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Localization of deformation in thin shells under
indentation

Alice Nasto,a Amin Ajdari,c Arnaud Lazarus,a Ashkan Vaziric and Pedro M. Reis*ab

We perform a hybrid experimental and numerical study of the localization of deformation in thin spherical

elastic shells under indentation. Past a critical indentation, the deformation of the shell ceases to be

axisymmetric and sharp points of localized curvature form. In plates, these sharp points are known as d-

cones. By way of analogy, we refer to regions of localization in shells as s-cones, for ‘shell-cones’. We

quantify how the formation and evolution of s-cones is affected by the indenter's curvature.

Juxtaposing results from precision model experiments and finite element simulations enables us to

explore the frictional nature of the shell–indenter contact and characterize the relative properties of

strain energy focusing, at different loci of localization. Our combined experimental and computational

approach allows us to gain invaluable physical insight towards rationalizing this geometrically nonlinear

process.
Introduction

Localization in thin shells is observed over a large range of
length scales; from colloidal capsules at the microscale1 to
aircra2,3 and architectural domes.4,5 When localization is
induced by indentation, the shape of the indenter affects the
nature of the indenter–shell contact. This is an important
consideration in applications such as Atomic Force Microscopy
(AFM),6 which has been used to measure the mechanical
response of shell structures such as microcapsules7 and
bacteria.8 The curvature of the AFM tip relative to the curvature
of the object that it indents is oen non-negligible. As such, the
relationship between the mechanical response and the nature
of the indenter–object contact is critical for understanding the
process.

The mechanics of shells is inextricably connected to its
geometry9 and, for a shell with positive Gaussian curvature,
bending and stretching are coupled. Stretching is energetically
costly and the deformation of a shell is governed in large part by
a need to minimize stretching, in favor of bending, to preserve
the isometry of the surface (i.e. preserving the distance along
the surface between any two points). A shell is curved in its
undeformed shape, yet when it undergoes large deformations,
the indented surface can develop sharp angular shapes. Energy
localizes at these vertices and along straight edges, which,
although locally costly, minimize stretching globally.10 In the
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linear regime, there have been a number of attempts to ratio-
nalize the interplay between geometry and mechanics, ranging
from the seminal work of Reissner11 on spherical shells to the
more recent study of geometry-induced rigidity in non-spherical
pressurized shells.12 There has been much less attention,
however, on localization in shells under large deformations for
which a general predictive framework is still aloof.

The scenario for large deformations in doubly curved shells
is not unlike what is observed in plates and other developable
surfaces (e.g. cylindrical shells) under large deformations,
where energy localizes along ridges and vertices, known as
d-cones for ‘developable cones’.13–17 These localized structures
have been well studied and characterized through experi-
mental, numerical, and theoretical work. Drawing an analogy
with d-cones in plates and cylindrical shells,17 we denote the
localized objects in doubly curved shells by s-cones, for ‘shell
cones’, highlighting that they are not developable. Previous
studies on large deformations and localization in shells have
considered a variety of loading mechanisms. Some studies
induce large deformations in shells through depressurization
and characterize a variety of buckled shapes.18–20 In other
studies, shells are deformed by indentation, with the most
common scenarios involving indentation by either a point
load10,21–23 or a plate load.21,23–29

Here, we ll the gap between point and plate indentation by
studying indenters with intermediate curvatures. We are moti-
vated by the fact that natural and engineering instances of
indentation oen occur in this intermediate range. Our goal is
to develop insight and gain a better understanding on the
relationship between the geometry of the shell, the shape of the
indenter, and the mechanics of the localization process in
the nonlinear regime of shells under indentation. Towards this
This journal is ª The Royal Society of Chemistry 2013
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end, we perform precision model experiments using hemi-
spherical elastomeric shells and indenters with custom
controlled geometries that we custom fabricate using rapid
prototyping. The shells are made using a coating technique
(Fig. 1a) whereby the surface of a mold (Fig. 1b) is coated by a
liquid polymer, which eventually cures, resulting in a thin
shell with uniform thickness (Fig. 1c). Our shells have radius
R2 ¼ 25 mm and thickness t ¼ 0.280 � 0.027 mm. More details
on the shell and indenter fabrication are given in the Materials
and methods section.

Our indenters have a range of radii of curvature, such that
the ratio between the radius of the indenter, R1, and that of the
shell, R2, dened as G ¼ R1/R2 (shown schematically in Fig. 1d),
lies in the full range 0 < G < N, from point load to plate load,
respectively (examples given in Fig. 1e). The mechanical
response is quantied through indentation tests and the
evolution of the deformation of the shell is captured with digital
images using a camera located underneath the shell. In parallel,
we perform Finite Element Analysis (FEA) of the same scenario
explored experimentally, nding excellent quantitative agree-
ment between the two. Given the predictive power of our
numerics, we then exploit the simulations to gain further
insight into quantities that cannot be readily accessed experi-
mentally, such as the role of friction in the mechanical response
and characterization of localization of the strain energy. We
nd that patterns of localization are reproducible with all values
of G, in both experiments and simulations, and show that the
indenter's shape affects both the number of s-cones that form
as well as the indentation onset for localization. The mechan-
ical response is also signicantly affected by the nature of the
shell–indenter contact and important qualitative differences
are observed between sharp indenters (G < 1) and blunt
indenters (G > 1).
Fig. 1 Experimental setup. (a) Coating technique used to fabricate thin and
uniform hemispherical shells. (b) CAD model of indenter and shell molds. (c)
Hemispherical elastomeric shell created by the coating technique. (d) Schematic
of indenter, with radius R1 and shell, with radius R2. (e) Series of indenters ranging
from G ¼ R1/R2 ¼ 0 (point load) to G ¼ N (plate load).

This journal is ª The Royal Society of Chemistry 2013
Point indentation

We start by considering the case of point indentation. A thin
hemispherical shell is clamped at its equator. A point load is
then applied to the shell's pole along its axis and the indenta-
tion is performed quasi-statically at 5 mm.min�1 (see Materials
and methods for more details). This scenario is implemented
and studied experimentally and through FEA simulations. In
the experiments, the evolution of the deformation upon
indentation is captured through digital imaging, as shown in
the sequence of photographs in Fig. 2a. The white lines in the
photographs, which aid identifying the loci of localization,
correspond to light reections from the ridge-like regions,
where the shell inverts. The FEA simulations provides addi-
tional means to quantify the localization process, for example
by having access to the energy density as indicated by the color
map in Fig. 2b. Localized structures are associated with sharp
increases in energy density.

In Fig. 2a and b, we present a sequence of representative
snapshots of the shell at different stages of indentation, for the
experiments and the FEA simulations, respectively, at the same
values of the control parameters. Excellent qualitative and
quantitative agreement is found between the two. We dene the
Fig. 2 Point indentation. (a) Experimental snapshots (captured from underneath
the shell) of the evolution of the pattern of localization for an elastomeric shell
under point indentation at the pole. The white reflection corresponds to the
location at which the shell inverts. (b) Snapshots from FEA simulations of an
elastomeric shell under point indentation at the pole. (c) Angular position of
s-cones vs. indentation obtained from experimental images. q is defined as in the
red schematic drawn in (a2).

Soft Matter, 2013, 9, 6796–6803 | 6797
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Fig. 3 Energy localization. (a and b) Snapshot from a finite element simulation
of a shell indented with a point load. (b) Top view of a shell indented with a point
load. (c) Energy density along Path #1, which traces over the three s-cones and the
three ridges that connect them. (d) Energy density along Paths #2, #3, and #4
start from the pole of the shell, trace along one of the gullies and one of the s-
cones, and end at the base of the shell. (e) Energy density along Path #5, which
starts from the pole of the shell, climbs between the s-cones and, traces over the
ridge that connects adjacent s-cones, and ends at the base of the shell. (f) Energy
density along Path #6, which intersects the three gullies.
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dimensionless indentation as 3 ¼ d/R2, where d is the indenta-
tion displacement and R2 is the radius of the shell. At small
values 3, the cap of the shell inverts inwards, forming an
axisymmetric circular ridge, known as Pogorelov ridge,30 along
which the shell stretches (Fig. 2a1 and b1). Due to the high
energetic cost associated with stretching, past a critical value of
indentation, the round ridge loses its axisymmetry and strain
focuses at three conical-like vertices, the s-cones, which help
reducing the stretching globally (Fig. 2a2 and b2).21 Once these
three s-cones form, the inverted portion of the shell develops a
tetrahedral shape. One vertex of the tetrahedron is located at the
point where the indenter makes contact with the shell. The
outer three vertices are located along a path on the surface
where the shell inverts. These three s-cones are connected by
straight segments, denoted by ridges, which act as folds between
the mostly undeformed outer shell and the inner inverted
region. Inside the inverted tetrahedral region, additional folds
form, which we refer to as gullies, that connect each of the
s-cones to the point of indentation. As the shell is indented
further, the s-cones travel along the shell's surface and even-
tually new s-cones can form. It is interesting to note that the
birth of additional s-cones appears by division of an existing
localized structure (Fig. 2a3 and b3), rather than nucleation at a
previously smooth region of the shell. Further indentation past
the splitting event results in four well dened s-cones (Fig. 2a4
and b4).

To further quantify the process of birth and growth of
s-cones, we perform digital image processing on the experi-
mental frames to track the angular position of each of the
s-cones (projected on a plane perpendicular to the vertical axis
of indentation). The schematic denition of the s-cone's
angular position, q, is presented in Fig. 2a2. As the shell is
indented, the evolution of the s-cones' angular position illus-
trates the splitting mechanism by which new s-cones form; at
3 � 0.7, the forth new s-cone emerges through the branching of
one of the older three.
Localization of energy for point indentation

We proceed by further characterizing the various localized
structures identied above for point load, using quantities
extracted from the FEA that are not available experimentally. We
shall later demonstrate the power of our FEA simulations in
predictively reproducing the experimental results. In particular,
our focus now goes to a quantitative comparison of the strain
energy density, the energy stored in a body due to deformation
per unit volume, for the s-cones, ridges, and gullies. We analyze
the specic example of indentation to d ¼ 15 mm (3 ¼ 0.6). The
paths along the shell's surface that we shall use in our discus-
sion are schematically drawn on top of the FEA snapshots
shown in Fig. 3a and b.

In Fig. 3c, we trace the energy density along Path #1, which is
a closed contour that traverses over the range of the three
s-cones and the ridges that connect them. The energy density is
highest at the s-cones and is minimum at the ridge's midpoint,
half way between adjacent s-cones. The energy density level in
the neighborhood of the s-cones is 25 times higher than along
6798 | Soft Matter, 2013, 9, 6796–6803
the ridges, which is signicant of localization. Paths #2, #3, and
#4 dene meridians; they start from the pole of the shell, pass
along a gully, over one of the s-cones, and end at the shell's
equator, with each of the paths passing over each of the three s-
cones. In Fig. 3d, we plot the energy density along these paths.
The maximum of energy occurs at the pole where the indenter
contacts the shell. Moving away from the pole, the energy
density drops along the gullies, then sharply increases at the s-
cones, before rapidly decaying by four orders of magnitude
towards zero at the clamped equator of the shell since it is not
deformed. The energy density curves corresponding to these
three paths are superposed, highlighting the symmetry of the
process. In Fig. 3e, we plot the energy density along Path #5,
which starts at the pole, traces along one of the faces of the
tetrahedron, crosses over the ridge's mid point, and ends at the
shell's equator. As stated before, energy is localized most
intensely at the pole where the shell is indented. The strain
energy along the face of the tetrahedron is small (1% compared
to the energy localized at the s-cones). While climbing and
traversing over the ridge, there is a small increase in strain
energy, indicating that there is some focusing of strain energy at
the ridge (4% compared to the energy localized at the s-cones).
The energy then decays towards zero at the shell's equator,
consistently with the clamping boundary conditions there. In
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3f, we trace the energy density along Path #6, which is a
circular contour near the shell's pole and crosses over the
gullies and faces of the tetrahedron. Along this path, the energy
is maximum at the gullies. In summary, for point indentation
we nd that energy is most strongly localized at the s-cones.
Energy is localized to less of an extent along gullies and ridges,
with energy being focused ten times more along gullies in
comparison to ridges.

Varying the shape of the indenter

Having described the behavior observed for point indentation,
we now consider the effect of changing the shape of the
indenter on the localization process, in both experiments and
FEA simulations. The ratio of shell and indenter radii is varied
from G ¼ 0 (for point load) to G ¼ N (for plate load), and we
consider twelve indenters between these extreme values. In our
experiments, we employ rapid prototyping to design and
custom fabricate indenters (rigid with respect to the shells) with
the range of radii of curvature shown in Fig. 1e. More infor-
mation on how the indenters are fabricated is given in the
Materials and methods section.

In Fig. 4, we present a series of representative experimental
and FEA snapshots of the shells, for increasing values of the
ratio of shell-to-indenter radii, G. In the experimental frames,
s-cones are identied by sharp corners in the ridge, as imaged by
the white reection line, and in the FEA simulations they are
identied by small regions with a sharp increase in energy
density. Localization occurs and s-cones form for all of the
indenters, except for G ¼ 1, 1.5 and 2. In the neighborhood of
Fig. 4 Varying the shape of the indenters. (a) Snapshots from experiments with
elastomeric shells indented at the pole for a variety of indenters, ranging from
point load (G¼ 0) to plate load (G¼N). (b) The same scenario with the snapshots
from the FEA simulations. The color map corresponds to strain energy density. The
color and energy scale correspondence is adjusted for each of the images to aid in
highlighting localization. Red circles indicate location of s-cones. Dotted red lines
are drawn over ridges that connect s-cones along where shell is inverted. Solid red
lines are drawn over gullies that connect s-cones to the pole of the shell (only
present for G < 1). No localization (indicated by grey area) occurs for indenters
with G ¼ 1, 1.5, or 2.

This journal is ª The Royal Society of Chemistry 2013
G¼ 1, the indenter has a curvature close to that of the shell. As a
result, upon indentation their two surfaces remain in complete
contact, preventing the formation of s-cones, which would
otherwise require delamination from the indenter. We denote
this neighborhood of 1 ( G ( 2 as the “localization band gap”,
since the formation of s-cones is forbidden for these geometries.
The lower bound for the localization band gap is 0.8725 < G < 1
(uncertainty of �3%) and the upper bound lies in 2 < G < 2.5
(uncertainty of �11%). This band sets two regions with quali-
tatively different responses; sharp indenter for G ( 1 and blunt
indenters forGT 2. Concentrating on the experiments for sharp
indenters, the number of s-cones at onset is a minimum (n ¼ 3)
for point load (G¼ 0) and it increases with increasing G, with the
maximumnumber at onset forming just outside the localization
band gap region. For blunt indenters, n ¼ 5 s-cones form at
onset for plate load (G ¼ N), and increasingly more s-cones are
observed as G is decreased towards G � 2. Gullies that connect
the s-cones to the pole of the shell form for sharp indenters, but
not for blunt indenters.21 Above, for the case of point load, we
saw that past the initial formation of 3 s-cones, a forth can
emerge by splitting of a previous one. This mode of transition in
the number of s-cones is also observed for other indenter
geometries: n¼ 4/ 5 for G¼ 0.75, n¼ 6/ 7 for G¼ 10 and n¼
5 / 6 / 7 for G ¼ N (plate load). The FEA simulations show
qualitative good agreement with this experimental scenario with
differences in the number of s-cones being at most by n ¼ 1,
possibly due to differences in the details of imperfections
between experiments (defects) and FEA (meshing), or a conse-
quence of the fact that multiple states may coexist (as is
common in nonlinear systems). Moreover, FEA simulations also
exhibit a localization band gap region for 1 ( G ( 2 and the
same qualitatively different responses for sharp indenters versus
blunt indenters. In both experiments and FEM (assuming a
hyperelastic constitutive model as described in the Materials
andmethods section), we see that the number of s-cones evolves
for G > 2. Previous studies,21 however, have not seen such an
evolution for plate load for the specic case of using a linear
elastic model. Establishing whether the discrepancy is due to
the material model used or due to the frictional nature of
contact that we have considered (both ingredients were used in
the FEM to closely reproduce the experiments) is beyond the
scope of this paper and will be addressed in a future study.

We have just seen that the geometry of the indenter affects
the morphology and number of s-cones at onset. We now
proceed by quantifying how the indenter's geometry also sets
the critical indentation, dc, at the onset of localization, i.e. the d
at which the rst set of s-cones forms. In Fig. 5, we plot the
critical indentation as a function of G. As G approaches the band
gap region in the neighborhood of G ¼ 1, the onset of locali-
zation is signicantly delayed. The critical indentation exhibits
a divergence-like behavior around the band gap region, and the
critical indentation is maximum on either side. The critical
indentation decreases as G / 0 or G / N (with the exception
of the decrease in dc between point load and G ¼ 0.5, which
disrupts the otherwise monotonic behavior to the le of the
localization band gap). Excellent quantitative agreement is
found between experiments and simulations.
Soft Matter, 2013, 9, 6796–6803 | 6799
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Fig. 5 Critical indentation for the onset of localization versus the indenter–shell
radii ratio, G. No localization occurs between G � 1 and G � 2 (indicated by the
grey region).

Fig. 6 Ridge-height. (a) Height of the ridge versus indentation for indenters with
different geometries; experiments (data points) and simulations (solid lines). The
schematics on the top right and bottom left corners correspond to the cases of
sharp indenters, G < 1, and blunt indenters (indenter in red), G > 1, respectively. (b)
Slopes of ridge-height, m vs. indentation curves from experiments (red squares)
and simulations (blue circles) indenters ranging from G ¼ 0 to G ¼ N. The theory
line corresponds to the prediction from eqn (1). Inset illustrates sharp and blunt
indenters.
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The indenter shape also effects the ridge-height, h, which we
dene as the vertical distance between the equator of the
hemispherical shell, where it is clamped, and the point on the
shell at which its surface inverts due to the indentation, thereby
forming a ridge. In Fig. 6a, we plot this ridge-height measured
experimentally (open symbols), as a function of indentation for
point load, G ¼ 1, G ¼ 3, and plate load. For comparison, we
superpose the corresponding data from the FEA (solid lines) for
the extreme cases of point and plate load. Even for large values
of indentation, the ridge-height h decays approximately linearly
with indentation, 3. We therefore calculate the slope m ¼ dh/dd,
which we plot as a function of the indenter's radii ratio, G, in
Fig. 6b. The ridge-height decreases the slowest for point
indentation, with a rate of m � �0.5, and the fastest for plate
load, with m � �1 (the ridge moves at the same rate as the
indenter). For intermediate indenters (0 < G < N) the slope
decreases monotonically with G and �0.5 < m < �1.

We now present a geometric argument that rationalizes these
results. The schematic diagram in the top right corner of Fig. 6a
illustrates the deformed conguration of the shell forG < 1.Here,
the radius of the shell is R2¼ h + d/2, which in return gives h/R2¼
1� 0.5(d/R2) and yields the slopem¼ dh/dd¼�0.5, forG < 1. For
G > 1, the nature of contact between the shell and the indenter is
qualitatively different, as shown in the schematic diagram in the
bottom le corner of Fig. 6a. Taking the radius of the indenter,
R1, into account and assuming small deformations, we obtain
R2¼ h + (d�D), whereD is the vertical distance between the pole
of the indenter and the ridge-height, h (see schematic in bottom
le of Fig. 6b). Using a trigonometric relationship involving R1,
R2, and a horizontal line constructed between the ridges, we
obtain D ¼ d/(1 + G). Then, R2 ¼ h + d[1 � 1/(1 + G)] from the
geometric construction, which yields the following slope for
the h–d curves,

m ¼ dh

dd
¼ �

�
1� 1

1þ G

�
: (1)

The dependence of m on G predicted by this geometric
argument underlying eqn (1), which is plotted as the solid line
6800 | Soft Matter, 2013, 9, 6796–6803
in Fig. 6b, is in excellent agreement with both the experimental
and FEA data. This conrms that the variation inm is due to the
different geometric nature of the indenter–shell contact
proposed above, and which we explore in more detail next.

In order to achieve the excellent agreement between experi-
ments and simulations highlighted above, we had to treat the
shell–indenter interaction with care, and assume a frictional
contact, while neglecting adhesion. This is even more impor-
tant since, as we saw, the nature and morphology of the shell–
indenter contact varies for different values of G; from sharp
indenters to blunt indenters. To stress the important of friction,
we now focus on the mechanical response during the indenta-
tion process, as quantied by the indentation load, P, as a
function of indentation, 3. A series of P–3 curves for increasing
values of G is presented in Fig. 7a. For small indentation, there
is a linear regime signicant of the shell's stiffness, as previ-
ously described by ref. 12 and 31. For large indentations, all
curves with G < 1 eventually asymptote to an approximately
constant value. In contrast, the various curves with G > 1 exhibit
an inection point and fan out; higher values of G result in
higher loads. Again, we observe a quantitative difference
This journal is ª The Royal Society of Chemistry 2013
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Fig. 7 Mechanical response and the effect of friction. (a) Force–indentation
curves from experiments (solid lines) and finite element simulations (dashed lines)
for a variety of indenters. Coefficients of friction for G ¼ 0, 0.75, 1.5, 3, 5, 10 are,
respectively, m ¼ 0, 1.5, 1.2, 1.2, 1.7, 1.5. (b) Force–indentation curves from
simulations for G ¼ 10 for no friction and a variety of friction coefficients.
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between sharp and blunt indenters. For G > 1, a signicantly
higher load is required to indent a shell when compared with
sharp indenters (G < 1) due to the different nature of the
indenter–shell contact. For sharp indenters, the poles of the
indenters and the shells remain in contact throughout inden-
tation. On the other hand, for blunt indenters, the shell
delaminates from the pole of the indenter, and pushes onto the
shell at its ridges. This requires a substantially higher force level
(as high as a factor of 10 for 3 ¼ 0.4, when comparing G ¼ 0 and
G¼ 10) and also involves sliding and rolling of the two surfaces.
These two scenarios are illustrated in the inset of Fig. 6b.

From the detailed comparison between the experimental
and FEA force–indentation curves, we have learned that friction
plays an essential role on the mechanical response. Force–
indentation curves from simulations without friction showed a
much lower mechanical response than what was measured
experimentally. As presented in Fig. 7b, when the coefficient of
friction m is increased, the load required to indent the shell is
also signicantly increased. For example, at 3 ¼ 0.45, the load
required to indent a shell for m ¼ 1.5 is increased by a factor as
large as 5, when compared to doing so for a frictionless
indenter–shell contact. Using an independent friction sliding
test (details in Materials and methods), the friction coefficient
was experimentally measured to be m ¼ 1.46 � 0.53. The large
This journal is ª The Royal Society of Chemistry 2013
variation in this measured value can be attributed to the fact
that a dry friction description is oversimplistic for polymer–
polymer surface contacts. Still, in the FEA, we have treated m as a
tting parameter, bound within the measured experimental
range. This is appropriate since the experimental friction coef-
cients for each of the individual indenters are not precisely
known due to the varying levels of roughness for indenters of
different curvature, imparted by the fabrication process and set
by the resolution of the CNC milling process.
Discussion and conclusion

Without a general predictive analytical model of the localization
process at hand, we are lead to speculate that geometric frus-
tration underpins the buckling transition from the axisym-
metric state into the onset of s-cones. We believe that the
mechanism is related to that recently reported by Dias et al.,32

who studied the mechanics of folding of an annular at plate
containing a concentric circular crease. Folding the crease
induces out-of-plane buckling of the plate. Further increasing
the dihedral angle of the fold, results in increasingly more non-
planar congurations and an increasing storage of stretching
energy at the crease. Geometric and topological constraints,
coupled with the mechanics of plates, dictate the permissible
congurations. Similarly in our system, indentation introduces
geometric frustration that disrupts the isometry of the shell's
inverted cap. Once the circular ridge forms, the angle of the
folded region where curvature of the shell inverts, increases as
the shell is indented further which leads to a growing storage of
strain energy at the ridge (the angle can be derived using an
argument similar to that presented for the slope of the ridge-
height vs. indentation curves). Past a critical indentation
(quantied in Fig. 5) the circular ridge looses symmetry and
stretching, due to its high energetic cost, is focused onto
localized structures, the s-cones.

We now comment on the observation that the number of s-
cones at onset increases, when the curvature of the indenter
approaches the shell's curvature. For this, we establish an
analogy with buckling of conned elastica. When a slender
beam is compressed axially, but its transverse displacement is
constrained by two conning walls,33,34 high-order buckling
modes can be excited (in contrast to the classic mode-one Euler
buckling when the beam is unconstrained). In this case, the
buckling wavelength increases with the lateral connement and
the geometric constraint of the two conning walls is the
driving mechanism for exciting high-order buckling modes.
Following this analogy, point load indentation in our problem
can be considered as being unconstrained. At the other extreme,
when G � 1, the surfaces of the shell and indenter are in close
contact with each other, preventing the shell from delaminating
from the indenter, thereby precluding local buckling (no s-
cones form). In the constrained Euler buckling analogy, this
corresponds to the case where the two constraining plates are
separated by a distance equal to the thickness of the strip such
that buckling cannot occur. For G > 0, and outside the locali-
zation band gap in the neighborhood of G � 1, however, the
shell–indenter contact constrains the buckling morphology,
Soft Matter, 2013, 9, 6796–6803 | 6801
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which excites higher order modes (increasing the number of s-
cones) and affecting the onset of localization.

In conclusion, we have presented a rich scenario for the large
deformation of a thin shell under indentation, as the curvature
of the indenter is systematically varied, which has a strong effect
on the onset and evolution of localized structures. The nature of
the contact between the shell and the indenter was found to be a
crucial ingredient to the process; friction between the indenter
and the shell signicantly affects the shells's load-bearing
capacity, especially for blunt indenters (G > 1), which require
signicantly higher loads to indent shells compared to sharp
indenters (G < 1). The robustness of the observed localization
behavior and the excellent agreement found between experi-
ments and numerics suggest that there is an underlying
mechanism at play that arises from the strong interplay
between geometry andmechanics. We hope that our exploratory
study will help catalyze further theoretical efforts in this direc-
tion. Moreover, given the scale-invariance of the scenario
presented here, our results should nd uses at the microscale
for AFM, where it is crucial to understand how the curvature of
the tip, relative to the object being indented, affects the
mechanical response.
Materials and methods
Experiments

The shells and the indenters are fabricated using rapid proto-
typing. Starting from a computer assisted design, a model of a
mold was created with the targeted shell or indenter geometry.
Molds were then machined from polyacetal with a CNC milling
machine. Shells were fabricated with a coating technique
(Fig. 1a). Vinylpolysiloxane (a silicone based elastomer) was
used to make the shells. VPS has a shear modulus G0 ¼ 454.6
kPa, a Poisson ratio of n ¼ 0.5, and the neo-Hookean strain
energy potential coefficients of C10 ¼ 227 300 Pa, and D1 ¼
2.36 � 10�8 Pa�1. The polymer was poured into a mold, which
was then rotated so that the polymer wetted the entire surface of
the mold. Then, the excess was poured out and the mold was
le upside-down to allow the excess to drain out while the
polymer cures. The resulting shells had a radius of R2 ¼ 25 mm
and a thickness of t ¼ 0.280 � 0.027 mm, which is set by a
combination of the viscosity of the polymer and the length of
the curing time. In a scenario similar to Landau–Levich dip
coating for bers and plates,35 this fabrication method creates
shells with small variations on their thickness (�9.7%).

Indenter fabrication. Twelve indenters were designed with a
variety of radii of curvature so that the ratio of the radius of the
indenter and the radius of the shell, G¼ R1/R2 had the following
values: G ¼ 0 (point load), 0.5, 0.75, 0.8725, 1, 1.5, 2, 3, 5, 7, 10,
and N (plate load) (Fig. 1e). Indenters with G ranging from 0.5
to 10 were cast with a hard polyurethane. The indenter for point
load was a steel screw with a hemispherical cap (1.5 mm radius).
The indenter for plate load was cut from a sheet of acrylic. All
indenters can be considered rigid relative to the elastomeric
shells. The polyurethane used to cast the indenters has a
Young's modulus E ¼ 147 MPa and the vinylpolysiloxane used
to cast the shells has a Young's modulus E ¼ 1.36 MPa.
6802 | Soft Matter, 2013, 9, 6796–6803
Mechanical testing. Shells are indented at the pole using the
fabricated indenters at a constant speed of 5 mm.min�1. The
compressive force, F, from the indentation by the imposed
displacement, d, is recorded using the load cell of an Instron
machine with a resolution of �100 mN. The evolution of the
deformation of the shell is recorded with digital images that are
captured from underneath the shells.

Friction tests. The friction from the contact between the
shell and the indenter was measured through friction tests. A
block of vinylpolysiloxane (the shell material) with a force
sensor attached was pulled horizontally along a surface made of
polyurethane (the indenter material). The coefficient of friction,
measured as the average from ten experiments of the ratio of
the force required to pull the block to the weight of the block,
was measured to be m ¼ 1.46 � 0.53.

Numerical simulations

Numerical simulations were performed using the commercial
nite element package ABAQUS/CAE (SIMULIA, Providence, RI).
One half of the 3D spherical shell was modeled with a clamped
boundary condition on the free edge, indenters were modeled as
analytical rigid shells with a displacement-control boundary
condition. For the material properties, we used an isotropic
hyperelastic model using the material parameters measured
independently in the experiments. Four-node thin shell elements
with reduced integration (element type S4R) were used in all
simulations and a mesh sensitivity study was carried out to
ensure that the results areminimally sensitive to the element size.
We used the freemesh scheme available in Abaqus and no initial
geometric or material imperfection was included in the compu-
tational model. To capture the local instabilities in the structure,
we used a stabilizing mechanism (available in Abaqus/Standard
solver) based on automatic addition of volume-proportional
damping, which was decreased systematically to ensure that the
response was insensitive to this change. To model friction, a
penalty formulation was used with the appropriate coefficient.
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