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a b s t r a c t

We gain new fundamental insights on parametric instabilities that are at the heart of many physical
phenomena from the dynamic buckling of slender structures in periodic compression to the emergence
of Faraday waves or the spontaneous symmetry breaking in Floquet time crystals. Combining theo-
retical models and precision desktop experiments, we explain how to periodically vary the evolution
function of a dynamical system to enhance and get control on parametric instabilities. We show on
a proof of concept that is an electromagnetic pendulum: (i) how to observe extremely high orders of
parametric resonance, even in the presence of dissipation, (ii) how to trigger and efficiently sustain
the natural vibrations of an oscillator. The presented concepts being universal, they could offer new
dynamical functionalities in various fields and at any scale, from actuation in soft robotics to vibrational
motions in microelectromechanical resonators.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Parametric instabilities can develop in any dynamical system
hose local evolution function is periodically varied in synchrony
ith one of its natural time scale [1]. In practice, the evolution
ule is varied by modulating a physical parameter of the system:
child can pump a playground swing by periodically squatting
nd standing, thus slightly varying the moment of inertia of
he swing as a pendulum [2]; Faraday waves can emerge by
ertically oscillating a layer of fluid, thus modulating the effective
ravity felt by the perturbed surface waves [3–6] and a slen-
er structure under periodic compressive loads can dynamically
uckle due to the small variations of its apparent flexural rigid-
ty [7,8]. This concept being universal, parametric instabilities are
ncountered in various scientific areas from gravitational waves
etectors [9] to plasma [10] or Micro Electro Mechanical Systems
MEMS) [11,12]. By nature, parametric oscillators should allow
or the design of complex stability diagrams in the modulation
arameters space with numerous parametric instability tongues
hat could be exploited for promising dynamical functionalities.
ut apart in MEMS thanks to their extremely low damping [11,13]
nd Floquet time crystals [14,15], because they are many-body
oupled oscillators with low dissipation [16], classical parametric
nstability regions are actually rather rare and barely controllable.

∗ Corresponding author.
E-mail addresses: alvaro.anzoleaga_grandi@sorbonne-universite.fr

A.A. Grandi), suzie.protiere@sorbonne-universite.fr (S. Protière),
rnaud.lazarus@sorbonne-universite.fr (A. Lazarus).

URL: http://www.ida.upmc.fr/~alazarus/ (A. Lazarus).
ttps://doi.org/10.1016/j.eml.2021.101195
352-4316/© 2021 Elsevier Ltd. All rights reserved.
In this work, we investigate what features of parametric sys-
tems are essential to practically tailor the shape and number
of their parametric instability tongues. We focus on a single
linear oscillator and study the instability thresholds and dynam-
ical responses of an electromagnetic pendulum to experimen-
tally illustrate our theoretical concepts. We find that by carefully
choosing the physical parameter to greatly vary the evolution
function of a linear dynamical system, it is possible to enhance
and fully control parametric instabilities. For instance, it becomes
simple to trigger extremely high super-harmonic instability re-
gions or to practically use any periodic modulation functions to
achieve interesting cyclic motions. This work brings new physical
insights on parametric instabilities and show that new dynam-
ical functionalities can emerge when one periodically change
the local evolution function about the equilibrium point of a
dynamical system. The presented energetic concepts being uni-
versal, they could apply at any scale and in various fields, from
electronics to physics or biology. In mechanics, possible applica-
tions range from the original realization of cyclic motions such
as frequency dividers or clocks in MEMS to efficient dynamical
actuation between equilibrium positions in soft robotics.

2. From classical to extreme parametric systems

The simplest linear model to get physical insights in the stabil-
ity behavior of parametric systems is a mass locally moving in a
harmonic potential whose curvature is periodically varying with
time as illustrated in Fig. 1(a). Denoting θ (τ ) and θ̇ (τ ) the dimen-
ionless position and velocity of the mass about the equilibrium
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Fig. 1. Linear stability of a mass locally moving in a harmonically varying
potential Ep =

1
2 (α

2
+ β2 cos(τ ))θ2 . (a) Four qualitative scenarios depending on

α2 and β2 . Black lines show Ep =
1
2α

2θ2 , red dashed lines Ep =
1
2 (α

2
+β2)θ2 and

blue dashed lines Ep =
1
2 (α

2
−β2)θ2 . A: α2 < 0, β2 < −α2 . B: α2 < 0, β2 > −α2 .

C: α2 > 0, β2 > α2 . D: α2 > 0, β2 < α2 . (b) Linear stability diagram of the
Mathieu equation Eq. (1) in the modulation parameter space (α2, β2). Triangle,
circle, cross, square represent classic experiments on parametric instability. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

θ (τ ) = θ̇ (τ ) = 0, the total energy of the system can be expressed
as the sum of a kinetic and potential part, respectively reading
Ec =

1
2 θ̇

2 and Ep =
1
2 (α

2
+β2ψ(τ ))θ2 where ψ(τ ) = ψ(τ+T ) is a

T -periodic modulation function between +1 and −1 and α2 and
β2 are the local curvatures of the potential. The linear equation
of motion deriving from this energetic model reads

θ̈ (τ ) +
(
α2

+ β2ψ(τ )
)
θ (τ ) = 0 (1)

which is an Initial Value Problem in the form of a linear ODE
with periodic coefficient. We recall the solution of Eq. (1) can
be sought in the Floquet form θ (τ ) = p(τ )esτ + p̄(τ )e−sτ where
p(τ ) = p(τ + T ) is a T -periodic complex eigenfunction and s is a
complex eigenvalue called the Floquet exponent [17,18]. Fig. 1(b)
shows the numerical evolution of σ = max(ℜ(±s)) as a function
of modulation parameters α2 and β2 in the classic ‘‘Mathieu’’ case
where ψ(τ ) = cos(τ ) and T = 2π . The color dots σ > 0 indicate
solutions θ (τ ) diverging from θ (τ ) = 0, i.e. a particle that is
locally unstable, when the white regions σ = 0 indicate quasi-
periodic oscillating solutions θ (τ ) about θ (τ ) = 0, i.e. a marginally
stable particle.

The particular case β2
= 0 corresponds to the classic harmonic

oscillator where the mass is either marginally stable when α2 > 0
or locally unstable when α2 < 0. The generalized case β2 > 0
models parametric oscillators and details on the rationalization
of classic experiments by Eq. (1) are given in Appendix A. For
α2 < 0, it is eventually possible to dynamically stabilize the
naturally diverging mass [18,19], but in a very small region of the
modulation parameter space and only if β2 > |α2

|, i.e. if the cur-
vature of the potential is at least shortly positive (see cases A and
B in Fig. 1). The classic ‘‘Kapitza’s pendulum’’ experiment [20,21]
that consists in stabilizing an inverted pendulum by modulating
2

Fig. 2. The experimental Floquet oscillator under study is a planar pendulum
with a metallic marble that is symmetrically placed between two identical
attracting electromagnets whose attracting force depends on the imposed
electrical current I (see sketch in inset). The scalar ω2(I), characterizing the
local evolution function of the electromagnetic pendulum, drastically depends
on the constant control parameter I .

the gravitational energy potential through the vertical oscillation
of its pivot point is indicated by a black square in the stability
diagram of Fig. 1(b) [22]. The case α2 > 0 and α2 > β2 (case
D in Fig. 1) corresponds to classic parametric instabilities charac-
terized by disconnected instability tongues whose tips originate,
for β → 0, at α = 0.5k with k a positive integer. The kth
instability region indicates the emergence of 2T or T -periodic
motions depending if k is odd or even, respectively. Classic exper-
iments on the emergence of Faraday waves [23] or the parametric
pumping of ‘‘O Botafumeiro’’ from Santiago de Compostella [2]
are represented by green circles and blue triangles, respectively,
in Fig. 1(b). Super-harmonic parametric instabilities in MEMS [13]
are also represented in the same figure by red crosses. Finally,
case C corresponds to periodic modulations that are so large,
that the curvature of the potential in Fig. 1(a) is shortly negative.
This is the case of few Faraday instability experiments when the
acceleration of the shaker is such, than the effective gravity is
negative for a short time, i.e. the fluid tends to vertically escape
the recipient against gravity [23].

It is clear from Fig. 1(b) that parametric instabilities usually
exploited in mechanical Floquet systems are the ones close to the
tips of the instability tongues. In fact, when periodically varying
the length of a pendulum, the acceleration of a shaker or the
membrane stiffening of a micrometric plate, it is either imprac-
tical or energetically too costly to maintain a large variation of
the evolution function of a system over relatively long periods
of time, i.e. having both large β2 and α2. And since because
of inherent damping, there is an exponential narrowing of the
tips of the tongues with increasing instability region number
k [11], macroscopic systems are typically limited around the first
instability region and higher orders parametric resonances have
only been observed in MEMS thanks to their extremely large
quality factors [11,13]. In Fig. 2, we propose an experiment where
parametric instabilities are enhanced. The setup consists of a 2D
pendulum: a metallic marble with radius 0.6 cm is attached to a
string of length l = 4.3 cm. The marble is symmetrically placed
etween two electromagnets (with typical holding force of 1000
) that are separated by a distance d = 4 cm. Upon a given

electrical current I , the magnets are turned ON and both attract
the marble. The local evolution function of this electromagnetic
pendulum is characterized, for a given control parameter I , by
locally perturbing the pendulum from its trivial vertical equi-
librium position with a small initial angle θ (0) at time t = 0.



A.A. Grandi, S. Protière and A. Lazarus Extreme Mechanics Letters 43 (2021) 101195

t

2
o{

−

p

α

η

F

w
T

β

n
t
i
n
c
s
r
o
t
a
c
p
i
e
F
p
o
l
s
t
a
(
s
m
n
m
a
r
t
b
a
F
h
n

4

F
t
O
O
p
p

Fig. 3. Sketch of the input–output synchronization that would be required for
parametric pumping in the case of a time-periodic system with a square wave
modulation function T1 = T2 = T/2. To amplify any small perturbation about
he equilibrium θ (t) = 0, one needs to turn the magnets ON (decrease effective
gravity) when the pendulum height is minimal, just before the mass goes up,
and turn them OFF (put back strong gravity) when the pendulum height is
maximum, just before the mass goes down.

We find linear angular responses can be written in the form
θ (t) = θ (0)ℜ(e−i

√
ω2(I)t ) where ω2(I) is shown in Fig. 2. Two

qualitative responses are observed: below I < Ic , the pendulum
is harmonically oscillating in the form θ (t) = θ (0) cos(ω(I)t)
with a natural frequency ω(I) that decreases as I increases. Above
a critical current Ic , the pendulum locally diverges in the form
θ (0)eω(I)t , eventually choosing one or the other side depending of
initial symmetry imperfections. Because the bifurcation at I = Ic
is sub-critical, there is always a ‘‘jump’’ of ω2(I) around Ic where
our experiment is imperfection sensitive.

3. Beyond the tip of the parametric instability tongues

Unlike classical parametric systems, it is straightforward with
the system of Fig. 2 to fully explore regions A − D of Fig. 1(b)
by periodically varying the electrical current I below or above
Ic . In this work, we modulate ω2(I(t)) in a square wave fashion
as shown in Fig. 3 (case D) and 5(a) (case C). Precisely, we turn
the electromagnets OFF (I = 0) and ON (I ̸= 0) during T1 and
T2 seconds, respectively, so that the modulation period is T =

π/Ω = T1 + T2. The linear equation of motion of this two-state
scillator reads simply

θ̈ (t) + ω2(0)θ (t) = 0 during T1,
θ̈ (t) + ω2(I)θ (t) = 0 during T2.

(2)

Introducing the dimensionless time τ = Ωt , the square wave
modulation function ψ(τ ) = +1 during T1 = 2πT1/T and ψ(τ ) =

1 during T2 = 2πT2/T and the dimensionless modulation
arameters

2
=
ω2(0) + ω2(I)

2Ω2 , β2
=
ω2(0) − ω2(I)

2Ω2 , (3)

Eq. (2) can be reduced in the dimensionless form of Eq. (1) which,
in the case of a piecewise modulation function ψ(τ ), is called the
Meissner equation [1]. On top of being easy to experimentally
implement, a square wave parametric oscillator can be analyt-
ically solved [24,25]. Notably, introducing λ = i

√
α2 + β2 and

= i
√
α2 − β2, the analytical growth rate σ = max(ℜ(±s)) of the

loquet forms of Eq. (1) reads σ = |ℜ( 1
2π ln(∆±

√
∆2−4
2 ))| where

∆ = 2 cosh(λT1) cosh(ηT2) + (
η

λ
+
λ

η
) sinh(λT1) sinh(ηT2). (4)

Evolution of σ is shown in Fig. 4(a) for T1 = T2 = T/2 in
an extremely extended parameter space (α2, β2) (two order of
magnitude more as compared to the stability chart of Fig. 1(b)).
We recognize the kth instability tongues originating at α = 0.5k
for β → 0 like for the Mathieu equation, although the tongues
3

are here tailored in discrete pockets. We found that the dis-
crete location of those instability pockets can be rationalized by
the input–output synchronization sketched in Fig. 3. Parametric
pumping is achieved by dropping the effective gravity (magnets
ON) when the pendulum has minimal potential energy, i.e. at
θ (t) = 0, and putting back strong gravity (magnets OFF) when
potential energy is maximum, i.e. when θ (t) is an extremum.
For example, Fig. 3 illustrates the most efficient pumping at the
origin of the classic primary instability tongue, that consists in
turning the magnets ON and OFF every quarter of a cycle of the
pendulum’s response. But many higher super-harmonic modes of
parametric amplification are theoretically possible that can verify
the aforementioned input–output synchronization. Knowing the
electromagnetic pendulum has a natural period 2π/

√
α2 + β2

hen OFF during T1 = π and 2π/
√
α2 − β2 when ON during

2 = π , those modes need to fulfill
(2m − 1)2π

4
√
α2 + β2

= π and
(2n − 1)2π

4
√
α2 − β2

= π (5)

where m and n are positive integers and m > n, i.e. α2 >
2. As the mode numbers (m, n) are varied, Eq. (5) gives us a
ew discrete design rule in the (α2, β2) space to easily locate
he center of the instability pockets as shown by the gray dots
n Fig. 4(a). Physically, (2m − 1) and (2n − 1) represent the
umber of quarters of a cycle of the pendulum’s response one
an fit in the modulation periods T1 and T2, respectively. Fig. 4(b)
hows four experimental dynamical responses whose transient
egimes are representative of the many parametric instabilities
bserved in the electromagnetic pendulum of Fig. 2. As expected,
he parametric pumpings at the origin of the observed limit cycles
re in good qualitative agreement with the synchronization prin-
iple illustrated in Fig. 3. Expressing the experimental modulation
arameters ω(I) and Ω associated with the responses of Fig. 4(b)
n the dimensionless form α2 and β2 thanks to Eq. (3), we report
xperimental data (green crosses) in the stability diagram of
ig. 4(a) and find excellent agreement with the expected (m, n)
arametric pumping mode from Eq. (5). The parametric instability
f Fig. 4(b1), found in the classic primary instability region k = 1,
eads to a sub-harmonic 2T -periodic limit cycle. Fig. 4(b2) corre-
ponds to a (m, n) = (2, 1) unstable parametric mode, located in
he instability region k = 2, and leads to a T -periodic limit cycle
s expected since m is even (see movie 1 in [26]). Fig. 4(b3) and
b4) display a (15, 7) and (25, 12) parametric pumping mode re-
pectively, leading to extremely high super-harmonic 2T -periodic
otions since m is odd in both cases. Since the instability region
umber follows k = m + n − 1, the response of Fig. 4(b4) (see
ovie 2 in [26]) is actually located in the 36th instability tongue
s shown in Fig. 4(a); an achievement since, to our knowledge, the
ecord k = 28 was observed in a MEMS in 2016 [13]. It is beyond
he scope of this paper to report the plethora of parametric insta-
ilities existing in this fundamental electromagnetic pendulum,
s suggested by the impressive number of instability pockets in
ig. 4(a), but the various motions displayed in Fig. 4(b) already
ighlights the potential of extreme parametric instabilities for
ew dynamical control in mechanical systems.

. Triggering and sustaining a natural oscillation

Another overlooked limit that could be useful in mechanical
loquet systems is the almost ‘‘impulse train’’ case illustrated in
he sketch of Fig. 5(a). Here, the magnets are almost continuously
FF, except for every period T1 ≈ T where they are turned shortly
N during T2 with a current I . Our system is a locally stable
endulum, characterized by a harmonically damped oscillating
erturbation with natural period T = 2π/ω(0), except every
0
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Fig. 4. Triggering extremely high orders of parametric resonances. (a) Stability diagram of the Meissner equation Eq. (1) showing σ , up to 0.4, in the extremely
xtended (α2, β2) space. Gray dots (m, n) represent the discrete solutions of Eq. (5). Green crosses represent the experimental parameters expressed in the (α2, β2)

space. Inset zooms on the classic first instability regions. (b) Dynamical responses of the electromagnetic pendulum of Fig. 2 when ω2(I(t)) is modulated in a square
wave fashion with T1 = T2 = T/2. (b1) A classic ‘‘(1, 1)’’ parametric amplification obtained for ω(0) =

√
g/l ≈ 15.15 rad/s, ω(I) ≈ 6.8 rad/s and T ≈ 0.33 s. (b2) A

2, 1) parametric instability obtained for ω(0) ≈ 15.15 rad/s, ω(I) ≈ 6.8 rad/s and T ≈ 0.62 s. (b3) A (15, 7) parametric pumping obtained for ω(0) ≈ 15.15 rad/s,
(I) ≈ 6.5 rad/s and T ≈ 6.02 s. (b4) A (25, 12) parametric amplification obtained for ω(0) ≈ 15.15 rad/s, ω(I) ≈ 6.5 rad/s and T ≈ 10.16 s.
p
‘

T
s
t

Fig. 5. Triggering a ‘‘natural’’ limit cycle. (a) Stability diagram of the Meissner
equation Eq. (1) in the ‘‘impulse train’’ case when T1 = 0.98T and T2 = 0.02T .
lack lines show the limit T1 → T and T2 → 0. The green cross represents the
xperimental modulation parameters associated with the response shown in (b)
eft: experimental response observed when the electromagnetic pendulum is
FF during T1 ≈ 1.22 s and ON, with I ≈ 1.2 A (I > Ic ) during T2 ≈ 0.025
(≈ 0.02T1). Inset zooms on the T -periodic limit cycle. Red lines represent

he very short time the magnets are ON. Right: Fast Fourier Transform of
he permanent regime of the response. The black dashed-line represents the
alue of the natural frequency of the pendulum when the red ones represent
he secondary harmonics f0 ± hf , where f = 1/T and h is an integer. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

eriod T1 where the local evolution function of the pendulum
s shortly but drastically changed. This original scenario is still
heoretically described by the governing equations Eqs. (1)–(4).
otably, the analytical growth rate σ as a function of (α2, β2)
s given in Fig. 5(a) for T = 0.98T and T = 0.02T . Now the
1 2

4

arametric instability tongues are thin parallel regions whose
‘left’’ frontiers correspond to the black lines

√
α2 + β2 = 0.5k,

that have been obtained by introducing the limits T2 → 0 and
1 → 2π in Eq. (4). This stability diagram actually means one
hould be able to parametrically amplify the harmonic perturba-
ion with natural period T0 as soon as T ≈ 0.5kT0, where k is the
positive integer representing the instability tongue number.

As a proof of concept, we show in Fig. 5(b) the experimental
response of the electromagnetic pendulum (characterized by a
natural period T0 = 2π/

√
g/l = 412 ms and a natural frequency

f0 = 1/T0 = 2.43 Hz) when the magnets are continuously OFF ex-
cept every T ≈ T1 ≈ 1220 ms where I ≈ 1.2 A during T2 ≈ 25 ms
(see movie 3 in [26]). Expressing the experimental parameters
ω(0) = 2π f0, ω(I) and Ω = 2π/T in the dimensionless form
α2 and β2 thanks to Eq. (3), we report experimental data (green
cross) in the stability diagram of Fig. 5(a). We find, as expected
since the applied modulation period T is 6th time slower than
half the natural period of the pendulum, that the limit cycle of
Fig. 5(b) results from a parametric resonance of order k = 6.
Since k is even, we expect to trigger a T -periodic limit cycle which
is confirmed by the FFT of the experimental permanent regime
in Fig. 5(b) that shows spectral rays located every f0 ± hf with
h an integer and f = 1/T . Interestingly, the limit cycle is very
close to a purely sinusoidal motion with a fundamental frequency
f0 since the amplitudes of the secondary harmonics weight no
more than 3% of the fundamental one. Actually, as illustrated by
the inset of Fig. 5(b) that displays the last three periods of the
recorded experimental response, the triggered limit cycle is the
free damped oscillation of the pendulum with natural period T0
that is ‘‘reset’’ every 3T0 thanks to the synchronized impulse of
input energy represented by red vertical lines. Every T ≈ 0.5kT0,
the same periodically reseted natural sinusoidal motion could be
triggered and sustained with the difference that the growth rate
of the transient oscillations decreases with k until eventually no
instability occurs for large k = kmax because of insufficient energy
exchanges (see Appendix B for the case T ≈ 6T0). To increase
the maximum order of observed parametric resonance kmax, one
could increase the Q factor of the pendulum or the current in-
tensity I . Interestingly, unlike the classic resonance phenomenon,
the bandwidth of this parametric resonance, i.e. the width of
the instability tongues of Fig. 5(a), depends on the ‘‘width’’ of
the imposed impulse train and not on the Q factor: the shorter
the impulse train, the shorter the periodic energy exchange and
the thinner the instability regions. Another useful property is
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he tuning capabilities offered by this system: by maintaining
he magnets almost continuously ON with I < Ic instead of
FF with I = 0 as in Fig. 5(a), one could efficiently trigger
nd sustain any sinusoidal oscillations with angular frequency
(I) between ω(0) and almost 0, as suggested by Fig. 2. For
ystems like MEMS that are tiny beam or plate resonators with
normous Q factors (because they operate in Ultra High Vacuum)
riven by periodic electrostatic fields, an application of this par-
icular parametric pumping could allow to efficiently generate
ighly super-harmonic sinusoidal signals with extremely tunable
undamental frequencies.

. Conclusions and perspectives

Based on a better fundamental understanding of parametric
scillators, we have shown through theoretical and experimental
roofs of concepts, how to extremely enhance and better control
arametric instabilities. The presented concepts being universal,
hey could apply to any dynamical systems with a natural cycle
hich time scale could be periodically varied: from resonant
EMS to purely electronic circuits or lasers where researchers
re often seeking for new dynamical functionalities to exploit, but
lso non engineered systems such as business cycles or circadian
hythms.

Quasi-static symmetry breaking like buckling allows, through
he slow variation of a single parameter, to switch from one
nstable to a new stable equilibrium configuration, albeit with
unique time scale mainly determined by the growth rate of

he diverging instability. Parametric instability is a dynamic sym-
etry breaking that, upon the periodic variation of a parameter,
hould allow for even more control on switchings between equi-
ibrium or time periodic configurations, as soon as one modulates
he evolution function of a system close to its diverging instabil-
ty. Since elastic buckling has been shown to enable actuations of
oft machines [27] or structures [28], the application of extreme
arametric instabilities to those fields should improved actuation,
specially in time.
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ppendix A. Rationalization of the instability thresholds of
lassical parametric systems

We rationalize various experiments from the literature with
he linear parametric oscillator governed by Eq. (1) of the
anuscript. All experimental data can then be represented in the
ame stability diagram.

.1. Faraday instability

The first experimental demonstration of a parametric behavior
as made by Faraday in 1831. His experiment consists in creating
wave motion in a fluid by vertically oscillating it (see Fig. 6).
Based on the work of Benjamin and Ursell [4] and considering

nly the first mode, the evolution of the amplitude of displace-
ent of the surface of the fluid for the Faraday instability reads

d2a(t)
2 + k tanh(kh)

(
k2γ

+ g − Γ cos(ωt)
)
a(t) = 0 (6)
dt ρ

5

Fig. 6. Experimental setup to observe Faraday instability. A fluid is placed over
a vibrating pot with a frequency of excitation ω and an acceleration of the
excitation Γ . The fluid is characterized by: a(t) the amplitude of displacement
of the surface, h the depth of the fluid, γ the surface tension, ρ the density of
the fluid, λ the wavelength and g the gravitational acceleration.

Table 1
Experimental parameters for the Faraday instability used by Protière [23] and
corresponding values of the dimensionless modulation parameters α2 and β2 .
Data points presented in Fig. 1 of the manuscript.
Experimental parametric parameters α2 β2

f = 20 Hz ; Γ = g m s−2 0.249 0.196
f = 80 Hz ; Γ = 4 g m s−2 0.250 0.201
f = 120 Hz ; Γ = 7.5 g m s−2 0.251 0.232
f = 160 Hz ; Γ = 12.5 g m s−2 0.250 0.267

where k = 2π/λ is the fluid wavenumber and the dispersion
equation for capillary–gravitational waves is

ω =

√
k tanh (kh)

(
g +

k2γ
ρ

)
. (7)

By implementing a change of variable τ = ωt and using
a first approximation for small angles θ (τ ) = a(τ )/λ, we are
ble to write Eq. (1) in the standard dimensionless form of the
anuscript:

θ̈ (τ ) +
(
α2

− β2 cos(τ )
)
θ (τ ) = 0

with α2
=

k tanh (kh)
ω2

(
g +

k2γ
ρ

)
and β2

=
k tanh (kh)Γ

ω2 .
(8)

An experimental study of Faraday instability is presented in
the work of Protière [23]. The properties of the fluid are: surface
tension γ = 0.0209 N/m, density ρ = 0.965 × 103 kg m−3,
he depth of the fluid is h = 4 × 10−3 m and the gravita-
ional acceleration is g = 9.81 m s−2. Using the dispersion
equation of capillary–gravitational waves Eq. (7) with the ex-
plicit form of parametric parameters of Eq. (8), we are able to
calculate in Table 1 the dimensionless parameters (α2, β2) for
ach experimental point that are then reported in Fig. 1 of the
anuscript.

.2. Parametric pendulum

The system is a pendulum where the pivot point is vertically
scillating as shown in Fig. 7.
The undamped equation of motion for this system is the

ollowing

d2θ (t)
dt2

+ mL
(
g − Aω2 cosωt

)
sin θ (t) = 0 (9)

where I is the moment of inertia and the rest of the parameters
are defined on Fig. 7. In this case parametric instabilities are used
to trigger the motion of the pendulum in the equilibrium position
θ = 0. By linearizing Eq. (9) about θ = 0 (approximation of small
angles for the angular displacement θ (t)) and upon the change of
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Fig. 7. Experimental setup and parameters for a parametric pendulum. The
requency of excitation is ω and the amplitude of excitation is A. The pendulum
s characterized by its length L, mass m and θ (t) the angular displacement
easured from the vertical position. The gravitational acceleration is g .

able 2
xperimental parameters used by San Martin [2] and corresponding values of
he dimensionless modulation parameters α2 and β2 . Data point presented in
ig. 1 of the manuscript.
Experimental parametric parameters α2 β2

f = 0.22 Hz ; A = 2.9 m 0.244 0.141

variable τ = ωt , we are able to write Eq. (9) in the form of the
athieu equation of the manuscript:

θ̈ (τ ) +
(
α2

− β2 cos(τ )
)
θ (τ ) = 0

with α2
=

g
L

1
ω2 and β2

= A
1
L
.

(10)

An experimental example of this system is the giant censer
(‘‘O Botafumeiro’’) from Santiago de Compostella presented in the
work of San Martin [2]. The length of the pendulum is L = 20.6
m, the mass is m = 56.5 kg and the gravitational acceleration is
g = 9.81 m s−2. The dimensionless experimental parameters are
calculated using the experimental values of San Martin [2] and
Eq. (10) and are reported in Table 2.

A.3. Inverted pendulum

The system is an inverted pendulum where the pivot point
is vertically oscillating (the displacement is often imposed by a
shaker). In this case parametric instabilities are used to stabilize
the naturally diverging equilibrium (see Fig. 8).

The undamped equation of motion for this system is the same
presented for the parametric pendulum Eq. (9) but in this case the
considered equilibrium position is θ = π . By linearizing Eq. (9)
about this equilibrium position (approximation of small angles for
the angular displacement θ (t)) and upon the change of variable
τ = ωt , we are able to write Eq. (9) in the form:

θ̈ (τ ) −
(
−α2

− β2 cos(τ )
)
θ (τ ) = 0

with α2
=

g
L

1
ω2 and β2

=
Γ

ω2

1
L
.

(11)

For this system, an experimental example is presented in the
ork of Smith [22]. The length of the pendulum is L = 0.008 m,
he mass is m = 0.19×10−3 kg and the gravitational acceleration
s g = 9.81 m s−2. The dimensionless experimental parameters
re calculated using the experimental values of Smith [22] and
q. (11) and are shown in Table 3.

.4. Microelectromechanical systems: MEMS

In this case parametric instabilities are used to amplify the
ovement of microelectromechanical membranes (MEMS). Jia
 1

6

Fig. 8. Experimental setup and parameters for stabilizing an inverted pendulum.
The inverted pendulum is placed over a shaker with a frequency of excitation
ω, an amplitude of excitation A and an acceleration of excitation Γ = Aω2 .
The pendulum is characterized by its length L, mass m and θ (t) is the angular
displacement measured from the vertical position. The gravitational acceleration
is g .

Table 3
Experimental parameters used by Smith [22] and values of the corresponding
dimensionless parameters α2 and β2 . Data point presented in Fig. 1 of the
manuscript.
Experimental parametric parameters α2 β2

f = 157.17 Hz ; Γ = 61.3 m s−2 0.050 0.31

Table 4
Experimental parameters used by Jia et al. [13] and values of the corresponding
dimensionless modulation parameters α2 and β2 . Data points presented in Fig. 1
of the manuscript.
Experimental parametric parameters α2 β2

f = 1960 Hz ; Γ = 0.4 m s−2 0.25 0.0047
f = 980 Hz ; Γ = 0.5 m s−2 1.0 0.023
f = 650 Hz ; Γ = 6 m s−2 2.27 0.64
f = 480 Hz ; Γ = 8 m s−2 4.17 1.56

et al. [13] used a Duffing oscillator to describe the motion of the
membrane:
d2x(t)
dt2

+ 2ζ1ωm
dx(t)
dt

+ ζ2|
dx(t)
dt

|
dx(t)
dt

+

bx3 +
(
ω2

m − ξΓ cosωt
)
x(t) = 0

(12)

where x is the displacement of the membrane, ωm is the natural
frequency of the mode m, ζ1 is the viscous damping ratio, ζ2 is the
nonlinear quadratic damping coefficient, b is the mass normalized
Duffing coefficient, ξ is a standard coefficient relating the external
excitation to the parametric excitation, ω is the frequency of
excitation and Γ is the acceleration of the excitation.

To compare this equation with our model we make the as-
sumption that there is no damping and we neglect non linear
terms, i.e.: we consider only small oscillations about the equi-
librium position. Upon the change of variable τ = ωt , equation
Eq. (12) can be expressed in the standard dimensionless form of
the Mathieu equation of the manuscript:

ẍ(τ ) +
(
α2

− β2 cos(τ )
)
x(τ ) = 0

with α2
=
ω2

m

ω2 and β2
= Γ

ξ

ω2 .
(13)

The experimental parameters are the one used in the work of
ia et al. [13]. The natural frequency of the membrane is f0 =

80 Hz and the value of the standard coefficient is ξ = 1.7744×

06. The dimensionless experimental parameters are calculated
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Fig. 9. Triggering a ‘‘natural’’ limit cycle. (a) Stability diagram of the Meissner
equation Eq. (1) in the ‘‘impulse train’’ case when T1 = 0.99T and T2 = 0.01T .
lack lines show the limit T1 → T and T2 → 0. The green cross represents the
xperimental modulation parameters associated with the response shown in (b)
eft: experimental response observed when the electromagnetic pendulum is
FF during T1 ≈ 2.46 s and ON, with I ≈ 1.25 A (I > Ic ) during T2 ≈ 0.025
(≈ 0.01T1). Inset zooms on the T -periodic limit cycle. Red lines represent

he very short time the magnets are ON. Right: Fast Fourier Transform of
he permanent regime of the response. The black dashed-line represents the
alue of the natural frequency of the pendulum when the red ones represent
he secondary harmonics f0 ± hf , where f = 1/T and h is an integer. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

sing the experimental values of Jia et al. [13] and Eq. (13) and
re reported in Table 4.

ppendix B. Triggering and sustaining a natural oscillation

We present the experimental observation of a 12th order para-
etric resonance using the ‘‘impulse train’’ scenario described

n Section 4. The period of modulation is T = 6T0 and current
ntensity I = 1.25A. To assure a minimal exchange of energy we
et T1 = 0.99T0 and T2 = 0.01T0.
Expressing the experimental parameters in the (α2, β2) di-

ensionless space, we report experimental data (green cross) in
he stability diagram of Fig. 9(a). We find, as expected since the
pplied modulation period T is 12th time slower than half the
atural period of the pendulum, that the limit cycle of Fig. 9(b)
esults from a parametric resonance of order k = 12. Since k
s even, we expect to trigger a T -periodic limit cycle which is
onfirmed by the FFT of the experimental permanent regime in
ig. 9(b). Interestingly, the limit cycle is very close to a purely
inusoidal motion with a fundamental frequency f0 since the
mplitudes of the secondary harmonics weight no more than 3%
f the fundamental one. Actually, as illustrated by the inset of
ig. 9(b) that displays the last two periods of the recorded ex-
erimental response, the triggered limit cycle is the free damped
scillation of the pendulum with natural period T0 that is ‘‘reset’’
very 6T0 thanks to the synchronized impulse of input energy
epresented by red vertical lines.

ppendix C. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.eml.2021.101195.
7

eferences

[1] John A. Richards, Analysis of Periodically Time-Varying Systems, Springer
Science & Business Media, 2012.

[2] Juan R. Sanmartin, O botafumeiro: Parametric pumping in the middle ages,
Amer. J. Phys. 52 (10) (1984) 937–945.

[3] Michael Faraday, On a peculiar class of acoustical figures; and on certain
forms assumed by groups of particles upon vibrating elastic surfaces,
Philos. Trans. R. Soc. Lond. 121 (1831) 299–340.

[4] Thomas Brooke Benjamin, Fritz Joseph Ursell, The stability of the plane
free surface of a liquid in vertical periodic motion, Proc. R. Soc. Lond. Ser.
A Math. Phys. Sci. 225 (1163) (1954) 505–515.

[5] Stéphane Douady, Experimental study of the faraday instability, J. Fluid
Mech. 221 (1990) 383–409.

[6] Raymond E. Goldstein, Coffee stains, cell receptors, and time crystals:
Lessons from the old literature, Phys. Today (2018).

[7] V.V. Bolotin, The Dynamic Stability of Elastic Systems, 1964, ITIolden- Day,
lnc, 1964.

[8] A. Vafai, M. Javidruzi, H.E. Estekanchi, Parametric instability of edge
cracked plates, Thin-Walled Struct. 40 (1) (2002) 29–44.

[9] Matthew Evans, Slawek Gras, Peter Fritschel, John Miller, Lisa Barsotti, De-
nis Martynov, Aidan Brooks, Dennis Coyne, Rich Abbott, Rana X. Adhikari,
et al., Observation of parametric instability in advanced ligo, Phys. Rev.
Lett. 114 (16) (2015) 161102.

[10] Alexey V. Arefiev, Boris N. Breizman, Marius Schollmeier, Vladimir N.
Khudik, Parametric amplification of laser-driven electron acceleration in
underdense plasma, Phys. Rev. Lett. 108 (14) (2012) 145004.

[11] Kimberly L. Turner, Scott A. Miller, Peter G. Hartwell, Noel C. MacDonald,
Steven H. Strogatz, Scott G. Adams, Five parametric resonances in a
microelectromechanical system, Nature 396 (6707) (1998) 149–152.

[12] Alex Szorkovszky, Andrew C. Doherty, Glen I. Harris, Warwick P.
Bowen, Mechanical squeezing via parametric amplification and weak
measurement, Phys. Rev. Lett. 107 (21) (2011) 213603.

[13] Yu Jia, Sijun Du, Ashwin A. Seshia, Twenty-eight orders of parametric
resonance in a microelectromechanical device for multi-band vibration
energy harvesting, Sci. Rep. 6 (2016) 30167.

[14] Frank Wilczek, Quantum time crystals, Phys. Rev. Lett. 109 (16) (2012)
160401.

[15] Dominic V. Else, Bela Bauer, Chetan Nayak, Floquet time crystals, Phys.
Rev. Lett. 117 (9) (2016) 090402.

[16] Toni L. Heugel, Matthias Oscity, Alexander Eichler, Oded Zilberberg, R.
Chitra, Classical many-body time crystals, Phys. Rev. Lett. 123 (12) (2019)
124301.

[17] Barend Bentvelsen, Arnaud Lazarus, Modal and stability analysis of struc-
tures in periodic elastic states: application to the ziegler column, Nonlinear
Dynam. 91 (2) (2018) 1349–1370.

[18] Arnaud Lazarus, Discrete dynamical stabilization of a naturally diverging
mass in a harmonically time-varying potential, Physica D 386 (2019) 1–7.

[19] Benjamin Apffel, Filip Novkoski, Antonin Eddi, Emmanuel Fort, Floating
under a levitating liquid, Nature 585 (2020) 48–52.

[20] Andrew Stephenson, Xx. on induced stability, London Edinburgh Dublin
Philos. Mag. J. Sci. 15 (86) (1908) 233–236.

[21] D.J. Acheson, Upside-down pendulums, Nature 366 (1993) 215–216.
[22] H.J.T. Smith, James A. Blackburn, Experimental study of an inverted

pendulum, Amer. J. Phys. 60 (10) (1992) 909–911.
[23] Suzie Protiere, Gouttes Rebondissantes: Une Association Onde-Particule à

ÉChelle Macroscopique (Ph.D. thesis), Paris Diderot, 2007.
[24] Balth van der Pol, M.J.O. Strutt, Ii. on the stability of the solutions of

mathieu’s equation, London Edinburgh Dublin Philos. Mag. J. Sci. 5 (27)
(1928) 18–38.

[25] Chikara Sato, Correction of stability curves in hill-meissner’s equation,
Math. Comp. 20 (93) (1966) 98–106.

[26] S. Protière, A.A. Grandi, A. Lazarus, Movie 1 showing the experimental
response of the electromagnetic pendulum periodically turned in an
oscillating state ω(0) =

√
g/l = 15.24 rad/s during T1 = 0.31 s and ω(I) =

6.8 rad/s during T2 = 0.31 s. Movie 2 showing the experimental response
of the electromagnetic pendulum periodically turned in an oscillating
state ω(0) =

√
g/l = 15.24 rad/s during T1 = 5.08 s and ω(I) = 6.5

rad/s during T2 = 5.08 s. Movie 3 showing the experimental response of
the electromagnetic pendulum periodically turned in an oscillating state
ω(0) =

√
g/l = 15.24 rad/s during T1 = 1.24 s and a diverging state

ω2(I) = −1.1 (rad/s)2 during T2 = 0.025 s.
[27] Dian Yang, Bobak Mosadegh, Alar Ainla, Benjamin Lee, Fatemeh Khashai,

Zhigang Suo, Katia Bertoldi, George M. Whitesides, Buckling of elastomeric
beams enables actuation of soft machines, Adv. Mater. 27 (41) (2015)
6323–6327.

[28] Douglas P. Holmes, Alfred J. Crosby, Snapping surfaces, Adv. Mater. 19 (21)
(2007) 3589–3593.

https://doi.org/10.1016/j.eml.2021.101195
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb1
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb1
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb1
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb2
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb2
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb2
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb3
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb3
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb3
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb3
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb3
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb4
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb4
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb4
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb4
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb4
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb5
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb5
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb5
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb6
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb6
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb6
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb7
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb7
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb7
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb8
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb8
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb8
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb9
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb9
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb9
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb9
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb9
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb9
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb9
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb10
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb10
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb10
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb10
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb10
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb11
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb11
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb11
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb11
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb11
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb12
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb12
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb12
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb12
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb12
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb13
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb13
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb13
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb13
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb13
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb14
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb14
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb14
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb15
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb15
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb15
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb16
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb16
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb16
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb16
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb16
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb17
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb17
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb17
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb17
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb17
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb18
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb18
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb18
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb19
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb19
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb19
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb20
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb20
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb20
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb21
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb22
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb22
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb22
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb23
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb23
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb23
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb24
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb24
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb24
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb24
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb24
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb25
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb25
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb25
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb27
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb27
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb27
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb27
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb27
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb27
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb27
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb28
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb28
http://refhub.elsevier.com/S2352-4316(21)00019-5/sb28

	Enhancing and controlling parametric instabilities in mechanical systems
	Introduction
	From classical to extreme parametric systems
	Beyond the tip of the parametric instability tongues
	Triggering and sustaining a natural oscillation
	Conclusions and perspectives
	Declaration of competing interest
	Acknowledgment
	Appendix A. Rationalization of the instability thresholds of classical parametric systems
	Faraday instability
	Parametric pendulum
	Inverted pendulum
	Microelectromechanical systems: MEMS

	Appendix B. Triggering and sustaining a natural oscillation
	Appendix C. Supplementary data
	References


