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Abstract. We describe the deformations of a 2D elastic structure (beam, rod or filament) subjected to ran-
domly distributed local orthogonal forces. The fiber is in quasistatic equilibrium condition when a given force
distribution is acting on it. To analyze the effects of force fluctuations on the observed configurations, we study
the behavior of the bending moment at the origin and the filament curvature, as a function of nominal values of
the local mean forces and small, moderate and large fluctuations around them.

1 Introduction

The mechanical interaction of a slender and elastic ob-
ject (Cfiber’) with an external constraining medium (solid,
soft gel, granular, viscous or turbulent flowing liquids) oc-
curs in many situations. Examples can be found in natural
and engineering fields ([1] and references therein) such as
the penetration of long drill pipes in sea beds for petroleum
recovery, the insertion of long thin guide wires for inves-
tigation and surgery in medicine, the growth of plant roots
in soils [2] or even at a smaller scale the development of
cytoskeleton microtubules in living cells [3] or the DNA
packaging in cell nuclei [4]. In all these situations, the
interplay between the elasticty of the fiber and the exter-
nal forces leads to a large variety of shapes and behaviors.
The case of a fiber embedded inside a granular medium is
of particular interest, then it deals with discrete and hetero-
geneous sets of forces along the fiber (See Fig. 1(a)). This
situation has been investigated experimentally in [5] but
almost no modeling takes into account the role of the noise
in the bending behaviors of Elastica, namely the force fluc-
tuations around an average value set by the approach to the
jamming transition in the case of a granular medium.

In this work we describe the influence of force inten-
sity fluctuations on the configurations adopted by a 2D
elastic fiber subjected to random orthogonal forces. We
numerically solve the equation describing the fiber shape
for a particular distribution of forces and we analyze our
results as a function of the force amplitude fluctuations and
the beam curvature.

2 Modeling the fiber deflection

2.1 Theoretical description

To describe the planar deformation of the fiber we use the
2D Kirchhoff equations. Thus, we consider the fiber as an
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inextensible elastic filament of length L, parametrized by
its arclength s and clamped at the origin (See Fig. 1(b)).
We assume that this fiber is subjected to internal contact
forces described by F (s) and also external forces, whose
amplitude by unit length is expressed by the density f:;(s).
By balancing the force and moment acting on the fiber, we
have [6, 7]:

4F(s)+f =0, (1)

m'(s) + (f(s) A F(5)) - k=0. 2)

In these equations m(s) represents the internal moment
in the fiber, #(s) the local unit vector tangent to the fiber
and k the unit vector perpendicular to the deflection plane
(Fig. 1(b)). The above system can be reduced by inte-
grating Eq. 1 to find F(s) and by replacing this variable
into Eq. 2. If we suppose that the fiber behaves as a lin-
ear elastic material, the moment is proportional to the rod
curvature: m(s) = EIk(s) (Euler-Bernoulli law), where E
is the fiber elastic modulus, / its moment of inertia and
k(s) = & (s). In this work, we focus on the case of a distri-
bution of orthogonal local forces, compatible with the ex-
perimental results obtained for a fiber embedded in grains
[5], then: fi(s) = f(s)sinf(s)i — f(s)cos(s)], and the
reduced moment equation is expressed as follows:

s'=L

EI0"(s) — ( f(s")cos G(S’)ds’) cos 4(s)

§'=s

s'=L
- ( f(s")sin 0(s’)ds’) sinf(s) = 0. 3)
Note that this equation only depends on the angular vari-
able 0(s). Eq. 3 must be solved together with the boundary
condition: 6(s = 0) = /2. At s = L the fiber end is free
to move, m(L) = 0. We have completely neglected the
weight of the fiber. We also note that our filament descrip-
tion allows for very large deflection (geometrically exact).
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Figure 1. (a) Experimental example of a flexible fiber penetration into a granular medium (from [5]). Grains exert random forces at
different fiber points. (b) Continuous fiber parametrization. Blue arrows represent the local force distribution f;(s) for a normal loading
with fluctuations of amplitude. (c) Discretized fiber parametrization. Random local forces (blue arrows) act in fiber nodes, where 6;
represents the angle of a given segment with respect to the horizontal axis.

The only restriction is that fiber self-intersections are for-
bidden.

2.2 Numerical resolution

Using finite differences, the second-order partial differ-
ential Eq. 3 can be discretized in a set of N nonlinear
algebraic equations with N unknowns, that are the rota-
tional degrees of freedom of the discretized structure, rep-
resented here by the angle 6;. Note that N is also the num-
ber of discrete elements modeling the fiber (see Fig.1(c)).
In this way, the discrete, non-dimensional version of Eq. 3
is:

01 —20; + 6, =
—(Hd—zl) + (Z fj Cos 91} cos 6;
s

=

j=N
+{};ﬁsmngn&:o. )

=

In this last equation we keep the same notation for sim-
plicity: f; — fi/Fc and s — s/L, where F¢ = EI/L?is
the characteristic force of the problem. To solve this sys-
tem of nonlinear equations we use MATLAB fsolve func-
tion, with the implemented trust-region-dogleg algorithm
as an option. For all the performed simulations the number
of segments has been set to N = 200 to ensure numerical
convergence.

The force distribution along the fiber is the set of forces
{ fi}f; - The classical problem considers that all the f;
forces are uniformly distributed. We denote this configura-
tion as deterministic solution. Thus, for a given force dis-
tribution and an initial configuration of the discrete beam
{9,}X |, we can obtain the quasistatic configuration {6}
which only depends on the applied force distribution.

Now, to account for the influence of force fluctuations,
we suppose that all the f; are independent, identically dis-
tributed random variables. For simplicity, we consider that
they are drawn from a Gaussian probability distribution:

G(f L g, o) =

_ 32
(f = up) ] ’ 5)

2
27r0'§ ( 20 f

where uy is a prescribed mean value and o its standard
deviation. For different fixed values of the couple (us,075)
we have performed N, = 200 realizations of the random
variables { fi}ﬁi ,- For each realization the shape of the fiber
is constructed from the computed values of {¢"} .

To analyze the fiber deformations we can first focus on
two quantities. The non-dimensional contact force acting
as a reaction of the external forces at the clamped origin:
fr = Zf\i 1 Ji. The second quantity is the reaction moment
at the clamped end produced by these forces. By defini-
tion it can be computed by: m, = m(0) = Elx(0). In the
special case of small deflection regime, the normal forces
have essentially only horizontal components and then they
are initially acting at a distance {yi}f\i , from the fiber ori-
gin. Therefore the non-dimensional total moment at the
clamped end can be easily computed as: m, = — Zfil yi f;
and this equation can be used to analyze the role of spatial
fluctuations in the case of small random force amplitudes
acting on the fiber.

3 Results

3.1 Low and moderate fluctuations

We discretized the fiber in N = 200 segments. At a given
value of the couple (uy,0r) we performed N, = 200 re-
alizations for all the simulations. To graphically see the
effects of force amplitude fluctuations, in Fig. 2(a,b) we
show some examples of fiber configurations obtained by
solving numerically Eq. 4 using a distribution of forces
given by Eq. 5. For this Fig. 2(a,b), we have fixed 2 values
of yy = 0.0 and 0.1. Each different figure corresponds to
a different value of oy = 0.1 and 1 ((a) and (b), respec-
tively). We observe that for small fluctuations (oy = 0.1)
the shapes coincide with the deterministic configurations
obtained by the corresponding homogeneous distribution
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Figure 2. The influence of the noise magnitude on fiber configu-
rations for 10 realizations (of a total of 200) for two fixed values
of uy. We show results for 2 different values of os: a) oy = 0.1,
b) oy = 1.0. In both figures the black curve corresponds to
the configuration obtained for the homogeneous distribution of
forces, i.e., oy = 0.

of forces (black curves, oy = 0), at least when the cur-
vature of the beam is large enough (uy = 0.1). We also
observe that when fluctuations start to increase (oy = 1)
shapes are no longer similar and slightly disordered con-
figurations appear for any shape (see Fig. 2(b)).

In Fig. 3 we show the behavior of the non-dimensional
value of the moment at the origin m, as a function of the
non-dimensional total force fr. We observe the evolu-
tion of the curve for a given set of u; values (see inset
in Fig. 3(a) and (b)) and for the same two fixed values of
oy =0.1 and 1.0. For small fluctuations values (Fig. 3(a))
random results follow the deterministic curve represented
by open black circles. Black crosses correspond to the
mean value of all the realizations, each of one depicted by
a color point of the scattered curve. We also include the
corresponding values of the moment obtained in the small
deformation regime by using the definition of my, (blue
squares) and its corresponding mean value (blue stars). We
can see that the linear regimes are similar up to u = 0.05.
Beyond this value non linear deformations dominate. Note
that crosses and circles (and correspondingly squares and
stars) almost coincide. Conversely, for moderately large
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Figure 3. The influence of noise magnitude on the value of m,,
the fiber bending moment at s = 0 for some fixed values of u
(see inset of each figure). We show results for 2 different noise
values. a) oy = 0.1, b) oy = 1.0. Open black circles represent
deterministic configurations and black crosses correspond to the
mean value of all realizations. The value of m;, (small deforma-
tion limit) has been also plotted for the corresponding determin-
istic (blue squares) and realization mean values (blue stars).

fluctuations (Fig. 3(b)) shapes are completely uncorrelated
to their corresponding deterministic configuration: mean
and deterministic values are very far from each other and
also with respect to the scattered points (realizations). This
is associated with random fiber shapes that do not even fol-
low the deterministic configuration trend, even for large
curvature value (Fig. 2b).

3.2 Large Fluctuation

In the previous results, we show that for small fluctua-
tions, the curvature of random and deterministic configu-
rations follows the same trend (see Fig. 3(a)), in particular
when the corresponding deterministic (initial) configura-
tions have a large curvature (uy > 0). We also observe that
for moderately large fluctuations (s = 1.0), the geomet-
rical parameters such as m, diverges from the ones of the
deterministic configuration. This can be also observed for
the mean values of realizations.
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Figure 4. (a) Some examples of disordered realizations for dif-
ferent values of o at a given value of uy = 0.2. Open black
circles represent the points on the fiber where curvature sign
changes. (b) Relative proportion of fiber realizations whose cur-
vature has changed at least once, as a function of (17,07 ). White
regions correspond to self-intersecting fibers.

To quantify when fluctuations are large enough to in-
fluence the fiber configurations we can examine the behav-
ior of their curvature. In Fig. 4(a) we observe the config-
urations obtained at fixed value of uy = 0.2 for increas-
ing values of the noise o-y. We have plotted 3 realizations
for each corresponding value of parameters. Very complex
shapes are observed, completely uncorrelated with the cor-
responding deterministic value (continuous black curve)
open black circles correspond to points on the configu-
ration were the fiber curvature has changed its sign. For
certain situations and depending on the used parameters
we can have, 1, 2, 3 or even more curvature sign changes
in fibers where originally the deterministic shape has not.
For all the performed realizations at fixed couple of (uy,
o) values, self-intersecting curves have been discarded
from our analysis.

To get more insight into this behavior we performed
a phase diagram describing the possible curvature sign
changes for a region (uy, of). In Fig. 4(b) we show a
color map representing the relative proportion of realiza-
tions for which there is at least one curvature sign change
(P«c)- This proportion is relative because it has been com-
puted by only considering fibers with a given number of
curvature sign change with respect to all the physically ac-
cepted configurations. Note that this number is not nec-
essarily equal to the corresponding realizations number
(N, = 200).

We observe a big region for which all the fibers are
self-contacting, which is in fact obvious at large values of
1y and moderately large values of o ¢ (see white region in
Fig. 4(b)). Conversely, the region for which 0 < uy < 0.5
and 0 < oy < 1.0, the proportion $,¢ is low, which means
that no curvature sign changes are produced in this region.
This is consistent with the results observed in Fig. 2(a) and
Fig. 3(a).

4 Conclusions

We study the influence of small, moderate and large
fluctuations on the deformations of a fiber subjected to lo-
cal randomly distributed forces. We have analyzed dif-
ferent quantities representing the fiber mechanics, such as
its total force and bending moment at the clamping point.
The disorder in shape configurations seems to depend on
the curvature of the corresponding deterministic shape and
the amplitude in force fluctuations. For very large fluc-
tuations, random and deterministic shapes are completely
uncorrelated, but curvature sign changes seem to follow
a particular behavior. This modeling of the noise in the
loading forces on the fiber is a first step towards the under-
standing of the shapes adopted by a slender elastic object
interacting mechanically with a granular medium.
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