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• Possible to stabilize, in theory, a Kapitza oscillator with slow forcing excitations.
• In this case, stabilization is discrete in the modulation parameter space.
• The stable vibrational modes have a compact support on each period.
• Those modes can be analytically predicted by a stationary wave equation.
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a b s t r a c t

We numerically investigate the stability and linear oscillatory behavior of a naturally diverging mass
whose potential energy is harmonically modulated. It is known that in the Kapitza limit, i.e. when the
period of modulation is much smaller than the diverging time, the collapsing mass can be dynamically
stabilized and behave like an effective classic harmonic oscillator. We find that in the regime where the
period ofmodulation is larger than the collapsing time of themass, dynamical stabilization is still possible
but in a discrete fashion. Only almost-periodic vibrational modes, or Floquet forms (FFs), are allowed
that are located in independent stability stripes in the modulation parameter space. Reducing the FFs
to their periodic eigenfunctions, one can transform the original equation of motion to a dimensionless
Schrödinger stationary wave equation with a harmonic potential. This transformation allows for an
analytical prediction of the stability stripes and the modal shapes of the vibrating mass. These results
shed new light on the stability of linear dynamical systems, analytical solutions of Mathieu equations and
on the relations between Initial and Boundary Value Problems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Modal analysis is a linear perturbation method that allows to
characterize the local oscillatory and stability behavior of station-
ary states of dynamical systems [1,2]. It is used in various area of
physics, frommolecular vibrational frequencies [3] to the stability
of engineered structures [4]. Reduced to a single dimension in
space, this concept ismodeled by the archetypal example of amass
moving in a quadratic potential energy whose governing equation
is a linear homogeneous Ordinary Differential Equation (ODE)with
initial conditions. In the case of a perturbed equilibrium, i.e. for
a constant potential in time, two qualitative behaviors exist: the
mass is either neutrally stable, harmonically oscillating in a poten-
tial well (this case is the classic harmonic oscillator) or unstable,
exponentially diverging on a potential hill.

A less constrained situation eventually occurs when the poten-
tial energy of the perturbed stationary state is free to periodically
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vary with time [5,6], i.e. when the motion of the mass is mathe-
matically governedby a linear homogeneousODEwith periodically
time-varying coefficients. This generalized framework explains a
broader class of physical problems fromparametric oscillators [7,8]
to the emergence of Faraday waves [9–11] or the motion of the
lunar perigee [12,13]. Again, two different scenarios should be
considered whether the mass is naturally diverging or not. In
a periodically time-varying potential well, the quasi-periodically
oscillating particle eventually destabilizes for certain regions in
themodulation parameters space, a.k.a. Mathieu’s tongues [14,15].
On a modulated potential hill, there is an asymptotic limit for
which the modulation parameters allow to stabilize the naturally
divergingmass [16,17]. This lastmodel is generally called a Kapitza
oscillator since Kapitza was the first to explain the dynamical
stabilization of a collapsing inverted pendulum in which the pivot
point vibrates in the vertical direction [18,19].

Although simplistic, the aforementioned 1D oscillators allow
for the modeling and understanding of an outstanding number
of physical systems and their complete theoretical description is
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Fig. 1. The periodically time-varying oscillator under study. (a) Mass on a local quadratic potential hill, harmonically modulated over a period T . (b) Associated linear
mass–spring system with a time-varying stiffness k(⌧ ) = �k0 + k1 cos(2⇡⌧/T ).

therefore a necessity. Yet, to the best of our knowledge, we believe
that the linear vibratory analysis of a 1D Kapitza-like oscillator has
only been partially studied, so far. Here, we present a numerical
and theoretical study of themodal analysis of a naturally diverging
mass on a harmonically modulated potential hill. Unlike focusing
on the Kapitza asymptotic regime where the modulation period-
icity is much smaller than the collapsing time of the particle, we
are interested in the regime where the modulation periodicity
is larger than the diverging time. In Section 2, we present the
system under study and the numerical tools we use to perform
its modal and stability analysis. Section 3 highlights the original
mechanical behavior numerically observed when the modulation
is slow as compared to the natural diverging time. Section 4 shows
the theoretical reduction process that allows to analytically char-
acterize the numerical results obtained in Section 3. We conclude
and discuss those results in Section 5.

We find that, opposite to the Kapitza limit, the dynamical
stabilization of the naturally diverging mass consists in almost-
periodic vibrational modes, or Floquet Forms (FFs), that are lo-
cated in independent stability stripes of themodulation parameter
space. Based on simple numerical observations, we show that it
is possible to reduce the harmonically time-varying governing
differential equation under study to a dimensionless Schrödinger
stationary wave equation with a harmonic potential. The latter
can be analytically solved and is used to predict the location of
the stability stripes as well as the periodic modal shapes of the
stable FFs of the modulated oscillator. These results should help
improving our understanding of periodically time varying systems
and the relation between initial and boundary value problems,
two notions that are notably at the heart of the recently un-
veiled discrete time crystals [20–23]. This work could also benefit
to the modeling of hydraulic quantum analogs that consist in a
bouncing droplet ‘‘walking’’ on a harmonically vertically vibrated
bath [24–30]. Although we believe that the mathematics leading
to Schrödinger’s like equations are fundamentally different, it is in-
teresting to notice that both dynamical systems involve a naturally
collapsing or bouncingmass in a time-varying potential energy and
lead to discrete mechanisms.

2. Equation of motion and Floquet theory

Fig. 1(a), (b) show the 1D periodically time-varying linear dy-
namical system under study. A particle of mass m locally moves
with a position r(⌧ ) on a harmonically modulated, quadratic po-
tential hill, so that its total kinetic plus potential energy reads
E(⌧ ) = 1/2mṙ(⌧ )2 + 1/2k(t)r(⌧ )2 where ṙ(t) = dr(⌧ )/d⌧ is
the velocity of the particle. The linear equation of motion of m
associatedwith E(⌧ ) ismodeled by the 1 degree-of-freedommass–
spring system shown in Fig. 1(b). In this periodically conservative
system, the particle experiences a parametric excitation F (⌧ ) =
�k(⌧ )r(⌧ ) that derives from the modulated potential energy and

that can be represented by a spring with a T -periodic varying
stiffness k(⌧ ) = k(⌧ + T ) = �k0 + k1 cos(2⇡⌧/T ) where �k0
and k1 are the fundamental and modulated stiffness, respectively.
The only difference with a classic parametric oscillator is that the
fundamental stiffness �k0 is negative: if k1 = 0 N/m, the system
is linearly unstable and the mass exponentially diverges following
r(⌧ ) / e

2⇡⌧/T0 where T0 = 2⇡/
p
k0/m is the natural diverging

time.
According to Newton’s second law and Lagrangian mechanics,

the dimensionless Initial Value Problem (IVP) governing r(⌧ ) reads

d
2
r(t)
dt2

� r(t) + ↵ cos(2⇡ t/T )r(t) = 0 (1)

where t = 2⇡⌧/T0 is the dimensionless time. In this fundamental
Mathieu equation [31,32], the natural diverging time is now 2⇡
and the dimensionless modulation period of the potential energy
is T = 2⇡T /T0. The two relevant modulation parameters are the
time scale ratio T/2⇡ and the stiffness ratio ↵ = k1/k0. For modal
and stability analysis of the linear differential Eq. (1), one can use
Floquet theory [33,31] to express r(t) as a linear combination of
two almost-periodic vibrational modes, or Floquet forms,

r(t) = c1 (t)est + c2 
⇤(t)e�st (2)

where c1 and c2 are constants determined upon initial position
r(0) and velocity ṙ(0). Replacing the Floquet form  (t)est in Eq.
(1) leads to an eigenvalue problem that can be numerically solved
for each set of parameters (↵, T ) [34–36]. According to Floquet
theory, s is a complex eigenvalue called a Floquet exponent and
the computed eigenfunction (t) and its complex conjugate ⇤(t)
are periodic with a dimensionless modulation period T . Because of
the dimension and the linearity of Eq. (1), only three qualitative
stability behaviors can be observed in the (↵, T ) space:

• If <(s) = 0 and 0  =(s)  ⇡/T , the particle is neutrally
stable and r(t) is an almost-periodic oscillation about r(t) =
0.

• If <(s) > 0 and =(s) = 0, the position r(t) = 0 is
dynamically unstable and r(t) is a T -periodic motion that
exponentially diverges from r(t) = 0 with a growth rate
<(s).

• If <(s) > 0 and =(s) = ⇡/T , the position r(t) = 0 is
dynamically unstable and r(t) is a 2T -periodic motion that
exponentially diverges from r(t) = 0 with a growth rate
<(s).

3. Modal and stability analysis (T > 2⇡)

The oscillating system represented by the governing equation
Eq. (1) has been well studied in the asymptotic limit where the
modulation period T is much smaller than the natural diverging
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Fig. 2. Numerical stability chart of the harmonically modulated collapsing mass for
0  ↵  10 and 0.2  T/2⇡  5. Red and yellow regions show T and 2T -periodic
unstable solutions, respectively. Between those regions are tiny zones, denoted by
l = 0, 1, 2, . . . in ascending order of T , where r(t) is a neutrally stable almost-
periodic solution. The black line represents the Kapitza limit ↵ =

p
8⇡/T . (For

interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

time T0, i.e. for T ⌧ 2⇡ [32]. In this regime, first understood
by Kapitza thanks to averaging techniques when studying the in-
verted pendulumwhose pivot point is vertically vibrated [18,16], it
is possible to stabilize the naturally divergingmass if (↵T )2/8⇡2 >
1. Here, we will focus on the dynamical behavior of the modulated
oscillator of Fig. 1 for T > 2⇡ that is the overlooked regime we are
interested in.

We perform a numerical stability analysis of Eq. (1) by ana-
lyzing the growth rate <(s) and fundamental frequency =(s) of
the computed Floquet forms  (t)est and  ⇤(t)e�st in the mod-
ulation parameter space (↵, T ). Fig. 2 shows the linear stability
chart of the particle for 0  ↵  10 and 0.2  T/2⇡  5.
Following the stability classification given at the end of Section 2,
we find an alternation of T -unstable (red dots in Fig. 2) and 2T -
unstable regions (yellow dots) which is typical of classic Mathieu
equations [31,32]. If the system is not modulated enough, i.e. for
↵ < 1 (the potential energy is never positive), the mass cannot
be dynamically stabilized. For T < 2⇡ , a stability region opens
whose instability lower limit corresponds to the classic frontier of
Kapitza, ↵ =

p
8⇡/T , shown in black line in Fig. 2. For T > 2⇡ ,

i.e. when the period of modulation is slower than the naturally
diverging time, Kapitza’s theory does not hold but the dynamical
stabilization of the mass is still possible in the (↵, T ) modulation
space: our goal is to get some physical and mathematical insights
into this stabilization process.

According to Floquet theory, the T and 2T instability regions
cannot merge in the (↵, T ) space so each alternation of colors
indicates a tiny stability domain that we denote l = 0, 1, 2, . . .
as shown in Fig. 2 [37]. Those regions of stability form indepen-
dent ‘‘stripes’’, whose finite width drastically decreases as T in-
creases (we barely reach inside the stability regions above T/2⇡ >
5 because of machine epsilon of our computational software).
Fig. 3(a) and (b) show the evolution of the spectrum of the two
Floquet forms  (t)est and  ⇤(t)e�st as a function of T/2⇡ for
↵ = 2.25. According to Floquet theory, the eigenfunction  (t)
is T -periodic with a fundamental frequency 2⇡/T . Therefore, by
Fourier expansion, the spectrum of the two Floquet forms reads
s + P

h
i2⇡h/T and �s + P

h
i2⇡h/T , where h is an integer. By

the superposition principle of Eq. (2), the solution r(t) contains

Fig. 3. Spectrum of the solution r(t) as a function of T/2⇡ for ↵ = 2.25. (a) Location
of the frequency spectrum =(s̄) + P

h. Green and blue vertical lines show the
neutrally stable T and 2T -periodic solutions, respectively. Inset: Zoom on the first
stability region l = 0 where the spectrum of the two Floquet forms are unlocked.
(b) Evolution of the growth rate of the two vibrational modes (t)est and ⇤(t)e�st .
Inset: Zoom on the first stability region l = 0 where the growth rate of both modes
is <(s) = 0. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the sum of both spectrum in it. Fig. 3(a) shows the location of
the frequency spectrum of the two vibrational modes ±=(s̄) +P

h
h as a function of T/2⇡ for ↵ = 2.25 where we introduced

=(s̄) = =(s)T/2⇡ (only the positive part of the spectrum is shown
as the latter is symmetric with respect to the x-axis). For most
modulation period T , the frequency spectra of the two modes are
locked, alternatively in 0 + P

h
h2⇡/T (T -periodic spectrum) or in

⇡/T+P
h
h2⇡/T (2T -periodic spectrum). As shown in Fig. 3(b), this

lock-in is associated with a finite growth rate <(s) so that one of
the periodically oscillating Floquet form is exponentially diverging
(<(s) > 0) and one is damped (<(s) < 0). Between those locked
unstable regions, tiny zones exist where the two Floquet modes
are unlocked and where the associated growth rate <(s) is zero for
both modes, a situation that leads to the stability stripes in Fig. 2
which correspond to neutrally stable almost periodic solutions r(t).
The insets in Fig. 3(a) and (b) display a zoom on the first stability
region l = 0. In stability regions, the fundamental frequency
=(s) evolves continuously from 0 to ⇡/T for tiny variations of T .
Note that the green and blue vertical lines are the limits of the
stability zones corresponding to neutrally stable T and 2T -periodic
solutions with <(s) = 0, respectively, and located at modulation
periods T which are characteristic values of the so-called periodic
Mathieu functions [31].

We now focus on the neutrally stable vibrational motions of the
mass. Fig. 4(a), (b) and (c) display three typical examples of such
vibrational modes over three periods T for modulation parameters
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Fig. 4. Time evolution position r(t), velocity ṙ(t) and energy E(r(t)) of neutrally
stable vibrational modes  (t)ei=(s)t with N =

R
T
| (t)|2dt = 1. Periodic eigen-

functions  (t),  ̇ (t) and E( (t)) are shown in dotted lines. T -periodic cells are
delimited by thin vertical lines. We fixed T/2⇡ = 5. (a) Mode in the l = 0
stability regions for ↵ = 1.14905152323442. (b) Mode in the l = 1 stability
regions for ↵ = 1.5081802859941. (c) Mode in the l = 2 stability regions for
↵ = 1.9549540063305.

in the stability regions l = 0, 1 and 2, respectively [37]. In each
panel, we show the position r(t) =  (t)ei=(s)t , velocity ṙ(t) andme-
chanical energy E(r(t)) = 1/2ṙ(t)2 +1/2(�1+↵ cos(2⇡ t/T ))r(t)2
of the computed vibrational modes. The modes are normalized
so that N =

R
T
 ⇤(t) (t)dt = 1. Full lines represent the com-

puted almost-periodicmotionwhendotted lines show theperiodic
eigenfunctions  (t),  ̇ (t) and E( (t)). The stable almost-periodic
vibrations of themass described in Fig. 4 are synchronizedwith the
modulatedpotential energy and canbedecomposed in a successive
repetition of similar motions that are scaled copies of their T -
periodic eigenfunctions (the scaling factors can take all the values
between �1 and 1 and will be discussed in next section). The
eigenfunctions can themselves be decomposed in three parts over
one period T : (i) when the curvature of the quadratic potential
energy in r(t) = 0, (t) = (�1 + ↵ cos(2⇡ t/T )), is negative,
the mass exponentially diverges, (ii) when (t) > 0 the mass
oscillates, (iii) when (t) < 0 the mass exponentially converges

Fig. 5. Sensitivity analysis of the stable vibrational modes r(t) =  (t)ei=(s)t for
T/2⇡ = 5. (a) For a mode in the l = 0 stability region (↵ = 1.14905152323442),
the 20 first consecutive periods of r(t), chronologically ordered from cold blue to
hot red, are superposed on the primitive time cell �T/2 < t  T/2. Dotted
lines represent the periodic eigenfunction  0(t). Top panel and bottom panel
have slightly different T/2⇡ corresponding to =(s) ⇡ 0.98 ⇥ ⇡/T and =(s) ⇡
0.62 ⇥ ⇡/T , respectively. (b) Same as (a) but for a mode in the stable zone l = 1
(↵ = 1.9549540063305). Top panel and bottom panel have slightly different T/2⇡
corresponding to =(s) ⇡ 0.25 ⇥ ⇡/T and =(s) ⇡ 0.04 ⇥ ⇡/T , respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

to a state almost identical to the previous period, close to r(t) =
0 [37]. The qualitative difference between vibrationalmotionswith
ascending order of l from Fig. 4(a) to (c) is that in the lth stability
region, themass is able to do (l+1) oscillations during the time (t)
is positive. Like in a classical oscillator, the velocity is zero when
the position is at a local maximum. Finally, the mechanical energy
E(r(t)) illustrates the ‘‘diverging/vibrating’’ binary behavior of the
studied oscillator: over one period T , it seems null when (t) < 0
and positive when (t) > 0.

4. Reduction of the dynamics to  (t)

4.1. Reduction to the neutrally stable periodic solutions rl(t) =  l(t)

As already mentioned and illustrated in Fig. 4, the almost-
periodic neutrally stable modes of the lth stability region, rl(t) =
 l(t)ei=(s)t , can be decomposed in a succession of cycles that are
scaled copies of the periodic eigenfunctions  l(t) =  l(t + T ). To
highlight this time-translational property, we superpose, on the
primitive time cell �T/2 < t  T/2, the 20 first consecutive
periods of the position r(t) of some computed vibrational modes.
The result is shown with T/2⇡ = 5 and ↵ = 1.14905152323442
for modes in the l = 0 stability region in Fig. 5(a) where the
chronological order is indicated by 20 gradual colors from cold blue
to hot red. The dotted line represents the periodic eigenfunction
 0(t). Around T/2⇡ = 5, the width ✏ of the stability region has
already decreased to ✏ ⇡ 10�13 in the (↵, T ) parameter space.
Throughout this width ✏, the eigenvalue or fundamental frequency
=(s) varies in the primitive spectral cell 0  =(s)  ⇡/T (see insets
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Fig. 6. Periodic mapping and reduction of the neutrally stable vibrational modes to
their periodic eigenfunctions for T/2⇡ = 5. (a) Evolution of the n = 20 first scaling
factors ⇢n = cos(=(s)(nT � T )) as a function of number of periods represented by
color dots from cold blue to hot red. Black lines show the functions cos(=(s)(t � T )).
From top to bottom: =(s) ⇡ 0.98 ⇥ ⇡/T , =(s) ⇡ 0.62 ⇥ ⇡/T , =(s) ⇡ 0.25 ⇥ ⇡/T
and =(s) ⇡ 0.04⇥⇡/T . (b) Reduction of the positions r([nT �T , nT ]) of Fig. 5(a) on
the eigenfunction  ([0, T ]) by ⇢n scaling. (c) Same as (b) but for the eigenfunction
 1(t) of Fig. 5(b).

of Fig. 3(a) and (b) to see the evolution of s in a stability region);
unlike the periodic eigenfunction (t) that remains unchanged. As
a consequence, unlike its periodic eigenfunction (t), the position
of the stable vibrational mode, r(t) =  (t)ei=(s)t , is sensitive to the
width of the stability regions ✏ (the same is true for ṙ(t) and  ̇ (t)
or E(r(t)) and E( (t))). This sensitivity property is highlighted in
the top and bottom panels of Fig. 5(a) that show vibrational modes
in the l = 0 stability region for T/2⇡ = 5±✏/10, corresponding to
=(s) ⇡ 0.98⇥⇡/T and =(s) ⇡ 0.62⇥⇡/T , respectively. From one
panel to another,  0(t) as well as the various curves of r(t) have
similar shapes, the only change lies in the chronological order in
which r(t) appears. The samenumerical observations on sensitivity
can be made for vibrational modes in higher regions of stability as
illustrated for l = 1 in Fig. 5(b), where the top panel and bottom
panel correspond to a fundamental frequency =(s) ⇡ 0.25 ⇥ ⇡/T
and =(s) ⇡ 0.04 ⇥ ⇡/T .

To go further, one needs to specify the scaling factors that
relate the position r(t) =  (t)ei=(s)t to the eigenfunction  (t)
for each successive periods. According to Floquet theory [31,32],
the almost-periodic solution r(t) theoretically verifies the periodic

mapping

r(nT ) = cos(=(s)nT ) ⇥ r(0) = cos(=(s)nT ) ⇥  (0) (3)

where n is a positive integer and T is the dimensionlessmodulation
period. What we observe in the numerical results illustrated in
Fig. 5 is stronger than Eq. (3) since it is the whole functions r([nT �
T , nT ]), i.e. r(t) for t 2 [nT � T , nT ], that are related to the unique
T -periodic function  ([nT � T , nT ]) =  ([0, T ]). From numerical
observations of r(t), we are able to generalize the quasi-periodicity
property of Eq. (3) froma single time value t to a full period [t, t+T ]
so that

r([nT � T , nT ]) = ⇢n ⇥  ([0, T ]) (4)

where ⇢n = cos(=(s)(nT � T )) is a real between �1 and 1. In
Fig. 6(a), we show for T/2⇡ = 5 the evolution of cos(=(s)(t �
T )) as well as the scaling factors ⇢n = cos(=(s)(nT � T )) rep-
resented by color dots. From top to bottom, we varied =(s) in
the primitive spectral cell 0  =(s)  ⇡/T by taking =(s) ⇡
{0.98, 0.62, 0.25, 0.04} ⇥ ⇡/T . Those values of =(s) are the ones
we obtained in Fig. 5 from top to bottom. In Fig. 6(b) and (c), we
divide each position function r([nT � T , nT ]) of Fig. 5(a) and (b) by
the corresponding scaling factor ⇢n of Fig. 6(a): the 20 first periods
of the various computed rl([nT � T , nT ]) all collapse on their
respective eigenfunctions  l([0, T ]). If we increase the number of
periods, the scaling factors ⇢n take a very large number of different
values between�1 and 1 and all the rl([nT�T , nT ])would collapse
on  l([0, T ]).

The property of Eq. (4), altogether with the aforementioned
sensitivity property of thin regions of stabilitywhen T > 2⇡ , offers
a reduction opportunity. One could choose to neglect the width
✏ of the lth stability regions and reduce the latter to widthless
stripes, i.e. to represent a neutrally stable mode of vibration rl(t) =
 l(t)ei=(s)t by its sole T -periodic eigenfunction l(t) in the primitive
periodic cell �T/2 < t  T/2 by taking =(s) = 0. By doing so,
we lose informations on the vibrational modes rl(t) whose Floquet
exponents actually span 0  =(s)  ⇡/T , but we will gain
analytical insights on the oscillator governed by Eq. (1), notably on
 l(t) and their location in the (↵, T ) modulation parameter space.

4.2. Reduction to a dimensionless Schrödinger stationary wave equa-

tion with a harmonic potential

Reducing the regions of stable vibrational modes to the limit
branches of periodic Mathieu functions rl(t) =  l(t) (that corre-
spond to the stability frontiers s = 0 of the red regions in Fig. 2),
 l(t) are solutions of the initial value problem (IVP), Eq. (1), so that
we can write
d
2 (t)
dt2

�  (t) + ↵ cos(2⇡ t/T ) (t) = 0. (5)

Unlike the general Eq. (1), Eq. (5) is periodic and can therefore
be reduced to a single representative period T . The complete
mathematical analysis of Eq. (5) is beyond the scope of this paper
but one could first resolve it thanks to numerical observations. By
construction and for sufficiently thin stability regions with ✏ ⌧ 1,
the normalized periodic solutions l(t) has a compact support over
a period T and can be decomposed in two exponential functions,
mirrored with respect to a central vertical axis, connected by a
function with l + 1 extrema (see throughout Figs. 2–6. Conse-
quently, the intensity of the normalized  l(t) is localized in the
center of the period and almost zero elsewhere (this is especially
pronounced as the width of the stability region ✏ decreases). So,
multiplying  l(t) by a T -periodic function F (t) would localize the
intensity of F (t) at the center of the period. Choosing the primitive
periodic range �T/2 < t  T/2 as the representative cell for the
whole solution  (t),  (t) cos(2⇡ t/T ) would cancel the intensity
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Fig. 7. Analytical predictions from a dimensionless Schrödinger equation with a
harmonic potential. (a) Limits of T -periodic instability regions of Fig. 2(a) in the
(↵, T ) space for 1  ↵  2 and 1  T/2⇡  20. Numerical outcomes from the
IVP Eq. (1) (green lines) are compared to the analytical results from the BVP Eq.
(7) (black lines). Each solution El = l + 1/2 of Eq. (8) corresponds to a branch
of stability, s = 0. (b) In blue line, absolute square of the first four computed
eigenfunctions  l(t) of Eq. (1) on the dual primitive cell �vT/2 < �  vT/2 for
T/2⇡ = 5 and v = (2⇡2↵/T 2)1/4 = 0.389351968371210, 0.416745399049464,
0.444673895477715, 0.472863276327510 from bottom to top. The eigenfunctions
are normalized so that N =

R
T
| (t)|2dt = 1. Black lines are analytically obtained

from Eq. (9). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

of cos(2⇡ t/T ) away from the origin t = 0 so that, assuming  (t)
is localized enough, the Taylor series approximation

 (t) cos(2⇡ t/T ) ⇡  (t)(1 � 2⇡2
t
2/T 2) (6)

would be legitimate. Replacing Eq. (6) in Eq. (5) and upon the
change of variable � = vt with v = (2⇡2↵/T 2)1/4, Eq. (5)
governing  l(t) can be rewritten in the form of a Boundary Value
Problem (BVP) on the dual primitive cell �vT/2 < �  vT/2

E (� ) = 1
2
�2 (� ) � 1

2
d
2 (� )
d�2 (7)

where E =
⇣
(↵ � 1) /

p
2↵

⌘
⇥ T/2⇡ . The linear eigenvalue

problem with variable coefficient in Eq. (7) is well-known as it is
the dimensionless form of a stationary Schrödinger equation with
a harmonic potential, usually predicting the total energy E and
wavefunction  (� ) of a 1D quantum harmonic oscillator [38]. For
 (�1) =  (+1) = 0, the discrete set of eigenvalues E and
eigenfunctions  (� ) take the form

El =
⇣
(↵ � 1) /

p
2↵

⌘
⇥ T/2⇡ = l + 1/2 (8)

and

 l(� ) = Hl(� )e(��
2/2)/(⇡1/4

p
2ll!) (9)

where Hl(� ) are Hermite polynomials and l = 0, 1, 2, . . . The
analytical results of Eqs. (8)–(9) allow us to predict the shape of
the T -periodic Mathieu functions  l(t) as well as their location in
the modulation parameter space (↵, T ). Fig. 7(a) shows that each
analytical El of Eq. (8) accurately predicts the T -periodic limits of
the lth numerical stability regions of Eq. (1) in the (↵, T ) space.
As expected from numerical observations, since the width of the
lth stability region and the errors in the approximation Eq. (6)
decrease as T increases, the analytical prediction Eq. (8) for each
mode l becomes better with T as shown in Fig. 7(a). Fig. 7(b)
illustrates, for T/2⇡ = 5, that the analytical eigenfunctions  l(� )
of Eq. (9) are in good agreement with the periodic eigenfunctions
 l(t) that were numerically computed from Eq. (1) and shown in
Fig. 4(a), (b) and (c) for a ↵ in the l = 0, l = 1 and l = 2 sta-
bility regions, respectively. Thus, in a certain asymptotic limit that
will need to be rigorously defined in future work, the stationary
wave equation Eq. (7) allows to compute, in the (↵, T ) modulation
parameter space, the eigenfunctions  l(t) of the stable vibrational
motion of the oscillator. The actual position of the mass of the
oscillator, rl(t) is not predicted by Eqs. (8)–(9), but it can be infer
from the previous subsection that it will be a successive repetition
of scaled periodic eigenfunctions  l(t).

5. Conclusions and discussions

In summary, we presented a numerical and theoretical study
of a fundamental vibratory mechanism: the discrete dynamical
stabilization of a harmonically modulated 1D linear oscillator
whose mass is naturally diverging. We have shown an intriguing
asymptotic limit of a Kapitza like oscillator governed by a Mathieu
equation in which the stable vibrational modes, or Floquet forms,
get restricted to thin stability stripes of the modulation space.
The multiple initial value problems (IVP) governing the motion of
the neutrally stable particle in those modulation regions can be
recast in a single boundary value problem (BVP) on a primitive
periodic cell that is a dimensionless Schrödinger stationary wave
equationwith a harmonic potential. This stationary wave equation
allows to analytically predict the modulation parameters leading
to dynamical stabilization as well as the periodic modal shapes
(which are the periodic Mathieu functions of the system) of the
stable vibrational modes, albeit with a certain ignorance on the
actual motion of the mass.

This paper is a first study, mainly numerical, that helps to shed
new light on periodically time-varying oscillators governed by
Floquet theory that are at the heart of many problems in physics.
In future work, a more rigorous mathematical approach would be
needed, notably to characterize the asymptotic limit where the
original equation of motion can be approximated by a dimension-
less Schrödinger’s equation. Another mathematical task would be
to determine whether the presented reduction from IVP to BVP is
unique, or generalizable to a broader class of ordinary differential
equations with periodic coefficients. Meanwhile, this theoretical
work raises a practical question: is it possible to experimentally
validate the describedmechanism?A trivial answerwould be to set
up an experimental system whose linearized equation of motion
is in the form of Eq. (1). The simplest realization could be an
inverted pendulum whose pivot point is vertically vibrated which
is the archetypal example of a mass that naturally diverges under
periodically modulated gravity. The major problem with such a
basic experiment would lie in the theoretical width of the stability
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regions that we uncovered. The latter are intrinsically so small
that any additional experimental noise would probably make the
pendulum unstable. A possibility could be to add some damping to
the oscillator that would decrease the growth rate <(s) and widen
the instability regions for any given modulation parameters. The
drawback of his approach is that the eigenfunctions (t) as well as
the actual positions r(t)would lose their symmetry in the primitive
periodic cell. Another solution would be to start the experiment
from modulation parameters for which the stability regions are
reasonably large and strive to progressively explore the regions as
it shrink. In any case, a study of the dependence of an additional
noise on the stability of the motion in a nonlinear framework
would be needed to get some physical insights in the transitions
between stable regions.

Last but not least are the mathematical analogies of the pre-
sented harmonically-varying 1D oscillator with the 1D quantum
harmonic oscillator [38]. Quantum analogs have regained consid-
erable attention due to the recent experimental discovery of a
mechanism that consists in a bouncing fluid droplet ‘‘walking’’ on
a vertically vibrated bath [24–27]. By varying the experimental
setup, this new framework coined ‘‘dual walkers’’ has already
allowed to describe quantum tunneling [28], quantization of clas-
sical orbits [29] and the quantum harmonic oscillator [30] in an
analogous fashion. Although powerful, themathematicalmodeling
underlying this hydraulic quantum analog is based on nonlinear
interactions between a wave and a particle such as chaotic behav-
ior and time-delay phenomena, which are rather elaborate ingre-
dients when Schrödinger’s equation could reduce to a 1D linear
ODE in the case of the quantum harmonic oscillator [38]. Since the
existence of dual walkers is deeply related to Faraday instabilities
that are parametric instabilities explained by Floquet theory, it is a
possibility that the presented periodically time-varying oscillator
framework could help in the physical understanding and model-
ing of quantization phenomena observed in macroscopic wave–
particle interactions.
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