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We investigate the elastic buckling of a triangular prism made of a soft elastomer. A face of the prism is
bonded to a stiff slab that imposes an average axial compression. We observe two possible buckling modes
which are localized along the free ridge. For ridge angles ϕ below a critical value ϕ⋆ ≈ 90°, experiments
reveal an extended sinusoidal mode, while for ϕ above ϕ⋆, we observe a series of creases progressively
invading the lateral faces starting from the ridge. A numerical linear stability analysis is set up using the
finite-element method and correctly predicts the sinusoidal mode for ϕ ≤ ϕ⋆, as well as the associated
critical strain ϵcðϕÞ. The experimental transition at ϕ⋆ is found to occur when this critical strain ϵcðϕÞ
attains the value ϵcðϕ⋆Þ ¼ 0.44 corresponding to the threshold of the subcritical surface creasing instability.
Previous analyses have focused on elastic crease patterns appearing on planar surfaces, where the role of
scale invariance has been emphasized; our analysis of the elastic ridge provides a different perspective, and
reveals that scale invariance is not a sufficient condition for localization.
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In extended systems, elastic instabilities generally produce
smooth patterns having awell-definedwavelength. There are
numerous examples involving an elastic beam [1] or a thin
film [2–4] on an elastic foundation, a bulk elastic material
with inhomogeneous elastic properties [5], or rodlike solids
with large incompatible strain [6–8], with applications
ranging from morphogenesis [1] to the active control of
surface properties [9]. An important exception to this rule is
when the bifurcation problem has no intrinsic length scale, as
happens for a compressed hyperelastic block, a problem
considered by Biot [10,11]: a continuum of linear modes
appears simultaneously at the bifurcation threshold with all
possible wavelengths. This free-surface instability has been
characterized numerically and experimentally only recently,
and was found to be subcritical, localized, and nonlinear in
essence [12–20]. In spite of recent progress [21,22], there is
no simple and systematic theoretical argument that explains
why and in what circumstances localized creasing patterns
are to be observed, norwhether scale invariance is a sufficient
condition for localization.
Here, we analyze a variant of Biot’s compressed elastic

block, in which we replace the half-space geometry by a
prism. The ridge angle ϕ brings in an additional parameter.
Experimentally, we find buckling patterns reminiscent of
creasing when the prism is flat enough (ϕ close to 180°),
consistent with prior work [12–20]. For acute enough ridge
angles, however, a smooth buckling mode develops near
the ridge, with a well-defined wavelength. We carry out a
linear stability analysis of the compressed hyperelastic
prism and investigate the competition between smooth and
localizing buckling modes.
In our experiments, we use an isosceles triangular

prism made of a silicon elastomer (Ecoflex). This

elastomer is nearly incompressible with Young’s modulus
Ep ≈ 0.06$ 0.02 MPa. Its lower face is bonded to a
parallepipedic silicone block made of vinylpolysiloxane
whose Young’s modulus is ∼20 times larger, Eb ≈ 1.3$
0.05 MPa. Both the prism and the base are obtained by
casting liquid polymer into molds made of PMMA
obtained by laser cutting. We stretch the base to a length
L0 prior to gluing the prism onto it; see Fig. 1. By bringing
the ends of the base closer to one another, we induce a

FIG. 1. Sketch of the experimental setup. To set the prism in
axial compression, we first stretch the substrate, then glue the
prism to the substrate while keeping the substrate in tension, and
finally release the substrate. This induces buckling of the prism:
extended wrinkling (top row, ϕ ¼ 40°) and localized creasing
(bottom row, ϕ ¼ 120°) are observed, depending on the value of
ϕ. Insets: Experimental pictures.
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compressive axial strain ϵ ¼ L0 − L=L0 in the prism that
depends on the current length L < L0 of the base. At a
critical value of the strain ϵc, an instability is observed
which is localized along the free ridge of the prism,
opposite to the base. Using different molds we repeat
the buckling experiment for different ridge angles ϕ in the
range 20°–120°. The height h of the triangular prism is
chosen at least 10 times smaller than L0, so we can ignore
finite-length effects in the analysis.
For ϕ smaller than a critical value ϕ⋆ ≈ 90°, we observe a

smooth, extended buckling mode whereby the ridge bends
out of the plane of symmetry of the prism [see Fig. 2(a)];
we will refer to this as antisymmetric wrinkling (AW). For a
given angle ϕ ≤ ϕ⋆, the wavelength λ scales close to
linearly with the height of the prism h for the range of
heights tested in the experiments; see the inset of Fig. 2.
For ϕ ≥ ϕ⋆ the buckling mode is entirely different

[see Fig. 2(c)]: localized creases are initiated at the ridge.
As the strain is increased beyond ϵc, more creases are
formed and they spread along the lateral faces toward the
base. The gap between successive creases does not appear
to be regular. This buckling mode will be referred to as
surface creasing (SC).
Overall, ϵc increases steadily with the ridge angle ϕ until

it reaches a plateau at ϵc ≈ 0.42 for ϕ ¼ ϕ⋆, where the
nature of the buckling mode changes; see Fig. 2(d). This
value is lower than the critical Biot strain, ϵBiot ¼ 0.55,
calculated by Biot [10,11] for the surface instability, as
explained below.
We set up a bifurcation analysis, with the aim of

characterizing the instabilities and explaining the competi-
tion between the localized and extended buckling modes.
The system is modeled as an infinitely long prism with
triangular cross section D made of a hyperelastic material.
Its elastic energy density is denoted by W3DðEÞ, where
E ¼ 1

2 ðF
T · F − 1Þ is the strain tensor, F ¼ ∂ðx; y; zÞ=

∂ðX; Y; ZÞ is the transformation gradient, (X, Y, Z) are
the coordinates in reference configuration with Z aligned
with the prism axis and Y along the axis of symmetry of the
triangular cross section D, and (x, y, z) are the coordinates
in deformed configuration. The expression of W3DðEÞ
reflects the choice of a material law; we use a Gent model,
as described in the Supplemental Material (SM) [23], with a
choice of material parameters that makes this constitutive
law practically equivalent to an incompressible neo-
Hookean model. Working in the framework of finite
elasticity, we denote by φðX; Y; ZÞ ¼ ðx; y; zÞ − ðX; Y; ZÞ
the displacement. The nonlinear equilibrium is obtained by
the principle of virtual work as

∀φ̂ðX;Y;ZÞ;
Z

L0

0

ZZ

D
Σ∶ðFT · F̂ÞdXdYdZ¼0; ð1Þ

where Σ ¼ ∂W3D=∂E denotes the stress and F̂ ¼
∂φ̂=∂ðX; Y; ZÞ the virtual increment of deformation

gradient. As the average strain ϵ is imposed by the base,
we consider only admissible virtual displacements φ̂whose
incremental axial strain is zero on average. Taking advan-
tage of the fact that the buckling patterns are localized near
the ridge in the experiments, we simplify the boundary
conditions at the interface with the base, which we replace
by a free boundary.
The unbuckled solution is in a state of homo-

geneous “simple” compression, as described by φϵ
0 ¼

ηðϵÞðXex þ YeyÞ − ϵZez. Here, ηðϵÞ captures the dilation
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FIG. 2. Experimental results. (a)–(c) Top views in the (x, z)
plane. Each set of pictures is for increasing axial strain ϵ.
(a) ϕ ¼ 40°, h ¼ 10 mm, and L0 ¼ 100 mm; (b) ϕ ¼ 90°,
h ¼ 5 mm, and L0 ¼ 100 mm; (c) ϕ ¼ 120°, h ¼ 10 mm, and
L0 ¼ 100 mm. Black arrows highlight the creases visible on the
faces. (d) Critical strain ϵcðϕÞ. The thin, hand-drawn curves
reveal the trend of the experimental data points. Inset: Rescaled
wavelength of the extended mode λ=h for ϕ ¼ 30°.
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of the cross section by Poisson’s effect and is found from
the constitutive law by solving ð∂W3D=∂ηÞ(ϵ; ηðϵÞ) ¼ 0.
We consider a small perturbation φ1, to this invariant
solution φ1 ¼ ½ξxðX;YÞex þ ξyðX;YÞey þ iξzðX;YÞez'eiqZ
in the form of a pure Fourier mode with wave number q.
The virtual displacement φ̂ is sought in a similar form.
Upon linearization and discretization using the finite-
element method, the equation of equilibrium [Eq. (1)]
takes the form

∀ξ̂; ξ̂ · ðKϵ þ qCϵ þ q2MϵÞ · ξ1 ¼ 0; ð2Þ

where ξ1 ¼ ðξx; ξy; ξzÞ and ξ̂ ¼ ðξ̂x; ξ̂y; ξ̂zÞ are two vectors
collecting the Fourier amplitudes of the real and virtual
nodal displacements on the cross section D. The Fourier
analysis thus yields a 2D eigenvalue problem in which the
third dimension enters through the wave number q only.
For details of this 2D formulation and of its implementa-
tion, see SM [23] and Ref. [8]. To discretize and solve the
eigenvalue problem, we make use of the finite-element
library FENICS [26] and the SLEPC library [27].
Equation (2) is invariant when a homothety is applied to

both the solution and the wavelength 2π=q; in addition, the
domain D is scale invariant near the tip (ridge). As a result,
an infinite number of modes that are homothetic one to
another appear concurrently at the critical strain ϵc. These
modes are localized near the ridge and are associated with
all possible wave numbers: there is no selection of the wave
number in this scale-invariant linear bifurcation analysis,
see SM for details [23]. By contrast, the critical strain ϵc
and the shape of the buckling mode (up to a dilation) are
selected as a function of ϕ.
As the unbuckled configuration is mirror symmetric with

respect to the ðyzÞ plane, the buckling modes can be either
symmetric or antisymmetric. When ϕ is smaller than
≈105°, the first critical buckling mode predicted by the
FEM analysis is an AW mode; see Fig. 4(a). It involves
lateral undulations of the ridge, see Fig. 3(b), similar to the
buckling mode seen in the experiments. The corresponding
critical strain ϵc is plotted in Fig. 3(a) (disks) and compared
to experimental results (open circles): ϵcðϕÞ is in good
agreement with the experiments, and increases with ϕ.
In the limit of an acute ridge angle, ϕ → 0, the prism can

be modeled as a thin, infinitely long plate whose thickness
tðyÞ varies linearly with the distance to the ridge,
t ¼ ϕjh − yj. For the unbuckled solution, the mid-surface
of the plate is contained in the ðyzÞ plane and has an axial
prestress σ0 ¼ Eϵ. When linearized about this solution, the
Föppl–Von Kármán equations for elastic plates yield, see,
for instance, Ref. [28],

ðmαβÞ;αβ þ tðyÞσ0w;zz ¼ 0; ð3Þ

where wðx; yÞ is the (horizontal) deflection, mαβ ¼
DðyÞ½ð1 − νÞw;αβ þ νδαβw;γγ' denotes the bending moment,

DðyÞ ¼ EtðyÞ3=12ð1 − ν2Þ is the bending modulus of the
plate, E is Young’s modulus, and ν is Poisson’s ratio. A
comma in subscript denotes a partial derivative, and greek
symbols are restricted to in-plane directions, α, β ∈ fy; zg.
We use Einstein’s convention for implicit summation on
repeated indices.
In the plate model, we consider perturbations that are

harmonic in the axial direction and rescale the vertical
coordinate using the wavelength wðyÞ ¼ w̄ðqyÞeiqz. When
expressed in terms of w̄ and q, the boundary value
problem [Eq. (3)] and the associated boundary conditions
depend on the two dimensionless parameters ν and
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FIG. 3. Antisymmetric wrinkling (AW). (a) Phase diagram
ϵcðϕÞ from experiments (open circles), simulations (disks), and
analytical model (dashed curve). (b) Numerical buckling mode
for ϕ ¼ 40°, h ¼ 5 mm, shown with an arbitrary amplitude. The
two color maps show the amplitude of the lateral displacement
(left) and of the incremental hoop strain E1

θθ (right).
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FIG. 4. (a) Full bifurcation diagram, comparing the modes
predicted by the linear bifurcation analysis (AW and SW), Biot’s
threshold, the nonlinear creasing threshold, and experiments.
(b) Numerical linear buckling mode for ϕ ¼ 120°, h ¼ 0.5.
Sketch of the deformed prism superimposed with a color map
of the amplitude of the vertical displacement ξy. Color map of the
amplitude of the hoop strain E1

θθ. (c) Sketch of the experimental
surface creasing (SC) mode for ϕ ¼ 120°. (d) Sketch of the
subcritical bifurcation curve AðϵÞ for creasing.
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σ̄0 ¼ 12ð1 − ν2Þσ0=Eϕ2. A numerical solution based on a
shooting method yields the critical value σ̄0cðνÞ; see SM
for details [23]. The corresponding critical strain is
ϵc ¼ ½σ̄0cðνÞ=12ð1 − ν2Þ'ϕ2. For our particular 3D constit-
utive law, ν ¼ 0.45, and we obtain ϵcð0.45Þ ≈ 0.35ϕ2; the
dependence on Poisson’s ratio is mild, ϵcð0.50Þ ≈ 0.33ϕ2

in the incompressible case. This prediction has no
adjustable parameter and is plotted in Fig. 3(a) (red
dashed line): it agrees asymptotically with the finite
element analysis for ϕ → 0. Note that ϵc ∼ ϕ2 is small
when ϕ → 0, which is consistent with the linear elastic
behavior assumed in the plate model.
Symmetric wrinkling (SW) modes are also found in the

numerical bifurcation analysis. They extend on the adjacent
faces on both sides of the ridge and involve an undulation
of the ridge in the plane of symmetry ðyzÞ; see Fig. 4(b).
The strain at which the first symmetric mode appears is
ϵ ≈ 0.55, a value that hardly depends on the ridge angle ϕ;
see Fig. 4(a). This value is consistent with the critical Biot
strain ϵBiot ¼ 0.55 corresponding to the existence of a
marginally stable surface mode in a prestressed neo-
Hookean half-space [10,11]. This is consistent with the
fact that the SW mode is localized just beneath the faces of
the prism; see Fig. 4(b). When ϕ reaches ≈105°, the critical
strain ϵc of the AW mode becomes larger than ϵBiot ¼ 0.55:
the numerical analysis then predicts that the first buckling
mode switches from an AW mode to a SW mode; see
Fig. 4(a).
This linear analysis therefore predicts a SW mode that is

smooth and sinusoidal, in apparent contradiction with the
localized pattern observed in the experiments. When this
mode becomes unstable, all wavelengths appear concur-
rently: it is known that the nonlinear coupling between the
different wavelengths gives rise to a creasing instability
through a subcritical bifurcation [14,21]. The buckling
strain for the creasing instability in a neo-Hookean half-
plane ϵcrease ≈ 0.44 is, therefore, lower than that predicted
by the linear analysis ϵBiot ≈ 0.55; see Refs. [14,17].
Extrapolating to our problem, this suggests that our SW
modes are subcritical as well, and that the critical strain ϵBiot
predicted by the linear analysis needs to be corrected: the
value ϵcrease has been included in Fig. 4(a) and indeed
corresponds to the plateau observed in the experiments; see
Fig. 4. Accordingly, the critical ridge angle ϕ⋆ can be found
by equating the critical strain for antisymmetric modes
ϵcðϕÞ with the creasing strain ϵcrease: this yields ϕ⋆ ¼ 88°,
see Fig. 4, which accurately matches the experimental
value ϕ⋆ ≈ 90°.
Our linear stability analysis correctly captures the

dependence of the critical strain on the ridge angle
ϵcðϕÞ as well as the shape of the antisymmetric mode.
In our scale-free formulation, there is no selection of the
wavelength. To account for the wavelength of the anti-
symmetric mode, one would need to consider additional
ingredients in the analysis, such as subtle nonlinear effects

and/or small-scale regularization. By contrast with the
antisymmetric mode, the symmetric mode predicted by
the linear stability analysis is not observed, as it gives rise to
creasing by a subcritical bifurcation. Combining our linear
analysis with the nonlinear threshold for creasing, we have
explained the critical value of the ridge angle ϕ⋆ ≈ 90° at
which the pattern changes. Interestingly, close to ϕ⋆, the
system displays a mix of the two behaviors: creases
superimposed onto the smooth antisymmetric mode are
shown in Fig. 2(b), probably resulting from the nonlinear
interaction between the symmetric and antisymmet-
ric modes.
The creasing localization has been explained in earlier

work by nonlinear coupling of the buckling modes. A
remarkable finding of our experiments is that our system
features both localized creases and a smooth extended
buckling pattern: the coupling between modes of different
wavelengths is effective for the symmetric mode (leading to
creases), but it is not effective for the antisymmetric mode,
surprisingly. Therefore, scale invariance in not a sufficient
condition for localization, and the exact conditions in
which modes of different wavelengths can cooperate
remain to be elucidated: the compressed hyperelastic prism
provides a workbench for future nonlinear analyses of
creasing.
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