (t) = x0 (t) + y (t) . (2)

Substituting (2) into (1), assuming thatf is at least twice con-
tinuously differentiable, expanding the result in a Taylorseries
aboutx0, and retaining only linear terms in the disturbance, we
obtain:

ẏ (t) = J (t)y (t) (3)

with

J (t) = J
(

x0 (t) , t, λ0

)

=
∂f

∂x

(

x0 (t) , t, λ0

)

. (4)

J (t) is theN × N Jacobi matrix off , atx = x0 andλ = λ0.
The stability study of periodic solutionx0 consists in finding if
the disturbancey(t) solution of (3) fades away or is amplified
ast is increased. Sincex0(t) is T -periodic in time,J(t) is also
T -periodic in time considering its definition (4). Consequently,
the system (3) is a linear system with periodic coefficients.The
Floquet theory [13, 14], used in the following, specificallydeals
with this kind of dynamical systems.

Floquet theory
The following developments are classical and can be found

e.g. in the textbooks [1, 15]. TheN -dimensional linear system
(3) hasN linearly independent solutionsyn(t), so that any solu-
tion y(t) of (3) can be written:

y (t) =

N
∑

n=1

cnyn (t) (5)

wherecn areN constants that depend upon the initial conditions.
First of all, we gather these fundamental solutions into aN ×
N matrix: Y (t) = [y1(t)y2(t) . . . yN (t)]. Since anyyn(t)
verifies (3), it is obvious thatY (t) verifies

Ẏ (t) = J(t)Y (t). (6)

By recalling thatJ(t) is T -periodic, one obtains

ẏn(t+ T ) = J(t+ T )yn(t+ T ) = J(t)yn(t+ T ), (7)

so thatyn(t + T ) verifies the system (6). Consequently, since
the yn(t) areN independent fundamental solutions of (3), the
yn(t+ T ) can be expressed as linear combinations of theyn(t).
It thus exists aN ×N constant matrixΦ, called the monodromy
matrix, so that:

Y (t+ T ) = Y (t)Φ. (8)
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This matrix can be used to study the stability of the periodicsolu-
tion x0(t) since it maps a particular set of fundamental solution
Y (t) at time t into their values at timet + T , thus defining a
Poincaŕe map. The stability study is conducted by considering
the eigenvaluesρn of Φ, the so-called Floquet multipliers.

Considering again the fundamental solutions introduced
above, everyyn (t), for all n = 1, . . . , N , can be expressed in
the Floquet form

yn(t) = pn (t) e
αnt (9)

wherepn (t+ T ) = pn (t) is aT -periodicN -dimensional com-
plex vector andαn is a complex number. Then, it follows from
(9) and from theT -periodicity ofpn that

yn(t+ T ) = pn (t+ T ) eαn(t+T ) = yn (t) e
αnT . (10)

The above equation, compared to Eq. (8), proves that theαn are
linked to the Floquet multipliers by, for alln = 1, . . . , N :

ρn = eαnT ⇔ αn =
1

T
ln ρn+

2πk

T
i, k = 0,±1,±2, . . . .

(11)
The αn represent the so-called Floquet exponents. Whereas
the Floquet multipliers are uniquely defined, the above equa-
tion shows that theαn are unique to within an additive integer
multiple of 2iπ/T [14]. This last result can also be viewed by
replacingαn by αn + 2ikπ/T in (10).

Considering Eqs. (8), (9) or (10), the values of either the
Floquet multipliersρn or the Floquet exponentsαn can be used
to determine the stability of periodic solutions.

If ℜ(αn) < 0 (or |ρn| < 1) for all n, all fundamental so-
lutionsyn converge toward zero ast is increased, so as dis-
turbancey(t). The periodic solution is said to be asymptot-
ically stable;
If it exists a subscriptn such thatℜ(αn) > 0 (or |ρn| > 1),
the corresponding fundamental solutions increase exponen-
tially, so as for some disturbancesy(t). The periodic solu-
tion is unstable in this case.

The above statement stands for non-autonomous initial sys-
tems (1). If the initial system (1) is autonomous, one of the Flo-
quet multipliers is alwaysρn = 1. In this circumstances, only
the set of remaining eigenvalues can provide information onthe
periodic solution stability.

Hill’s method
Hill’s method is a harmonic-based numerical approach used

to determine the solutions of linear periodic systems like (3),

which is used here to calculate the Floquet exponentsαn. This
method has been widely used together with perturbation meth-
ods to analytically obtain the stability of periodic solutions, for
instance in the case of the Mathieu equation (seee.g.[16]).

The unknown periodic functionspn (t) introduced in (9) are
expressed by the general Fourier series

pn(t) =

+∞
∑

k=−∞

pk
ne

ikωt (12)

where the fundamental frequencyω readsω = 2π/T andpk
n

areN dimensional complex vectors. By replacing (12) in the
Floquet form (9), any fundamental solutionyn (t) is an infinite
sum of harmonic contributions

yn (t) =
+∞
∑

k=−∞

pk
ne

(αn+ikω)t. (13)

BeingT -periodic as well, the Jacobian matrixJ (t) is also ex-
panded in the infinite Fourier series

J (t) =
+∞
∑

h=−∞

Jheihωt, (14)

where theJh areN × N matrices. By replacing the solution
yn (t) and the JacobianJ (t) by their Fourier series in the linear
periodic system (3), one obtains the following vector equation,
for all n = 1, . . . , N :

+∞
∑

k=−∞

(αn + ikω)pk
ne

(αn+ikω)t =

+∞
∑

k=−∞

+∞
∑

h=−∞

Jhpk
ne

[αn+i(k+h)ω]t. (15)

Since the sums have an infinite number of term, replacing super-
scriptk by k− h in the left hand side term of the above equation
does not changes it. It leads to, for alln = 1, . . . , N :

+∞
∑

k=−∞

[

+∞
∑

h=−∞

Jhpk−h
n − (αn + ikω)pk

n

]

e(αn+ikω)t = 0.

(16)
By applying the harmonic balance method to the above equa-
tion, i.e. by separately equating to zero each harmonic of (16)
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(for each value ofk), the above equation can be rewritten in the
following infinite-dimensional eigenproblem

(H − sI) q = 0 (17)

whereH is the infinite-dimensional Hill matrix

H =

















. . .
...

...
... . .

.

· · · J0 + iωI J−1
J
−2 · · ·

· · · J
1

J
0

J
−1 · · ·

· · · J
2

J
1

J
0 − iωI · · ·

. .
. ...

...
...

. ..

















, (18)

s is a complex number,q is an infinite dimensional vector andI
is the identity matrix of appropriate size.

By comparing (17) and (16), the eigenvalues and eigenvec-
torss andq are related toαn andpn by the following relations:

sln = αn+ilω and qlT
n =

[

. . . p−1−l
n p0−l

n p1−l
n . . .

]

(19)

valid for all l = 0,±1, . . . ± ∞ and n = 1, . . . , N . In the
above equation,•T means the vector transpose of•. The above
relations show that each Floquet exponentαn, for a givenn,
is associated to an infinite set of eigenvaluessln, for all l =
0,±1, . . . ± ∞. Consequently, knowing the infinite set ofsln
would enable to calculate theαn and then to assess the periodic
solution stability.

However, for evident practical purposes and numerical com-
putations, the infinite-dimensional problem (16)-(18) is trun-
cated to a finite dimension. Namely, matrixH is truncated to a
N(2H+1)×N(2H+1) dimension, so thatl = 0,±1, . . . ,±H
in (19). Letŝln andq̂l

n denote theN(2H+1) approximate eigen-
solutions of Eq. (17). If theαn are to be computed, two questions
need to be solved: (1) do the(ŝln, q̂

l
n) tend to(sln, q

l
n) asH tends

to infinity and (2) for a givenn, among all the computed̂sln,
which ones, asl is varied, can be used to computeαn.

Firstly investigated by Poincaré [17] more than one cen-
tury ago, those questions were still arguing twenty years ago, in
particular for the computation of Schrödinger equation [4]. Re-
cently, papers based on Fredholm theory provide rigorous proof
of the convergence [18,19].

However, a delicate issue remains the choice of the eigenso-
lutions of the truncated problem that can be used in a numerical
procedure to evaluate theαn, n = 1, . . . , N . A simple idea con-
sists in analysing the truncated problem eigenvectors distribution

q̂lT
n =

[

p−H−l
n . . . p0−l

n . . . pH−l
n

]T
and considering the one

associated tol = 0:

ŝ0n = αn and q̂0T
n =

[

p−H
n . . . p−1

n p0
n p1

n . . . pH
n

]

.
(20)

Since all the above developments are based on the assumption
that the Fourier series (12) and (14) are convergent (pk

n tends to
zero ask tends to infinity), among all the computed eigenvectors,
the components of theN ones associated withl = 0 (the q̂0

n)
have almost symmetric shapes since they involve only thepk

n

with |k| < H. For this reason, we assume that theq̂0
n converge

faster toq0
n than the others, forl 6= 0.

With the above assumption, the numerical procedure to com-
pute theN Floquet exponentsαn is the following. The Hill ma-
trix H, truncated to orderH is assembled and itsN(2H + 1)
eigensolutions(ŝln, q̂

l
n) computed. Then, theN ones associated

to l = 0 are numerically selected by considering that theN
eigenvectorŝq0

n are theN ones with the most symmetric shapes.
TheN associated eigenvalues are then theN Floquet exponents:
αn = ŝ0n, n = 1, . . . , N . Their real part is then compared to0 to
assess the stability of the periodic solution.

THE HBM-ANM-HILL METHOD
One of the crucial point in the numerical method mentioned

above is the expansion of the JacobianJ(t) in Fourier series
(Eq. (14)). Indeed, in the most general situation, the nonlinear
evolution equation (1) shows nonlinearities of any kinds and the
same is true for the Jacobian dependence on the periodic solu-
tion. Therefore, computation of its Fourier coefficientsJh can
be very cumbersome.

However, in the special case where the harmonic-balance
method (HBM) combined with the asymptotic numerical method
(ANM) is used to compute the Fourier coefficients of the periodic
solutionx0 (as explained in [10]), the computation of theJh

is rendered very efficient. The leading idea, also used for the
ANM, is to systematically recast the dynamical system (1) ina
quadratic polynomial form. From (1), the new quadratic system
can be written as follows

m (ż) = c (λ, t) + l (z, t, λ) + q (z, z, t, λ) (21)

wherec, l (·), q (·, ·) are constant, linear and quadratic operators
in z, respectively, andm (·) is a linear operator. The unkown
vectorz contains the original components of the state vectorx

and some new variables added to get the quadratic form. This
procedure is fully explained in [10], which also shows that this
quadratic recast can be applied to a large class of smooth sys-
tems with a few algebraic manipulations and a few additions of
auxiliary variables.

A periodic solution of (21), of minimal periodT = 2π/ω,
is expanded into the Fourier series

z0 (t) =

H
∑

p=−H

z
p
0e

ipωt. (22)
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The HBM combined to the ANM continuation method enables to
compute thezp

0 , p = −H, . . . ,H andω for various contiguous
values ofλ, detect possible bifurcations and compute different
branches of solutions. For externally driven systems, the control
parameter is often the forcing frequencyλ = ω. Assuming the
quadratic recast (21), for anyλ = λ0, the JacobianJ (t) defined
by (4) may be expressed in the form

J (t) = JC (λ0, t)+JL (z0 (t) , t, λ0)+JQ (z0 (t) , z0 (t) , t, λ0)
(23)

whereJC , JL (·) andJQ (·, ·) are constant, linear and quadratic
N × N matrices with respect toz0. From then, it becomes
straightforward to find the Fourier coefficientsJh of J(t) as
functions of those ofz0(t). For each parameterλ0, the Hill ma-
trix H is expressed in terms of the already computedz

p
0 andω

and the stability of the periodic solutionx0 (t) is simply obtained
following the previous Hill’s method.

The selection of theN eigenvectorsq0
n among theN(2H +

1) eigenvectors of (17) is done by computing for eachql
n, l =

−H, . . . ,H, n = 1, . . . , N , the median value of its components
moduli. If qi is thei-th component of vectorq of dimensionQ =
N(2H + 1), the median is

∑

i i|qi|/
∑

i |qi|. The selectedq0
n

are theN ones with the median value closest toQ/2, which are
supposed to have the most symmetrical shape. Knowing those
eigenvectors, theN corresponding eigenvalues are theαn, used
for the stability study.

VALIDATION EXEMPLE: A FORCED STRING

Theoretical model

The case of a forced hardening Duffing oscillator is pre-
sented in details in [9]. Here, this example is extended to the
case of an externally excited string. Many works have focused
on non-linear vibrations of strings in the past and the possible
destabilization of the in-plane motion giving birth to out of plane,
possibly circular, motions, due to one to one internal resonances
between the two transverse polarizations. Among others, the
interested reader can refer to [20] for an early qualitativeex-
planation of the out of plane motion, to [21, 22] for a two de-
grees of freedom model analytically solved to obtain the solution
branches as well as their stability, to [23] for experimental re-
sults. This problem shows qualitative similarities with nonlinear
vibrations of circular plates, where the one to one internalreso-
nance occurs between companion modes, giving birth to travel-
ling waves [11,12].

Following [16], the nonlinear equations of motions of a vi-

brating string can be written:























ρSv̈ + EIv,xxxx − (N0 +N)v,xx = fy,

ρSẅ + EIw,xxxx − (N0 +N)w,xx = fz,

N =
ES

2L

∫ L

0

(

v2,x + w2
,x

)

dx

(24a)

(24b)

(24c)

In the above equations,x is the axial position,(v, w) are the two
transverse displacements in they andz directions,N0 is the ini-
tial axial tension in the string,N is the axial tension added by
the non-linear coupling with the transverse motion,fy andfz are
the two components of the external force per unit length.L is the
string length;ρ andE denote respectively the mass density and
the Young’s modulus of the string material;S andI are respec-
tively the string cross section area and second moment. Finally, •̇
and•,x denote the first partial derivative of• with respect to time
t andx, respectively. These equations are based on the classical
von Kármán approximation that consists in keeping in the axial
strain the first non-linear terms. The flexural rigidity effect has
also been included.

In order to obtain a model with a minimum number of free
parameters, Eqs. (24a-c) are transformed by introducing the fol-
lowing dimensionless parameters:

x̄ =
x

L
, v̄, w̄ =

v, w

φ
, t̄ =

t

T0
, N̄ =

N

N0
, f̄i =

fi
f0

.

with i = y, z. φ is the string cross section diameter.T0 andf0 are
a time constant and a force constant, whose values (given below)
are fixed so as to minimize the number of free parameters. One
then obtains:



















v̈ + ε1v,xxxx − v,xx −Nv,xx = fy,

ẅ + ε1w,xxxx − w,xx −Nw,xx = fz,

N =
ε2
2

∫ 1

0

(

v2,x + w2
,x

)

dx

(25a)

(25b)

(25c)

where all the overbars have been dropped since all quantities are
now dimensionless. The following parameters have been intro-
duced:

ε1 =
EI

N0L2
, ε2 =

EAφ2

N0L2
, T0 = L

√

ρS

N0
, f0 =

φN0

L2
.

ε1 is the ratio between flexural and axial stiffnesses andε2 is a
measure of the non-linear terms amplitude. Those two parame-
ters are often very small as compared to 1.
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A solution to Eqs. (25a-c) is obtain by the following trun-
cated modal expansion:

v(x, t) =

K
∑

k=1

Φk(x)pk(t), w(x, t) =

K
∑

k=1

Φk(x)qk(t), (26)

whereΦk(x) is thek-th deformed shape of the string, solution
of the linear part of Eqs. (25a-c) (i.e. with N = 0), identical for
bothy andz polarizations. It can be written:

Φk(x) =
√
2 sin kπx, ωk =

√

(kπ)2 + ε1(kπ)4, (27)

whereΦk(x) has been normalized so that

∫ 1

0

Φ2
k(x)dx = 1 (28)

andωk is thek-th dimensionless angular frequency.
By introducing Eqs. (26) into (25a-c), multiplying both sides

of equations withΦi(x) and using the orthogonality properties of
the deformed shapes, one finally obtains, for allk = 1, . . . ,K:



















































p̈k + 2ξkωkṗk + ω2
kpk +N

K
∑

i=1

i2π2pi = Fk,

q̈k + 2ξkω̃k q̇k + ω̃2
kqk +N

K
∑

i=1

i2π2qi = Gk,

N =
ε2
2

K
∑

i=1

K
∑

j=1

i2π2(p2i + q2i ).

(29a)

(29b)

(29c)

In the above equations, a viscous damping term has been added,
with modal damping factorξk for thek-th mode. It has also been
chosen to introduce a small detuning between the frequencies of
the two polarizations, by defining̃ωk = ε3ωk, with ε3 a given
small parameter. The forcing terms in (29) are defined by:

{Fk(t), Gk(t)} =

∫ 1

0

{fy(x, t), fz(x, t)}Φk(x)dx. (30)

It must be noted that the same coefficientπ2i2 appears in (29a,b)
and in (29c) becauseΦk(0) = Φk(1) = 0 and the special nor-
malization of (28).

HBM-ANM-Hill formulation
Thanks to the above described mixed formulation (the un-

knowns are the two displacementsv, w and the axial forceN ),

the problem to solve has only quadratic nonlinear terms and is
naturally adapted to the HBM-ANM-Hill method [9, 10]. We
focus on a harmonic forcing with frequencyω, on they po-
larization only, concentrated at the middle of the string. It
writes: fy(x, t) = F0δ(x − 1/2) cosωt, fz = 0, so thatFk =
Fk0 cosωt,Gk = 0, with Fk0 = F0

√
2 sin kπ/2.

The first step is to recast Eqs. (29a-c) into the following first
order system:







































































ṗk = rk

q̇k = sk

ṙk = Fk0 cosωt− 2ξkωkrk − ω2
kpk −N

K
∑

i=1

i2π2pi,

ṡk = −2ξkω̃kṡk − ω̃2
kqk −N

K
∑

i=1

i2π2qi,

0 = N − ε2
2

K
∑

i=1

K
∑

j=1

i2π2(p2i + q2i ),

(31a)

(31b)

(31c)

(31d)

(31e)

If we define the vector of unknowns
z(t) = [p1 . . . pK q1 . . . qK r1 . . . rK s1 . . . sK N ]

T
, the

mass, constant, linear and quadratic termsm(ż), c(ω, t),
l(z, ω, t) andq(z, z, ω, t) are easily defined by comparing (31a-
e) to (21) (Since the system is non-autonomous, the bifurcation
parameter isλ = ω).

The Jacobian used for the stability computation is the one as-
sociated to the dynamical system (31a-d), without equation(31e)
which is static. It can be written in the form of (23):

J(t) =

[

0 I

−K0 −C0

]

+

[

0 0

−KL(t) 0

]

+

[

0 0

−KQ(t) 0

]

K0 =

[

ω2
i 0
0 ω̃i

2

]

, C0 =

[

2ξiωi 0
0 2ξiω̃i

]

, i = 1, . . . ,K

KL(t) = π2N(t)

[

i2 0
0 i2

]

, i = 1, . . . ,K

KQ(t) = π4ε2

[

ijpipj ijpiqj
ijpiqj ijqiqj

]

i, j = 1, . . . ,K.

In the above definitions, all matrices exceptJ are of size2K ×
2K, 0 being filled with zeros andI being the identity matrix.

Results
The simulations presented below have been performed for

a string of circular cross section, so thatS = πφ2/4 andI =
πφ5/64, with the following physical parameters:φ = 0.5 mm,
L = 650 mm,ρ = 7800 kg/m3, E = 200 GPa,N0 = 281.9 N so
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FIGURE 1. RESONANCE CURVES OF THE STRING: AMPLI-
TUDE AND PHASE OF THE FIRST HARMONIC OF THE FIRST
MODAL COORDINATE OF BOTH y AND z POLARIZATIONS
(p1(t) AND q1(t)) AS A FUNCTION OF EXCITATION FRE-
QUENCYω. SIMULATIONS WITH HBM-ANM, STABILITY WITH
THE HILL METHOD, WITH H = 5 HARMONICS. ’—’: STA-
BLE BRANCHES; ’· · ·’: UNSTABLE BRANCHES. ’SN’: SADDLE-
NODE BIFURCATION; ’PF’: PITCHFORK BIFURCATION.pbi, qbi:
y,z-POLARIZATIONS OFi-TH COUPLED BRANCH.’

that the fundamental frequency isf1 = ω1/(2πT0) = 330 Hz.
It approximately corresponds to the E4 string of a Guitar. The
small parameters areε1 = 5.15 · 10−6, ε2 = 8.24 · 10−5. The
detuning parameter has been adjusted atε3 = 0.001, the damp-
ing is frequency proportional:ξk = 10−3ωk/ω1, for all k, and
the external force isF0 = 0.1 N.

Figure 1 shows the results of the HBM-ANM-Hill method
applied to the string model of Eqs. (31). Only the first har-
monic of the first modal coordinatesp1(t) andq1(t) of both po-
larizations are shown as a function of the excitation frequencyω.
The shapes of the branches are qualitatively conform to the ones
obtained by perturbation methods for strings (seee.g. [16, 21])
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FIGURE 2. AMPLITUDE OF THE H = 5 SIMULATED HAR-
MONICS, FOR BOTH POLARIZATIONS WITHK = 3 MODES RE-
TAINED IN THE TRUNCATION, AT THE SN1 POINT OF FIG. 1.

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

q 1 −
 z

 p
ol

ar
iz

at
io

n

p
1
 − y polarization

SN1

PF

b2 b1

FIGURE 3. MOTION OF ONE POINT OF THE STRING IN THE
(y, z)-PLANE, FOR VARIOUS POINTS OF COUPLED STABLE
BRANCHESb1 AND b2.

and for circular plates [11, 12]. By increasing the excitation
frequency, a pitchfork (PF) bifurcation is first observed, giving
birth to one unstable uncoupled branch (with noz-polarization,
q1(t) = 0) and two stable coupled branches with both non-zero
y andz polarizations. The stability has been determined by the
Hill method. The saddle node (SN) bifurcations are precisely
located at the turning points (the points with a vertical tangent),
thus validating our method [24]. The major interest of this nu-
merical method, as compared to analytical perturbation methods,
is that all unstable branches are automatically obtained and are
found to be connected to one another. All simulations have been
obtained by truncating the Fourier series toH = 5 harmonics.

Another advantage of this numerical method is that the con-
vergence, in term of harmonics number and modal truncation,
can be precisely checked. Several simulations have been per-
formed, by retaining up toH = 5 harmonics andK = 3 modes
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FIGURE 4. THE 4 FLOQUET MULTIPLIERS MODULI |ρn| AS
FUNCTIONS OF THE EXCITATION FREQUENCYω, CORRE-
SPONDING TO THE SIMULATION OF FIG. 1 WITHK = 1 AND
H = 5, WITHOUT THE MAIN UNSTABLE BRANCH. ’◦’: ρn

COMPUTED WITH THE HILL METHOD; ’•’: ρn COMPUTED
WITH THE TIME DOMAIN DETERMINATION OF THE MON-
ODROMY MATRIX, FOR VARIOUS NUMBERSNs OF TIME SAM-
PLES PER PERIOD (UP:Ns = 2000; BOTTOM:Ns = 6000). GRAY
REGION CORRESPOND TO UNSTABLE PERIODIC SOLUTION.

in the truncation. In this case, it has been found thatH = 3
harmonics andK = 1 mode give a very accurate model, with
almost zero truncation errors for this excitation amplitude range.
This can be observed on Fig. 2, that shows that only the first
harmonics ofp1(t) and q1(t) have a significant amplitude. A
conclusion is that no noticeable non-linear coupling is observed
between the first mode (k = 1) and higher order modes (k > 1).

The stable coupled regime of the branches between PF and
SN1 bifurcations of Fig. 1 can be observed on Fig. 3. Two dif-
ferent branches (b1 and b2 of Fig. 1) share the same amplitude
with different phases: thez-polarization of branch b1 (qb1) has
a+π/2 phase difference as compared to they-polarization (pb1)

TABLE 1 . RELATIVE (ABSOLUTE) TIME TO COMPUTE THE
DIAGRAMS OF FIG. 1 WITH THE HBM-ANM CONTINUATION
METHOD ON A STANDARD DESK PC WITH MATLAB R2007-
B, INCLUDING THE STABILITY COMPUTATION WITH THE
HILL METHOD AND WITH THE TIME INTEGRATION METHOD
TO COMPUTE THE MONODROMY MATRIX WITHNs SAMPLE
POINTS OVER ONE PERIOD.

No stab. Hill Time-domain

Ns = 2000 Ns = 6000

1 (182 s) 1.11 (202 s) 6.34 (1155 s) 16.63 (3026 s)
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FIGURE 5. REAL PART OF EIGENVALUES OFH AS A FUNC-
TION OF THE EXCITATION FREQUENCYω, CORRESPONDING
TO THE SIMULATION OF FIG. 1 WITH K = 1 AND H = 5,
WITHOUT THE MAIN UNSTABLE BRANCH. ’•’: ALL ŝkn, FOR
n = 1 . . . 4 AND k = 0,±1, . . . ,±H; ’◦’: αn, n = 1 . . . 4

COMPUTED WITH THE HILL METHOD. GRAY REGION CORRE-
SPOND TO UNSTABLE PERIODIC SOLUTION.

whereas it is a−π/2 phase difference for branch b2 (compare
qb2 andpb2). This explains the almost circular orbits of Fig. 3
(they would be perfectly circular if both polarization had the
same amplitude) and also that the string motion is clockwisefor
b1 and counterclockwise for b2.

The performance of the Hill method for computing the sta-
bility is now addressed. Figure 4 enables to compare our stability
results to those obtained with a classical time domain method.
The latter consists in integrating (6) in time over one period with
initial conditionsY (0) = I, whereI is theN ×N identity ma-
trix. Then, the monodromy matrix is simplyΦ = Y (T ) and
the stability is obtained by comparing the Floquet multipliers
ρn moduli (its eigenvalues) to one. The time-integration is here
performed by a fourth-order Runge-Kutta algorithm. As com-
pared to the Hill method, one has to set an additional parameter:
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the numberNs of sample points over the computed period for
the numerical integration. Figure 4 shows|ρn|, n = 1, . . . 4,
as a function ofω, computed with the Hill method as well as
with the above described time-domain method, with various val-
ues ofNs. It shows that the Hill method appears as a limit to
the time domain method asNs is increased. EvenNs = 6000
time integration points over the computed period are not suffi-
cient to recover the right stability results and especiallyto place
the saddle-node bifurcation points at the turning points ofthe
solution branches. This large amount of integration pointsfor
the time-domain method is also related to an increased compu-
tational cost, as compared to the Hill method. Table 1 shows
the needed running time to compute the continuation diagrams
of Figure 4. The frequency method is by far the more efficient
approach to obtain the continued stability map of the dynamical
system.

Figure 5 highlights the relevance of our strategy to sort the
most converged eigenvalues among all the computedŝln. Since
for a givenn, the real parts of thesln are equal (ℜ(sln) = ℜ(αn)
for all l = 0,±1, . . . ,±∞), it would be theoretically possible
to use any of them to determine the periodic solution stability.
However, among the truncated spectrumŝln, it may exists a set
of eigenvalues with a real part that leads to erroneous stability
predictions, for values of|l| close toH, which is clearly shown
on Figure 5. Thus, a stability criterion based on the consider-
ation of the real part of all eigenvalues would have led to erro-
neous results. Sorting the most symmetric eigenvectorsq̂l

n seems
definitely a simple and correct method to follow theN more con-
vergent physical eigenvalues among all the numerical ones.

CONCLUSION
In this article, a purely frequency-based numerical method

to determine the local stability of periodic solutions of dynami-
cal systems, based on computing the eigenvalues of the problem
Hill matrix, has been presented. Its efficiency, in term of accu-
racy and computation time, has been shown when associated to
a harmonic balance based continuation method. While the mon-
odromy matrix is simply a by-product of a shooting continua-
tion method in the time-domain approach, here, the Hill matrix is
simply a by-product of a harmonic-balance continuation method
in the frequency domain. The main interest of this method, which
explains its efficiency, is that there is no need to switch from one
domain to another for computing the stability.
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Bulletin de la Socíet́e Math́ematique de France,14, pp. 77–
90.

[18] Zhou, J., Hagiwara, T., and Araki, M., 2004. “Spectral
analysis and eigenvalues computation of the harmonic state
operators in continuous-time periodic systems”.Systems &
control letters, 53, pp. 141–155.

[19] Curtis, C. W., and Deconinck, B., 2010. “On the conver-
gence of Hill’s method”.Mathematics of computation,79,
pp. 169–187.

[20] Harrison, H., 1948. “Plane and circular motion of a
string”. Journal of the Acoustical Society of America,
20(6), pp. 874–875.

[21] Miles, J. W., 1965. “Stability of forced oscillations of a vi-
brating string”.Journal of the Acoustical Society of Amer-
ica, 38(5), pp. 855–861.

[22] Miles, J. W., 1984. “Resonant, nonplanar motion of a
stretched string”. Journal of the Acoustical Society of
America, 75(5), pp. 1505–1510.

[23] Hanson, R. J., Anderson, J. M., and Macomber, H. K.,
1994. “Measurements of nonlinear effects in a driven vi-
brating wire”.Journal of the Acoustical Society of America,
96(3), pp. 1549–1556.

[24] Szemplinska-Stupnicka, W., 1990.The Behavior of Nonlin-
ear Vibrating Systems: Fundamental Concepts and Meth-
ods: Applications to Single-Degree-of-Freedom Systems,
Vol. 1. Kluwer Academic Publishers.

ACKNOWLEDGMENT
This research is part of the NEMSPIEZO project, under

funds from the french national research agency (project ANR-
08-NAN O-015-04), for which the authors are grateful. The au-
thors also want to warmly thank Bruno Cochelin, who is at the
origin of the ANM continuation tool used in this article.

10 Copyright c© 2010 by ASME


