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Abstract Dynamical stabilization is the ability of a1

statically diverging stationary state to gain stability by2

periodically modulating its physical properties in time.3

This phenomenon is getting recent interest because it4

is one of the exploited feature of Floquet engineer-5

ing that develops new exotic states of matter in the6

quantum realm. Nowadays, dynamical stabilization is7

done by applying periodic modulations much faster8

than the natural diverging time of the Floquet systems,9

allowing for some effective stationary equations to be10

used instead of the original dynamical system to ratio-11

nalize the phenomenon. In this work, by combining12

theoretical models and precision desktop experiments,13

we show that it is possible to dynamically stabilize a14

system, in a “synchronized” fashion, by periodically15

injecting the right amount of external action in a pulse16

wave manner. Interestingly, the Initial Value Problem17

underlying this fundamental stability problem is related18

to the Boundary Value Problem underlying the deter-19

mination of bound states and discrete energy levels of a20

particle in a finite potential well, a well-known problem21

in quantum mechanics. This analogy offers a universal22

semi-analytical design tool to dynamically stabilize a23
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mass in a potential energy varying in a square-wave 24

fashion. 25

Keywords Dynamical systems · Time-periodic 26

systems · Stability analysis · Control · Floquet theory 27

1 Introduction 28

1
Floquet engineering is a passive technique that enables 29

to shape the effective potential energy landscape of a 30

physical system by periodically varying its geometri- 31

cal or mechanical properties in time [1,2]. This tech- 32

nique is widely used in physics because it can cause 33

particles or systems to move to new stable equilib- 34

rium configurational states that would otherwise not 35

exist when no periodic modulations are applied. For 36

example, by periodically varying gravitational accel- 37

eration through the use of a mechanical shaker, nat- 38

urally collapsing inverted pendulums can be dynam- 39

ically stabilized [3,4] and the direction of buoyancy 40

can be inverted so that boats start to float upside-down 41

[5]. This idea of dynamical stabilization also allows 42

to trap naturally diverging charged particles in period- 43

ically varying electromagnetic fields [6] which is the 44

key mechanism of mass spectrometers. Using a driv- 45

ing laser with periodic pulses, Floquet engineering is 46

also exploited to generate new electronic properties in 47

a solid, turning insulator into a metal or a metal into a 48

superconductor [7]. 49
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The fundamental model to rationalize those dynam-50

ical phenomena is the one of a single 1 degree-of-51

freedom (d.o.f.) mass in a potential energy landscape52

that is periodically modulated in time [8,9]. Floquet53

engineering assumes that the time scale of modulation54

is much shorter than the natural time scales of the mov-55

ing mass so that averaging techniques and separation of56

time scales can be used and the concept of a resulting57

effective potential energy landscape is applicable [10].58

In this framework, the principle of dynamical stabiliza-59

tion, firstly rationalized by Kapitza in 1951 [11,12], is60

that a naturally diverging mass in a potential with a neg-61

ative local curvature can be dynamically stabilized by62

periodically modulating the curvature, as soon as the63

modulations are fast enough with respect to the diverg-64

ing speed and the curvature is at least positive, i.e., the65

mass is oscillating in a potential well, for some time66

over the period.67

The stability diagram of the aforementioned 1 d.o.f.68

Periodically Oscillating-Diverging System (P.O.D.S.)69

is easy to compute and consists of alternating stabil-70

ity and instability tongues in the modulation parameter71

space. Kapitza’s averaging techniques allow to ratio-72

nalize one asymptotic limit of the first stability tongue73

of a P.O.D.S., but the rest of the stability diagram,74

where the diverging and the modulation time scales75

are of same order of magnitude, has been overlooked,76

especially from a physical point of view. We believe it77

is important to gain physical insights in this regime78

that we coin “synchronized stabilization” since, not79

only it represents an important theoretical asymptotic80

limit that could be of practical importance for Floquet81

engineering, but it also embraces a fundamental prob-82

lem in physics, that is not addressed with Kapitza’s83

approach: what is the minimal amount of external84

action (external potential energy added over time) peri-85

odically needed to dynamically stabilize a mass. In this86

paper, we answer those questions on a 1 degree of free-87

dom P.O.D.S. model with a square wave modulation88

function (in this case, the stability diagram is analyt-89

ically defined) that we study both experimentally and90

numerically.91

When trying to dynamically stabilize the mass but92

spending most of the period in a diverging state, we93

found that stabilization still exists but in discrete and94

narrow regions of the modulation parameter space95

which correspond to the tips of the stability tongues of96

our P.O.D.S. In this asymptotic limit, it means only a97

discrete set of square-wave modulation functions exists98

for which the oscillations of the perturbed mass would 99

remain bounded about its equilibrium position. More- 100

over, after proper scaling, those marginally stable oscil- 101

lations can be described by a single periodic carrier 102

function whose modal shape depends on the order of 103

the stability tongue we consider. Interestingly, the loca- 104

tion of the tips and the shape of the periodic carrier can 105

be pseudo-analytically obtained by solving an eigen- 106

value problem with varying coefficients in an infinitely 107

large elementary time-cell (mathematically analog to 108

the one of a particle in a finite potential well which 109

is a famous problem in quantum physics [13]) instead 110

of classically solving the original initial value prob- 111

lem. Finally, by re-introducing the diverging period, it 112

turns out the “quantum” analog problem leads to mas- 113

ter curves in the whole modulation parameter space 114

that are always located in the stability tongues of the 115

P.O.D.S. This offers design opportunities that we val- 116

idate experimentally with the dynamical stabilization 117

of an electromagnetic pendulum. 118

In Sect. 2, we introduce the P.O.D.S. model of a 1 119

d.o.f. mass in a potential energy landscape that vary 120

periodically in time in a square wave fashion, alto- 121

gether with its model experiment that is the dynami- 122

cal stabilization of an electromagnetic inverted pendu- 123

lum developed in our laboratory. In Sect. 3, thanks to 124

numerical experiments, we rationalize the physics of 125

the dynamically stabilized mass for modulation func- 126

tions located at the tips of the stability tongues. Based 127

on the results of Sect. 3, we propose in Sect. 4 a pseudo- 128

analytical method to derive master curves that belong 129

to the stability tongues whatever the chosen modula- 130

tion parameters of the P.O.D.S. Thanks to this prop- 131

erty, we show that we can use those pseudo-analytical 132

master curves to easily find the modulation parameters 133

required to dynamically stabilize the aforementioned 134

electromagnetic inverted pendulum. 2135

2 The square-wave P.O.D.S. 136

2.1 Definition of the concept 137

Let us consider a mass parameterized by the general- 138

ized coordinate q(t) and its derivative with respect to 139

time q̇(t). For simplicity, we can say q(t) is dimen- 140

sionless (it could be an angle for example). We then 141

assume that the kinetic energy T (q̇) of the particle is 142
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Fig. 1 One degree of freedom model of a Periodically
Oscillating-Diverging System (P.O.D.S.) with a square wave
periodic potential energy V(q, t) = V (t) × (1 + q2 − q4). a
Mass in a potential energy landscape that periodically “jumps”
between V(q) = VD × (1 + q2 − q4) in blue line and V(q) =
E ×(1+q2 −q4) in red line with E = VD+!V . Here, VD = −1
and !V = 2. b Square wave modulation function V (t)

in the classic quadratic form:143

T (q̇) = 1
2

I q̇2 (1)144

with I the moment of inertia of the mass. Let us also145

assume the mass is in a potential energy (adding a con-146

stant does not change the physics of the mass)147

V(q, t) = V (t) × (1 + q2 − q4) (+Cste) (2)148

where V (t) = VD + !V (t) is a square function illus-149

trated in Fig. 1b, VD < 0 and !V (t) = !V (t + T )150

with T = TO + TD the period. During TD, the “diverg-151

ing time”, we have !V (t) = 0 and the potential looks152

like the one in blue line in Fig. 1a, whereas during TO,153

the “oscillating time”, !V (t) = !V and the poten-154

tial corresponds to the red line in Fig. 1a. It is clear155

from Fig. 1 that in the static case !V (t) = !V for156

all t , the mass would be stable about the equilibrium157

q = 0 only if !V > |VD|, i.e., the mass is in a poten-158

tial energy with a local positive curvature about q = 0.159

But in the dynamical case !V (t) = !V (t + T ), it160

should be possible to periodically have moments when161

!V < |VD| and still be locally stable. The question of162

stability then becomes intricate, and one needs to start163

looking at the equation of motion of the mass.164

To predict the motion of the mass parameterized by 165

q(t) and q̇(t) in such a potential energy, one can derive 166

the Hamilton equations. To do so, we introduce the 167

generalized impulsion p(t) = ∂L(q, q̇, t)/∂q̇ = I q̇ 168

where 169

L(q, q̇, t) = T (q̇) − V(q, t) 170

= 1
2

I q̇2 − (VD + !V (t))(1 + q2 − q4)

(3)

171

172

is the Lagrangian of the dynamical system. Introducing 173

the time-dependent Hamiltonian 174

H(q, p, t) = pq̇ − L(q, q̇, t) 175

= 1
2

I q̇2 + (VD + !V (t))(1 + q2 − q4)

(4)

176

177

one can derive the nonlinear equations of motion 178

˙{
q(t)
p(t)

}
=
{

∂H
∂p

− ∂H
∂q

}

179

=
{

p/I
−(VD + !V (t))(2q − 4q3)

}
180

(5) 181

The trivial fixed point (q∗, p∗) = (0, 0) is a solution of 182

the nonlinear equations of motion whatever the physi- 183

cal parameters of the system and the linearized equation 184

of motion about (q∗, p∗) = (0, 0) reads simply 185

˙{
q(t)
p(t)

}
=
[

0 1/I
−2(VD + !V (t)) 0

]{
q(t)
p(t)

}
(6) 186

which can be rewritten in the form of a second-order 187

linear differential equation whose evolution function 188

varies, depending on when we are during a period 189

{
q̈(t) + 2

I (VD + !V )q(t) = 0 during TO

q̈(t) + 2
I VDq(t) = 0 duringTD

(7) 190

According to Lyapunov’s definition and introducing the 191

state vector X(t) = {q(t), p(t)}T, we can assess the 192

mass is dynamically stable (or Lyapunov stable) about 193

X∗ = {q∗, p∗}T = {0, 0}T if it exists δ(ε) > 0 such 194

that, if ‖X(0) − X∗‖ < ε, we have ‖X(t) − X∗‖ < δ 195

for all time. If ‖X(t) − X∗‖ → 0 for t → ∞, the fixed 196

point is called asymptotically stable, and if ‖X(t)−X∗‖ 197

is finite but bounded, X∗ = {q∗, p∗}T = {0, 0}T is 198

neutrally stable. 199
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Fig. 2 Characterization of the experimental P.O.D.S. a Sketch
of the experimental setup: an inverted pendulum in a symmetric
electromagnetic field controlled by the electrical current i(t). b
Natural time scale ω(i) of the transverse response of the upright
pendulum when subjected to a perturbation for various values
of the control parameter i (a minus sign means a characteristic
diverging time when a positive ω(i) corresponds to an angular
frequency of the oscillatory motion)

For practical purposes, one can first study the per-200

turbed motion solution of the linearized equations (6)201

to see for which parameters VD, !V , TO and TD it202

exists a basin of attraction of initial conditions in phase203

space for which the mass will be dynamically stable. An204

analysis of the nonlinear equations of motion Eq. (5)205

can then specify the size of this basin of attraction.206

Because (6) is a set of linear first-order Ordinary Dif-207

ferential Equation (ODE) with periodic coefficient, we208

can apply Floquet theory to assess the linear stability of209

the mass. To get better physical insights in the behav-210

ior of the aforementioned P.O.D.S. concept, we built211

an experimental model whose dynamical stability can212

be described by Eq. (5)–(7).213

2.2 Experimental PODS: the dynamic stabilization of214

an inverted pendulum215

The 1 degree-of-freedom P.O.D.S. we built in the216

laboratory is an electromagnetic inverted pendulum217

(Fig. 2a). It consists of a metallic marble of mass218

m = 28 g that is attached to a plexiglass rod of length219

L = 6.2 cm and mass mrod = 1.5 g (we neglect the220

mass of the rod in our calculations of moment of iner-221

tia I ). The rod is then constrained to rotate only in one222

plane as shown with the picture of the experimental223

setup in Fig. 12 of Appendix 1. Finally, the mass is sym-224

metrically placed below an electromagnet. When some225

electrical current i passes through the electromagnet,226

the latter can attract the metallic bob of the pendulum227

thanks to electromagnetic forces F(i) in the opposite228

direction of weight mg where g = 9.81 m/s2 is the229

gravitational acceleration. The motion of the electro- 230

magnetic pendulum, that is constrained to move in a 231

plane, is fully parameterized by the angle θ(t) between 232

the vertical axis and the almost weightless rigid bar. 233

The zero-order property of a P.O.D.S. like the one 234

depicted in Fig. 1 is the symmetry of the potential 235

energy landscape with respect to the generalized coor- 236

dinate q(t) parameterizing the mass. This is the case 237

with the electromagnetic pendulum of Fig. 2a since the 238

geometry, electromagnetic forces F(i) and weight mg 239

are all symmetric with respect to the angle θ(t) = q(t). 240

A direct consequence is that the upright vertical posi- 241

tion of the mass θ(t) = 0 is an equilibrium configura- 242

tion whatever the loading parameter F(i). 243

The first-order property of a P.O.D.S. is to period- 244

ically vary between a negative and positive local cur- 245

vature of the potential about the equilibrium position 246

q(t) = 0. This is indeed a property of the electro- 247

magnetic pendulum that is illustrated in Fig. 2b which 248

shows the evolution of the natural time scale of the 249

perturbed pendulum about its upright equilibrium posi- 250

tion for various value of the control parameter i . When 251

i = 0, the electromagnet is OFF and when one ini- 252

tially brings the pendulum upright, the mass is expo- 253

nentially diverging from the equilibrium θ(t) = 0 with 254

a typical time scale 1/ω(0) = 0.09 s (red star, Fig. 2b 255

where we put a minus sign for ω(0) to highlight that 256

the mass is diverging) that is very close to the theo- 257

retical value
√

L/g = 0.08 s. Above a critical current 258

ic ≈ 0.17 A, the upright equilibrium position starts to 259

be stable. From ic to i ≈ 0.4 A, the mass is neutrally 260

stable and although the perturbed pendulum oscillates 261

back to θ(t) ≈ 0, it is difficult to properly define a time 262

scale for the oscillations (green stars, Fig. 2b). Above 263

i ≈ 0.4 A, the perturbed pendulum performs damped 264

oscillations before coming back to θ(t) = 0, the angu- 265

lar frequency ω(i) is reproducibly measurable blue 266

stars, Fig. 2b and fairly independent on the strength of 267

the initial perturbations, i.e., the electromagnetic forces 268

F(i) appear constant in the vicinity of the mass. 269

An experimental square-wave P.O.D.S. is obtained 270

by periodically varying the electrical current i(t) 271

between i = 0 A during TD seconds and i = 0.48 272

A during TO seconds. During a period T = TO + TD, 273

the mass is oscillating around θ(t) = 0 during TO and 274

diverging from θ(t) = 0 during TD, which is indeed 275

what is qualitatively model by a P.O.D.S. (Fig. 1). The 276

experimental stability diagram of the upright equilib- 277

rium position θ(t) as a function of TO and TD is shown 278
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Fig. 3 Numerical and experimental stability diagram of the
upright vertical pendulum when the current is modulated with a
square-wave T -periodic function: i = 0 during TD and i = 0.48
A during TO with T = TO + TD. Blue regions represent dynami-
cally stable (TO, TD) when white regions represent unstable ones.
Blue and red dots represent stable and unstable experimental data
points, respectively

in blue and red dots in Fig. 3. Unlike the classic Kapitza279

limit where T ) 2π/(ω(0),ω(0.48)), we focus on280

time modulation parameters that are of same order of281

magnitude than the natural time scales and studied how282

stabilization behaves when increasing TD/T . For each283

data point, our protocol was to first turn the electromag-284

net ON for 5 s to asymptotically stabilize the inverted285

pendulum at θ(t) = 0 and then, OFF for 250 ms to per-286

turb the mass before applying the square-wave modu-287

lation i(t). If for a modulation function (TO, TD) the288

initial perturbation is still not amplified after 20 peri-289

ods, we call it dynamically stable (blue dots). We call290

it unstable and put a red dot otherwise. In this case, the291

pendulum often falls or sometimes does some strong292

oscillations.293

The dynamical stability of the aforementioned294

experimental square-wave P.O.D.S can be rationalized295

at first order by the linear equations of motion Eq. (7)296

where the generalized coordinate q(t) is the angle θ(t)297

and I = mL2 = 1.076 × 10−4 kg.m2. During TD,298

i = 0 A and the diverging mass of the upright inverted299

pendulum is governed by θ̈(t) − ω(0)2θ(t) = 0 with300

ω(0) = −11.1 rad/s as shown in Fig. 2b (see Appendix301

1 and movie 1 in [14]). By identification, it comes302

VD = − 1
2 Iω(0)2 = −1.04 mJ in Eq. (7). During303

TO, i = 0.48 A and the perturbed upright pendu-304

lum is doing damped oscillations about θ(t) = 0305

(see Appendix 1 and movie 2 in [14]). Because we306

consider TO that are relatively small as compared to307

the damping time scale, the perturbed oscillations can 308

be fairly modeled by the undamped linearized equa- 309

tion θ̈(t) + ω(0.48)2θ(t) = 0 with ω(0.48) = 19.5 310

rad/s as inferred from Fig. 2b. By identification, it 311

comes E = VD + !V = 1
2 Iω(0.48)2 = 3.24 mJ 312

in Eq. (7) so that !V = 4.28 mJ. We recall the 313

solution of Eq. (7) can be sought in the Floquet form 314

θ(t) = ((t)est + (̄(t)e−st where ((t) = ((t + T ) 315

is a T -periodic complex eigenfunction and s is a com- 316

plex eigenvalue called the Floquet exponent [8,15,16]. 317

In the case of a square-wave modulation function, 318

Eq. (7) is called the Meissner equation and the Flo- 319

quet exponent can be analytically solved [9,17,18]. The 320

blue color regions with max(*(±s)) = 0 in Fig. 3 321

indicate quasi-periodic oscillating solutions θ(t) about 322

θ(t) = 0, i.e., a neutrally stable mass when the white 323

regions where max(*(±s)) > 0 point out to infinitely 324

amplified response, i.e., a mass that should dynamically 325

repel from θ(t) = 0 whatever the initial conditions. 326

Figure 3 shows a remarkable agreement between 327

experimental and numerical results, without fitting 328

parameters. We easily recognize the white paramet- 329

ric instability tongues typical of Floquet systems like 330

P.O.D.S. Those tongues of parametric pumping appear, 331

for TD → 0, at particular ratios between the period of 332

modulation TO ≈ T and the natural period of the sys- 333

tem 2π/ω(0.48), following kTO/(4π/ω(0.48)) where 334

k is a positive integer value that represents the num- 335

ber of the tongue. Interestingly, it is easy to observe 336

highly sub-harmonic instability tongues (tongues with 337

large k) using a P.O.D.S., whereas it is well known 338

that triggering parametric pumping above k = 1 is 339

usually complicated in macroscopic Floquet systems 340

where the modulation of local curvature of potential 341

energy is limited and dissipation is intrinsically impor- 342

tant [9]. In this paper, we are not interested in the clas- 343

sic Kapitza limit TO ) 2π/ω(0.48) (very left part of 344

Fig. 3), but rather in the blue stability “tongues” that 345

verify TO ≈ 2π/ω(0.48). Moreover, we think the limit 346

TD → T , i.e., the tips of the stability tongues are of fun- 347

damental interest because (i) they are the counterpart 348

of the tips of the instability tongues and unlike them, 349

they remain even in the presence of dissipation (see 350

Appendix 2), (ii) they correspond to the periodic mod- 351

ulation functions with minimal input action
∫

!V (t)dt 352

to stabilize a naturally diverging system. In the next 353

section, we explore the tips of the stabilization tongues 354

numerically as they are impossible to reach experimen- 355

tally using the macroscopic setup presented here. 356
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Fig. 4 Numerical response at the tip of the first stability tongue
of Fig. 3 for TO = 0.052794 s and TD/T = 0.95. a First three
periods of the neutrally stable generalized coordinate q(t) for
q(0) = 0.1 × 10−10 and q̇(0) = −0.2 × 10−10 s−1. Nonlinear
and linear responses are in black and green full line, respectively.
The dotted green lines are the Floquet eigenfunctions of the linear
response. b Hamiltonian of the nonlinear response and modulated
function V (t). The average input potential 〈!V 〉 is shown in
orange

3 Numerical investigation of the tip of the stability357

tongues358

In this section, we systematically study the numerical359

response at the tip of the stability tongues (for practi-360

cal purposes, we increase TD/T towards unity, i.e., the361

Dirac comb scenario, up to the limit of the computa-362

tional accuracy) in order to rationalize this asymptotic363

limit.364

3.1 Synchronized dynamical stabilization365

We first show in Fig. 4 an archetypal example of the366

numerical response of the nonlinear equation of motion367

(5) at the tip of the first stability tongue of Fig. 3 for368

TO = 0.052794 s and TD/T = 0.95. Figure 4a shows369

the evolution of a neutrally stable generalized coordi-370

nate q(t) over three period for q(0) = 0.1 × 10−10
371

Fig. 5 Basin of attraction of the fixed point (q∗, p∗) = (0, 0)
showing the initial conditions (q(0), p(0)) for which the nonlin-
ear response of Eq. (5) is neutrally stable. We place ourselves at
the tip of the first stability tongue of Fig. 3 for TO = 0.052794 s

and q̇(0) = −0.2 × 10−10 s−1 when Fig. 4b shows the 372

evolution of the associated Hamiltonian H(q, p, t) = 373

1
2 I q̇2+(VD+!V (t))(1+q2−q4) as a function of time 374

as well as the evolution of the square-wave modulation 375

function V (t) = VD + !V (t) in green line. When 376

approaching the tip of the stability tongue, the basin 377

of attraction drastically shrinks about the equilibrium 378

point (q∗, p∗) = (0, 0) as shown in the phase space of 379

Fig. 5 for the first stability tongue for TO = 0.052794 s. 380

As a consequence, the generalized coordinate q(t) and 381

impulsion p(t) start to be small with respect to V (t) and 382

the Hamiltonian starts to be independent on them such 383

that H(q, p, t) ≈ H(t) ≈ V (t) = VD + !V (t) where 384

V (t) approaches a Dirac comb when TD/T → 1. 385

Another consequence of the initial input energy having 386

to be very small for the mass to be stabilized at the tip 387

of the tongues is that all the neutrally stable responses 388

can be predicted by the linearized Eqs. (6)–(7), as illus- 389

trated in Fig. 4a (black and green curves perfectly over- 390

lap). According to Floquet theory, it means the oscilla- 391

tory motion can actually be decomposed in the Floquet 392

form [15], θ(t) = ((t)e j-(s)t + (̄(t)e− j-(s)t (since 393

the response is stable, we have *(s) = 0), where the 394

carrier eigenfunction ((t) = ((t + T ) is a T -periodic 395

function that is shown in green dotted line in Fig. 4a. 396

From Figs. 4 and 5, the dynamical stabilization at 397

the tip of the stability tongues can be physically under- 398

stood by a process that repeats on each period. When 399

V (t) < 0 during TD/2, the local curvature of the poten- 400

tial energy is negative and the mass diverges. Then, 401

V (t) becomes positive during TO and so is the local 402

curvature so that the mass is oscillating. The dura- 403
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tion TO and the value of input potential energy !V404

are such that, at the moment V (t) becomes negative405

again, the state of the mass (q(t), q̇(t)) is almost the406

time reversal of the state of this mass TO seconds ago.407

As a consequence, when V (t) becomes negative again408

during TD/2, the motion of the mass decays up to409

a state (q(t), q̇(t)) very close to the one we had T410

seconds ago. In fine, the modulation function V (t) is411

such, that the system almost loses its memory after412

each period and as a consequence, the mass periodi-413

cally repeats the same motion, albeit with a different414

amplitude reminiscent of the quasi-periodic nature of415

the motion. Since in Figs. 4 and 5 we are at the tip416

of the first stability tongue, the mass has the time to417

do only one oscillation during TO, i.e., q̇(t) is chang-418

ing sign only once. Because of this particular phys-419

ical behavior at the tip of the stability tongues and420

to contrast with the classic Kapitza stabilization, we421

coin this phenomenon synchronized dynamical sta-422

bilization. An interesting property of this synchro-423

nized stabilization is shown in Fig. 4b in orange line424

where we represent the average input potential energy425

< !V >= S × f = (!V × TO) × (1/T ) where S is426

the input elementary action and f is the frequency of427

modulation. When in static, i.e., for !V (t) = !V for428

all t , one needs !V > |VD| = 1.04 mJ to stabilize the429

naturally diverging system, here one needs in average430

only < !V >= 0.213 mJ to dynamically stabilize the431

mass. In theory, it seems there is no reason one cannot432

aim for smaller < !V >, at the cost of an even smaller433

basin of attraction and a tip of stability tongue with a434

smaller width.435

The width of the tip of the stability tongues starts to436

shrink drastically as TD → T , nevertheless this width437

will ever exist in the Meissner equation of motion (7).438

Figure 6 illustrates what is going on when one navi-439

gates in the tip of a stability tongue. Figure 6a, b shows440

the influence of a perturbation on oscillating time TO441

(here, we add 1 µs) and input energy !V (we add442

10 nJ), respectively, on the response of Fig. 4a. We443

see that the qualitative shape of the neutrally stable444

responses, that we can decompose in the Floquet form445

θ(t) = ((t)e j-(s)t + (̄(t)e− j-(s)t , is still a succes-446

sive repetition of a scaled version of a similar Floquet447

eigenfunction ((t), although the scaling on each suc-448

cessive periods is chronologically different. This can be449

understood because, when moving in the tip of a stabil-450

ity tongue, the imaginary part of the Floquet exponent451

-(s), which is responsible for the modulation of ((t)452

Fig. 6 Influence of a perturbation in time or energy on the time
evolution of the neutrally stable response of Fig. 4. a Perturbation
of 1 µs on the oscillating time TO. b Perturbation of 10 nJ on the
input energy !V

between each period, is strongly varying between 0 and 453

π/T . On the contrary, the periodic eigenfunction ((t) 454

remains the same. 455

3.2 From an initial to a boundary value problem 456

The qualitative behavior highlighted in the previous 457

section suggests that we work in a fix elementary time 458

cell instead of the classic dynamical vision that consists 459

in looking at the state variables as time is passing. This 460

is what we do in Fig. 7a where we have superposed in 461

color lines the 20 first periods of the various neutrally 462

stable q(t) of Figs. 4 and 6 on a single elementary cell 463

between −T/2 and T/2 (we recall the stability of the 464

mass is not altered by a phase difference of the mod- 465

ulation function V (t)). We also report in black line on 466

that figure the periodic eigenfunctions ((t) of Fig. 6a 467

that we recall is almost not influenced by where we are 468

located in the tip of the stability tongue. We see that all 469

the responses are similar but differ from a scaling factor 470

so that, if we were to represent an infinity of periods 471

of a given point at the tip of the stability tongue, the 472
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Fig. 7 Numerical response of Figs. 4, 5, 6 and 7 at the tip of
the first stability tongue for TO = 0.052794 s and TD/T = 0.95
visualized in the elementary time cell −T/2 < t < T/2. a
Evolution of the generalized coordinate q(t) and Floquet eigen-
function ((t). b Collapse of the trajectories q(t) of a on the Flo-
quet eigenfunction ((t) and evolution of the associated modula-
tion function V (t) (equivalent to H(q, p, t)). The eigenfunction
(0(t) and eigenvalue E0 of Eq. (9) are reported on the figure

trajectories will completely fill the area between ((t)473

and −((t). By renormalizing all the trajectories q(t)474

in the elementary periodic cell by the correct scaling475

factor, one can collapse all the curves on the Floquet476

eigenfunction ((t) as shown in Fig. 7b. In order to plot477

((t) on the same figure as the Hamiltonian H(q, p, t),478

which we recall tends to the modulation function V (t),479

we chose a normalization factor so that the maximum480

of ((t) is 0.001. The few residues that appear close to481

the boundaries −T/2 and T/2 correspond to the trajec-482

tories whose extremum is very close to zero and exist483

because we are not numerically at the very end of the484

tip (TD/T = 0.95).485

So, at the tip of the stability tongue, synchronized486

dynamical stabilization can be characterized by a Flo-487

quet eigenfunction ((t) that is the carrier of the mod-488

ulated neutrally stable response q(t) and an associated489

modulation function V (t) (that turns out to be also the490

energy of the mass’s motion) as shown in Fig. 7b. With491

this approach in the elementary periodic cell −T/2 and492

T/2, we lost information about the actual response q(t)493

that is a sequence of scaled ((t) periods after periods 494

and we lost track of the width of the tip of the stability 495

region or the basin of attraction, but we will be able to 496

derive a boundary problem to analytically predict the 497

triplet (TO,!V, E) and ((t) that stabilize the mass for 498

TO ) T . 499

The first step for this is to note that, since E = 500

VD +!V , the linearized equation of motion (7) can be 501

recast in the form of a linear eigenvalue problem with 502

a variable coefficient in the elementary periodic cell 503






(

− I
2

d2

dt2 + 0

)

((t) = E((t) for |t | <
TO
2

(

− I
2

d2

dt2 + !V

)

((t) = E((t) for
TO
2

< |t | <
T
2

504

(8) 505

where because of the normalization of ((t) and its 506

compact form on [−T/2, T/2], we will assume the 507

boundary conditions ((−T/2) = ((T/2) = 0. As 508

we go closer to the tip of the stability tongue, the com- 509

pacity of ((t) is ever more pronounced and T . TO 510

so that we are encouraged to get rid of the diverging 511

modulating time and write equation (8) on an infinite 512

elementary time cell 513

(
− I

2
d2

dt2 + U(t)
)

((t) = E((t) (9) 514

515

with






U(t) =0 for |t | <
TO

2

U(t) =!V for |t | >
TO

2

516

and ((−∞) = ((+∞) = 0. 517

Doing so, the variable T (or TD) is no more visible in 518

Eq. (9), but the latter is now a famous Sturm–Liouville 519

problem that can be analytically solved (Appendix 3 520

describes the theoretical process to compute E and 521

((t)). In fact, Eq. (9) is the sort of mathematical equa- 522

tion that underly the quantum eigenvalue problem that 523

consists in finding the energy levels and stationary wave 524

functions of a particle confined in a finite potential well 525

[13]. To confirm that this boundary value problem is the 526

one that relates TO, !V , E and ((t) close to the tip of 527

the stability tongue in the infinite elementary time cell, 528

we apply it to the numerical data we showed in Fig. 7. 529

Taking TO = 0.052794 s and !V = 4.28 mJ (we fix 530

the elementary action S = TO × !V shown in red in 531

Fig. 7), we find an eigenvalue E0 = 3.24 mJ and an 532

eigenvector (0(t) that matches the ones we found in 533

123
Journal: 11071 MS: 8501 TYPESET DISK LE CP Disp.:2023/5/16 Pages: 19 Layout: Medium



un
co

rr
ec

te
d

pr
oo

f
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Fig. 8 Numerical response at the tip of the second stability
tongue of Fig. 3 for TO = 0.21365 s and TD/T = 0.8 visualized
in the elementary time cell −T/2 < t < T/2. a Evolution of the
generalized coordinate q(t) and Floquet eigenfunction ((t). b
Collapse of the trajectories q(t) of a on the Floquet eigenfunc-
tion ((t) and evolution of the associated modulation function
V (t) (equivalent to H(q, p, t)). The eigenfunction (1(t) and
eigenvalue E1 of Eq. (9) are reported on the figure

Fig. 7b. Note that the eigenfunction (0(t) of Eq. (9) is534

theoretically between −∞ and +∞ and not between535

−T/2 and T/2 like the Floquet eigenfunction, but both536

functions are similar after the same normalization.537

Figure 8 shows the neutrally stable response q(t)538

and modulation V (t) at the tip of the second stability539

tongue of Fig. 8 for TO = 0.21365 s and TD/T = 0.8.540

The aforementioned properties remain for all tips of541

the stability tongues, so this new response is directly542

being visualized in the elementary time cell. Unlike the543

first synchronized stability mode in Figs. 4, 5, 6 and 7,544

the oscillating time TO is longer and the mass is able545

to do two oscillations, i.e., q̇(t) is changing sign twice,546

before time reversing its dynamical state at the end of547

the impulsion. This mode of stabilization is associated548

with an asymmetric Floquet eigenfunction ((t) in the549

elementary time cell when the first mode described in550

Figs. 4, 5, 6 and 7 was symmetric. Again, upon the551

right scaling factors, it is possible to collapse the tra-552

jectories q(t) of the tip of the second stability tongue to553

their Floquet eigenfunction as shown in Fig. 8b along554

with its associated modulation function V (t). Taking 555

TO = 0.21365 s and !V = 4.28 mJ in the eigenvalue 556

problem of Eq. (9), we find an eigenvalue E1 = 3.24 mJ 557

and an eigenfunction (1(t) that indeed correspond to 558

the results, we obtained from the original Initial Value 559

Problem as shown in Fig. 8b. Unlike the previous case 560

at the tip of the first stability tongue, E1 and (1(t) are 561

the second eigenvalues and eigenfunctions of Eq. (9). 562

In the next section, we will generalize our approach 563

to the whole space of the square-wave modulation 564

functions V (t) in order to rationalize the synchronized 565

dynamical stabilization of our P.O.D.S. 566

4 Master curves for the stability tongues 567

4.1 From an initial value problem to a boundary value 568

problem 569

Using the boundary conditions ((−∞) = ((+∞) = 570

0 and the matching conditions between the differen- 571

tiable solutions of Eq. (9) inside and outside the well in 572

the elementary time cell, one can establish two explicit 573

continuity conditions, for symmetric and antisymmet- 574

ric solutions ((t), that relate E , TO and !V (Appendix 575

3 or [13]). Those continuity conditions cannot be sat- 576

isfied for an arbitrary value of E . In the case of finite 577

!V with E < !V , i.e., for VD < 0 which is the frame- 578

work of P.O.D.S., the “energy levels” Ei , eigenvalues 579

of Eq. (9), and associated “bound states” (i (t), eigen- 580

functions of Eq. (9), are discrete. Interestingly, there 581

always exists at least one couple (E0,(0(t)) even if 582

the time well U(t) is very shallow. 583

By normalizing the potential height !V and energy 584

levels E by 8T 2
O/I , the normalized quantities 585

!Ṽ = !V
8
I

T 2
O and Ẽ = E

8
I

T 2
O (10) 586

are giving explicitly the relation between the allowed 587

triplets (!V, E, TO) as 588

!Ṽ =
√

Ẽ

| cos(
√

Ẽ/4)|
and !Ṽ =

√
Ẽ

| sin(
√

Ẽ/4)|
589

(11) 590

for symmetric and antisymmetric bound states, respec- 591

tively. Those explicit master curves are shown in Fig. 9a 592

in black and orange lines for symmetric and anti- 593

symmetric solutions, respectively. Each point on those 594

curves represents an eigenvalue Ei for a given potential 595
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Fig. 9 Energy levels of a particle in a finite potential well. a
Possible values of (!V, E) for a mass with moment of inertia I
and energy E ≤ !V in a potential well of depth !V and width
TO. b Eigenvalue E0 and eigenfunction (0(t) for a finite well
U(t) with height !V = 4.28 mJ and width TO = 0.052794 s.
c A finite potential well U(t) with height !V = 4.28 mJ and
width TO = 0.21365 s has two “bound states” (E0,(0(t)) and
(E1,(1(t))

U(t) (defined by a couple (!V, TO)) in Eq. (9). Those596

eigenvalues are associated with an eigenfunction (i (t)597

that read598





(i (t) =Geσ t for t < −TO

2

(i (t) =A cos(ωt) + B sin(ωt) for|t | ≤ TO

2

(i (t) =He−σ t for t >
TO

2

599

(12)600

where σ =
√

!Ṽ − Ẽ/2TO and ω =
√

Ẽ/2TO are601

the local diverging and oscillating time scale of the602

mass, respectively. For the symmetric mode, we have603

A = 0 and G = H when for the antisymmetric ones we604

impose B = 0 and G = −H . The eigenfunctions (i (t)605

have to be continuous between −∞ and ∞ so that the606

constants are fully defined once ((t) is normalized.607

Figure 9b and c shows the classic “quantum” rep-608

resentation of the energy levels and bound states of a609

particle confined in a finite (or square-wave) potential610

well. It consists first of representing the potential U(t)611

(in black in Fig. 9b, c) with a red area for |t | < TO/2 612

where Ei > U(t) and blue areas for |t | > TO/2 where 613

Ei < U(t). On top of this potential U(t), we show the 614

allowed bound states (Ei ,(i (t)) where the origin of 615

the local y-axis of the plotted (i (t) coincides with the 616

associated energy levels Ei . 617

A horizontal line in the master curves of Fig. 9a 618

corresponds to a constant !Ṽ , i.e., a given U(t). If 619

0 ≤
√

!Ṽ < 2π , only one bound state is allowed. 620

This is the case of Fig. 9b (represented by a green cross 621

in Fig. 9a where we fixed I = mL2 = 0.1076 g m2, 622

TO = 0.052794 s and !V = 4.28 mJ. The bound state 623

(E0,(o(t)) shown in Fig. 9b is the one we reported in 624

Fig. 7 that allowed us to predict the modulation function 625

V (t) and the Floquet eigenfunction at the tip of the 626

first instability tongue. For 2π ≤
√

!Ṽ < 4π , two 627

bound states are allowed. This is for example the case 628

of Fig. 9c (represented by a blue and red cross in Fig. 9a 629

where we took TO = 0.21365 s this time. The second 630

eigenmode (E1,(1(t)) that is shown in red in Fig. 9c) 631

is the one we reported in Fig. 8 that allowed us to predict 632

the modulation function and the Floquet carrier of the 633

response at the tip of the second stability region. 634

Interestingly, we see that this potential U(t) has a 635

fundamental bound state (E0 = 0.895 mJ, (0(t)), 636

shown in blue line in Fig. 9c). Following our previ- 637

ous assumptions, it means that for a long diverging 638

time TD . TO, the modulation function V (t) with 639

!V = 4.28 mJ and TO = 0.21365 s should be 640

able to dynamically stabilize the mass not only for 641

E1 = 3.24 mJ as in Fig, 8 but also for E0 = 0.895 mJ. 642

And the Floquet eigenfunction of the associated neu- 643

trally stable response should approximate (0(t). This 644

is indeed what we observe in Fig. 16 (Appendix 4). The 645

mathematical problem of a particle in a finite potential 646

well, summarized in the Liouville equation (9), is there- 647

fore a very good design tool to predict the modulation 648

function that would stabilize the mass of the P.O.D.S 649

governed by Eqs. (5)–(7) in the limit where TD . TO. 650

We recall we have dropped the time scale T (or TD) 651

in Eq. (8) to use Eq. (9) that has analytical solutions 652

shown in Fig. 9. In the next subsection, we study the 653

relevance of the analytical master curves of Fig. 9 in the 654

original time-periodic Initial Value Problem Eqs. (5)– 655

(7) where T is present. 656
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Fig. 10 Stability diagram of the trivial state (q(t), q̇(t)) = (0, 0)
of the square-wave P.O.D.S. governed by Eqs. (5)–(7) in the
dimensionless (!Ṽ , Ẽ) space. Blue regions indicate that a basin
of attraction exist for which the mass is neutrally stable about
(0, 0) when white regions show an unstable trivial state. Black
and orange lines are the symmetric and antisymmetric master
curves from the Liouville eigenproblem in Eq. (9) where we
assumed TD → T with T = TO + TD. The red line is the limit
E = !V , i.e., VD = 0. Blue and red circles represent stable and
unstable experimental data points, respectively. a TD/T = 0.7.
b TD/T = 0.25

4.2 Finite diverging time TD and experimental657

validation658

To continue rationalizing the stability behavior of the659

trivial fixed point (q(t), q̇(t)) = (0, 0) of the square-660

well P.O.D.S. we introduced in Sect. 2, we compute661

the stability diagram of the dynamical system given in662

Eqs. (5)–(7) in the dimensionless space (
√

Ẽ,
√

!Ṽ ) of663

Fig. 9a. The difference now with the Sturm–Liouville664

problem given in Eq. (9) is that the diverging time TD665

(and so the periodicity T ) does exist in the original666

time-periodic system. For practical purposes, we sim-667

ply need to analytically calculate the Floquet exponents668

on a given period of the Meissner equation Eq. (7).669

Inspired by the previous section, working in the peri-670

odic cell −T/2 < t < T/2, where we recall the period 671

T is the sum of the Oscillating and Diverging time such 672

that T = TO + TD, and introducing the dimensionless 673

time τ = 2t/TO, Eq. (7) can be recast in the dimen- 674

sionless form 675





q̈(τ ) + Ẽ
16

q(τ ) = 0 for |τ | < 1

q̈(τ ) − !Ṽ − Ẽ
16

q(τ ) = 0 for 1 < |τ | < T/TO

676

(13) 677

where (̇ ) now means derivative with respect to dimen- 678

sionless time τ . The normalized energies !̃V and Ẽ 679

are already introduced in Eq. (10). Figure 10a, b shows 680

in blue regions, for TO/T = 0.3 (TD/T = 0.7) and 681

TO/T = 0.75 (TD/T = 0.25), respectively, the cou- 682

ples (!̃V , Ẽ) for which the real part of the two Floquet 683

exponents is equal to zero, i.e., the mass is oscillating 684

about (q(t), q̇(t)) = (0, 0) and therefore, there exists 685

a basin of attraction for which (q(t), q̇(t)) = (0, 0) is 686

dynamically stable in the nonlinear equation of motion 687

Eq. (5). Interestingly, we see that the master curves pre- 688

viously defined in Eq. (9) for 0 < E < !V are indeed 689

a good approximation of the stability tongues of the 690

P.O.D.S. when TD/T → 1 and VD < 0 (the part of the 691

stability tongues where VD > 0 or E > !V is given 692

in Fig. 17, Appendix 5). 693

Moreover, it turns out these master curves are inside 694

the stability tongues whatever TD/T when 0 < E < 695

!V , i.e., the master curves correspond to the only 696

triplets (TO,!V, E) that theoretically lead to a dynam- 697

ically stable (q(t), q̇(t)) = (0, 0) whatever the period 698

T . In practice, it means one just needs to fix !V , E and 699

TO according to Eq. (11) in the square-wave modula- 700

tion function V (t) described in Fig. 1 to theoretically 701

assure that the mass will be stable. From there, the 702

more the diverging time TD, the smaller the width of 703

the tongue and basin of attraction, so the harder it is to 704

actually stabilize the mass. Another interesting result 705

is that the total number N of possible stability tongues 706

for a given !Ṽ = 8!V T 2
O/I is simply determined by 707

the floor function 708

N = 0
√

!Ṽ
2π

1 + 1 (14) 709

which is a very useful design law for synchronized 710

dynamical stabilization. Also, in the case of an infinite 711

well, i.e., !V → +∞, we have the simple result 712

√
Ẽi → 2π i (15) 713
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Fig. 11 Experimental response and modulation function for
TO = 309 ms, TD/T = 0.25, E = 14.8 mJ and !V = 2.8 mJ
(the experimental point is indicated in the (

√
Ẽ,
√

!Ṽ ) space in
Fig. 10b. a Angular response of the inverted pendulum against
time. b Zoom on three periods showing the modulation function
V (t) as well as the angular response as a function of time

as can be inferred from Fig. 10b.714

In order to validate the design opportunity offered715

by the master curves of Fig. 10, we populate the stabil-716

ity diagram with experimental data points (in blue and717

red circles) from our electromagnetic inverted pendu-718

lum presented in Fig. 2. Because in our experiments,719

I = mL2 = 0.1076 g.m2 and VD = − 1
2 Iω(0)2 =720

−1.04 mJ are fixed, and E = 1
2 Iω(i)2 and !V =721

E − VD are barely controllable because ω(i) can only722

be varied between 18 rad/s and 33 rad/s as illustrated in723

Fig. 2, the main control that remains is the oscillating724

time TO which allow us to navigate along constrained725

slopes in the (!̃V , Ẽ) space. By fixing TD/T = 0.7726

and the maximum authorized current i = 0.55 A (i.e.,727

ω(i) ≈ 33 rad/s), we are able to populate Fig. 10a along728

a constant slope that is the minimal slope we can do in729

the (!̃V , Ẽ) with this setup. We see that as soon as the730

experimental couple (!Ṽ , Ẽ) is close to the first master731

curve !Ṽ =
√

Ẽ/| cos(
√

Ẽ/4)| for 0 <
√

Ẽ < 2π ,732

the inverted pendulum is dynamically stabilized. When733

one moves away from this curve, the electromagnetic734

inverted pendulum is unstable. So the master curves are735

indeed a very good analytical warm start to dynamically 736

stabilize a naturally diverging equilibrium in a synchro- 737

nized fashion. Note that we were unable to observe 738

the second stability region for TD/T = 0.7, certainly 739

because the width of the stability tongue, and therefore, 740

the size of the basin of attraction was already too small. 741

To observe this second stability region, we needed to 742

reduce the diverging time. In Fig. 10b, we plot in blue 743

circle some stable experimental data points for vari- 744

ous TO, a fixed TD/T = 0.25 and a minimal current 745

i = 0.4 A so that the inverted pendulum is oscillating 746

with a minimal frequency ω(i) = 16 rad/s accord- 747

ing to Fig. 2 (it is the highest slope we can do in 748

the (!Ṽ , Ẽ) space). Again, the inverted pendulum is 749

dynamically stabilized when we are close to the master 750

curves. Because TD/T is smaller than in Fig. 10a, the 751

width of the stability region (and the size of the basin 752

of attraction about (q(t), q̇(t)) = (0, 0)) is larger and it 753

is therefore easier to stabilize the system in a synchro- 754

nized fashion. An experimental example of a synchro- 755

nized stabilization in mode 2 is shown in Fig. 11 for a 756

set of parameters indicated in the (
√

Ẽ,
√

!Ṽ ) space 757

of Fig. 10b. We consider the electromagnetic pendu- 758

lum is stabilized because, as shown in Fig 11a, even 759

after 132 periods of modulation, the angular response 760

of the pendulum does not exceed 1 degree which can be 761

considered as experimental noise. Figure 11b shows a 762

zoom on three periods as well as the experimental mod- 763

ulation function V (t) that we considered to visualize 764

when the electromagnets are ON leading to a positive 765

V (t) (this corresponds to the red regions). Given that 766

TD/T = 0.25, we are far from the tip of the stabil- 767

ity regions and the experimental response does not yet 768

resemble the second stationary bound state of a particle 769

in a finite potential well. However, we recognize a sec- 770

ond mode because of the anti-symmetric shape and the 771

fact that the response is having two stationary points 772

per period. 773

5 Conclusions 774

In this article, we have studied the local stability of a 775

mass in a potential whose local curvature varies with 776

time in a square wave fashion between a negative and 777

positive value. This is a fundamental model to under- 778

stand dynamical stabilization, which is a well-known 779

concept in physics that notably explains the stabiliza- 780

tion of an inverted pendulum in a local electromagnetic 781
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field that we experimentally studied. We showed that782

stabilization “à la Kapitza”, at the heart of Floquet engi-783

neering in solid-state physics, that consists in applying784

a modulation time scale much faster than the natural785

time scales of the modulated system, is not the only way786

to dynamically stabilize the mass. An alternative is to787

stabilize in a “synchronized” fashion by periodically788

injecting the right amount of potential energy during789

the right time, i.e., the right elementary action. Doing790

so, one should be able to let the mass diverges for a rel-791

atively important time, i.e., minimize the total poten-792

tial action required to dynamically stabilize a diverging793

mass. Interestingly, the Initial Value Problem inherent794

to this fundamental stability problem is related to the795

Boundary Value Problem underlying the determination796

of bound states and energy levels of a particle in a finite797

potential well, a famous problem in quantum mechan-798

ics. This analogy offers a semi-analytical design tool for799

the evaluation of the discrete set of piecewise constant800

modulation functions that will “optimally” stabilize the801

mass. Those results are also corroborated by numerical802

and experimental examples.803

This work presents new physical insights on the con-804

cept of dynamical stabilization and uncovers a new805

class of dynamical systems similar in spirit to the806

time-crystals dynamics [19]. We have shown a way807

to discretize the set of periodic modulation functions808

allowed to dynamically stabilize the equilibrium of a809

time-periodic system. According to the mathematics of810

second-order differential equations with periodic coef-811

ficients [20,21], one should be able to discretize this812

set, not only by modulating a stiffness force, or the813

local curvature of the potential energy, as it was shown814

in this article, but also by modulating viscous forces in815

a way that still needs to be determined.816

We focused here on a 1 degree of freedom P.O.D.S.817

with a square wave periodic modulation function. We818

should next investigate whether the aforementioned819

fundamental results could be generalized with more820

degrees of freedom and other modulation functions821

(some numerical results qualitatively similar to the one822

described in this article have been already seen on823

a P.O.D.S with a harmonic modulation function [8]).824

The theoretical argument in this study is mainly appre-825

hended using a numerical and experimental approach.826

We believe a rigorous theoretical framework such as827

optimal control theory [22] could help in a near future828

to rationalize the intimate mathematical relation that829

seems to exist between the “optimal” dynamical stabi-830

lization of a naturally diverging mass in a time-periodic 831

potential energy landscape, modeled by an initial value 832

problem, and the physics of a particle confined in finite 833

potential wells, that can be treated as a boundary value 834

problem. Notably, investigating whether other mathe- 835

matical features of the stationary Schrödinger equation 836

such as superposition, quantum tunneling or entangle- 837

ment could have some interpretations in the dynamics 838

of P.O.D.S. would be useful to gain a deeper under- 839

standing of quantum analogs [23,24]. 840
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Appendix 1: Experimental P.O.D.S 854

In this appendix, we present in detail the experimental 855

P.O.D.S built in the laboratory. In Fig. 12a, the metal- 856

lic marble has a mass m = 28 g that is attached to 857

a plexiglass rod of length L = 6.2 cm. The rod is 858

then connected to another rod allowing it to rotate 859

only in one plane. The marble is centered below the 860

electromagnet (with typical holding force of 1000 N). 861

Thanks to a Controllino card, we can turn ON and OFF 862

the electromagnet in a very controlled and accurate 863

manner in time. For the recording of the experimen- 864

tal responses, we place the electromagnetic inverted 865

pendulum in front of a white LED to enhance the con- 866

trast and record the motion of the metallic marble with 867

a Basler camera CMOS with 150 frames per second. 868

The electromagnet is connected to a generator where 869

we can select the value of the electrical current i . The 870

electrical current is responsible of the intensity of the 871

electromagnetic force near the inverted pendulum. The 872

stronger the value of i , the stronger the electromagnetic 873

field. By turning ON the electromagnet, the electro- 874

magnetic force will modify the effective gravitational 875
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Fig. 12 Electromagnetic inverted pendulum. a Planar inverted
pendulum of length L with a metallic marble that is symmetri-
cally placed under an attracting electromagnet whose attracting
force depends on the imposed electrical current i . Experimental
responses of the inverted electromagnetic pendulum for differ-

ent values of the control parameter i . b i = 0 A: diverging
response characterized by the natural frequency ω(0) c i = 0.48
A: damped oscillations about θ(t) ≈ 0 characterized by ω(0.48)

field near the inverted pendulum, directly affecting the876

natural time scale of the inverted pendulum. To high-877

light this, the response for i = 0 and i = 0.48 A is878

shown in Fig. 12b, c, respectively. The natural response879

in Fig. 12b for i = 0 is a diverging one with a natural880

time scale to be 1/ω(0) = 0.09 s obtained by fitting881

an exponential function to the response. For i = 0.48882

A, the response is damped oscillations about θ(t) ≈ 0883

characterized by a natural frequency ω(0.48) = 19.5884

rad/s obtained by doing a Fast Fourier Transformation885

of the oscillatory response.886

Appendix 2: Influence of damping887

In this appendix, we look at the influence of viscous888

damping on the stability diagram of Fig. 3. For prac-889

tical purposes, we add a reduced damping term ξ in890

Eq. (7) so that the linearized equation of motion about891

the trivial fixed point (q(t), q̇(t)) = (0, 0) is now892






q̈(t) + 2ξ

√
2E
I

q̇(t) + 2E
I

q(t) = 0 during TO

q̈(t) + 2VD

I
q(t) = 0 during TD

893

(16)894

on a given period T = TD + TO, with I = mL2 =895

1.076 × 10−4 kg.m2, VD = − 1
2 Iω(0)2 = −1.04 mJ896

and E = VD + !V = 1
2 Iω(0.48)2 = 3.24 mJ. The 897

stability diagram in the modulation parameter space 898

(TO, TD) is given in Fig. 13 where the influence of 899

damping is shown in pink regions (here ξ = 0.05). The 900

influence of viscous damping is a well-known narrow- 901

ing of the tip of the instability tongues. Interestingly, the 902

tip of the stability tongues does not disappear when vis- 903

cous damping is added. Although Eq. (16) seems more 904

accurate than the undamped version Eq. (7) that we use 905

in this article because our electromagnetic pendulum is 906

indeed damped during TO, the undamped stability dia- 907

gram seems in better agreement with our experimental 908

data. 909

The thing is that there is a paradox when trying to 910

predict the stable motions of the electromagnetic pen- 911

dulum governed by the damped time-periodic Eq. (16). 912

The upright electromagnetic pendulum is indeed doing 913

damped oscillations when the electromagnets are ON 914

and is diverging when the electromagnets are OFF. 915

But if the electromagnets are turned ON during TO 916

and OFF during TD in a piecewise constant periodic 917

fashion, Eq. (16) will always predict that q(t) → 0 918

when t → ∞ in the case of stable couples (TO, TD). 919

However, in the experiment, the upright pendulum will 920

always oscillate with a finite amplitude even for very 921

long time, because although damped during TO, the lat- 922

ter is periodically diverging during TD so the slightest 923
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New physical insights in dynamical stabilization

Fig. 13 Numerical stability diagrams of the upright vertical elec-
tromagnetic pendulum governed by Eq. (16) when the current
i(t) is modulated with a piecewise constant T -periodic function.
During TD, i = 0 and the upright pendulum is diverging with
a natural time scale 1/ω(0) where ω(0) = 11.1 rad/s. During
TO, i = 0.48 A and the pendulum is oscillating with a natural
frequency ω(0.48) = 19.5 rad/s. Blue regions represent dynam-
ically stable (TO, TD) for the damped (ξ = 0.05) and undamped
(ξ = 0) scenario. Pink regions represent dynamically stable and
unstable (TO, TD) for the damped and undamped case, respec-
tively. White regions represent unstable couple (TO, TD) for both
ξ = 0 and ξ = 0.05

imperfection that remains after the damped oscillations924

time TO will be amplified. A mass periodically doing925

damped oscillations and whose initial conditions are926

periodically “shuffled” by a diverging period is not cor-927

rectly predicted by a time-periodic system like Eq. (16)928

and is maybe just difficult to predict at all because of929

the seemingly random nature of the symmetry breaking930

associated with the diverging time. This aspect, some-931

how similar to the so-called micro-chaotic oscillation of932

(mechanical) systems stabilized by digital control [25],933

could be interesting to investigate in a near future.934

Appendix 3: Particle in a finite potential well935

To find the discrete energy levels E for a mass under the936

effect of a finite square wave potential well of length937

TO and potential depth !V (Fig. 14) can be written as938

(
− I

2
d2

dt2 + U(t)
)

((t) = E((t) (17)939

and ((−∞) = ((+∞) = 0, where ((t) is a wave940

function, I is the moment of inertia of the mass and U(t)941

is the fixed square wave potential. Outside of the box942

TO, the potential is !V and zero for t between −TO/2943

and TO/2. So, the wave function can be considered to be 944

made up of different wave functions at different ranges 945

of t , depending on whether t is inside or outside of the 946

box. Therefore, the wave function can be defined as: 947

((t) =






(1, if t < −TO/2

(2, if − TO/2 < t < TO/2

(3, if t > TO/2

(18) 948

5.1 Wave function inside the box 949

For the region inside the box, U(t) = 0, Eq. (17) 950

reduces to 951

− I
2

d2(2(t)
dt2 = E(2(t). (19) 952

Equation (18) is a linear second-order differential equa- 953

tion with E > 0, so it has the general solution 954

(2(t) = A sin (kt) + B cos (kt) (20) 955

where k = √
2E/I is a real number and A and B can 956

be any complex numbers. 957

5.2 Wave function outside the box 958

For the region outside the box, U(t) = !V , Eq. (17) 959

reduces to 960

− I
2

d2(1(t)
dt2 = (E − !V )(1(t). (21) 961

There are two possible families of solutions depending 962

on whether E is greater than !V (the particle is free) or 963

E is less than!V (the particle is bound in the potential). 964

Fig. 14 Finite square wave potential well of length TO and poten-
tial depth !V
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In this analysis, we focus on the latter (E < !V ), so965

the general solution is an exponential of the shape966

(1(t) = Fe−αt + Geαt , (22)967

where α = √
2(!V − E)/I is a real number and F968

and G can be any complex numbers. Similarly, for the969

other region outside the box:970

(3(x) = He−αx + I eαx , (23)971

where H and I can be any complex numbers.972

5.3 Wave function for the bound state973

For the expression of (1(t) in Eq. (22), we see that as974

t goes to −∞, the F term goes to infinity. Likewise, in975

Eq. (23) as t goes to +∞, the I term goes to infinity.976

In order for the wave function to be square integrable,977

we must set F = I = 0.978

Next, we know that the overall ((t) function must979

be continuous and differentiable. These requirements980

are translated as boundary conditions on the differential981

equations previously derived. So, the values of the wave982

functions and their first derivatives must match up at the983

dividing points:984






(1(−TO/2) = (2(−TO/2), (2(TO/2) = (3(TO/2)

d(1
dt

∣∣∣
t=− TO

2
= d(2

dt

∣∣∣
t=− TO

2
and

d(2
dt

∣∣∣
t= TO

2
= d(3

dt

∣∣∣
t= TO

2

985

giving the system of equations986






Ge−αTO/2 = −A sin (kTO/2) + B cos (kTO/2)

He−αTO/2 = A sin (kTO/2) + B cos (kTO/2)

αGe−αTO/2 = Bk sin (kTO/2) + Ak cos (kTO/2)

αHe−αTO/2 = Bk sin (kTO/2) − Ak cos (kTO/2)

987

(24)988

Finally, the finite square-wave potential well is sym-989

metric (Fig. 14), so symmetry can be exploited to990

reduce the necessary calculations. This means that the991

system in Eq. (24) has two sorts of solutions: symmetric992

and antisymmetric solutions.993

5.3.1 Symmetric solutions994

To have a symmetric solution, we need to impose A = 0995

and G = H . Equation(24) reduces to996

{
He−αTO/2 = B cos (kTO/2)

αHe−αTO/2 = Bk sin (kTO/2)
997

and taking the ratio gives 998

α = k tan (kTO/2), (25) 999

which is the energy equation for the symmetric solu- 1000

tions. 1001

5.3.2 Antisymmetric solutions 1002

For the antisymmetric solutions, we need to have B = 0 1003

and G = − H . Equation(24) reduces to 1004

{
He−αTO/2 = A sin (kTO/2)

− αHe−αTO/2 = Ak cos (kTO/2)
1005

and taking the ratio gives 1006

α = −k cot (kTO/2) (26) 1007

which is the energy equation for the antisymmetric 1008

solutions. 1009

5.3.3 Master equations 1010

The energy equations (25, 26) cannot be solved analyt- 1011

ically. Nevertheless, if we introduce the dimensionless 1012

variables u = αTO/2 and v = kTO/2, we obtain the 1013

following master equations 1014

√
u2

0 − v2 =
{

v tan (v), symetric case

−v cot (v), antisymetric case
(27) 1015

where u2
0 = !V T 2

O/2I and v2 = ET 2
O/2I . So, for 1016

a fixed square-wave potential (!V, TO), the intersec- 1017

tions (vi ) solution of Eq. (27) let us infer the discrete 1018

energy levels Ei = 2Iv2
i /T 2

O. Then, having the values 1019

of Ei we can deduce the values of αi and ki and infer 1020

the wave function (i (t). 1021

Figure 15 shows two examples of application for the 1022

master equations (27). In Fig. 15a, the potential bar- 1023

rier !V and the length of the box TO gives u2
0 = 5. 1024

Then, by solving the master equations (27) we obtain 1025

two intersections points (v1, v2). Then, we deduce the 1026

two discrete energy levels E1,2 and the correspond- 1027

ing wave functions (1,2(t) for this giving square-wave 1028

potential (represented in blue and green, respectively, 1029

in Fig. 15a). Figure.15b represents another example 1030

where u2
0 = 31.25. The solution of the master equa- 1031

tion (27) gives four intersection points. We deduce the 1032

discrete energy levels E1,2,3,4 and the corresponding 1033

wave functions (1,2,2,4(t) (represented in blue, green, 1034

orange and purple in Fig. 15b). 1035

1036
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Fig. 15 Master equations to deduce the discrete energy levels Ei
and the corresponding wave function(i (t). a Square wave poten-
tial fixed at u2

0 = 5 gives two intersection points of the master
curves which translates into two energy levels E1,2 and the cor-
responding wave function (1,2(t) represented in blue and green.

b Square wave potential fixed at u2
0 = 31.25 gives four intersec-

tion points of the master curves which translate into four energy
levels E1,2,3,4 and the corresponding wave function (1,2,3,4(t)
represented in blue, green, orange and purple, respectively

Fig. 16 Neutrally stable response for I = mL2 = 0.1076 g.m2,
!V = 4.28 mJ, E = 0.895 mJ, TO = 0.21365 s and TD = 0.8 s
visualized in the elementary time cell −T/2 < t < T/2 with
T = TO +TD. a Evolution of the generalized coordinate q(t) and
Floquet eigenfunction ((t). b Collapse of the trajectories q(t)
of a on the Floquet eigenfunction ((t) and evolution of the asso-
ciated modulation function V (t) (equivalent to H(q, p, t)). The
eigenfunction (0(t) and eigenvalue E0 of Eq. (9) are reported
on the figure

It is interesting to mention that the resolution pre-1037

viously showed is also the mathematical resolution of1038

the classical problem of a particle trapped in a finite1039

potential well in quantum mechanics [13,26].1040

Appendix 4: Fundamental bound state for TO = 1041

0.21365 s 1042

The resolution of the Liouville eigenvalue problem 1043

Eq. (9) suggested that for I = 0.1076 g m2, !V = 1044

4.28 mJ and TO = 0.21365 s, a modulation function 1045

with E = 0.895 mJ would stabilize the mass even 1046

when the diverging time TD is large. This result is sum- 1047

marized in Fig. 9 that showed the “bound states” and 1048

“energy levels” of the particle confined in a finite poten- 1049

tial well for TO = 0.21365 s and !V = 4.28 mJ. In 1050

Fig. 16, we show the response of the mass governed by 1051

the linear Initial Value Problem Eq. (7) when using the 1052

modulation function V (t) suggested by the eigenvalue 1053

problem Eq. (9). In Fig. 16a, the 100th first periods of 1054

the dynamical response q(t) are superposed in the ele- 1055

mentary time cell [−T/2, T/2] alongside with its Flo- 1056

quet eigenfunction ((t) shown in black thin line. As 1057

predicted by the Boundary Value Problem, the response 1058

is neutrally stable even if TD is large. Moreover, upon 1059

the correct scaling, one can collapse all the trajectories 1060

on a single curve in [−T/2, T/2] that is the Floquet 1061

eigenfunction ((t) of the response as shown in Fig. 16b 1062

where we also plot the piecewise constant modulation 1063

function V (t) (that is very close to the total energy 1064

of the mass) in green line. The eigenvalue and eigen- 1065

function of Eq. (9) are also reported in this figure. As 1066

expected, they match with the outcome of our Initial 1067

Value Problem. The Boundary Value Problem Eq. (9) is 1068

therefore a good design tool to predict what modulation 1069

function will dynamically stabilize the mass even for a 1070
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long diverging time TD and what will be the qualitative1071

shape of the oscillatory response over each period.1072

Appendix 5: Extended stability diagram in the1073

(
√

Ē,
√

!̄V ) space1074

In Fig. 10, we showed the linear stability diagram of our1075

square-wave Periodically Oscillating Diverging Sys-1076

tem (P.O.D.S.) governed by the dimensionless equation1077

Eq. (13) in the (
√

Ē,
√

!̄V ) space for 0 < E < !V ,1078

i.e., VD < 0 that is the P.O.D.S. formalism. In Fig. 17,1079

we show this stability diagram in the general case that1080

allow E > !V , i.e., VD > 0 that is the case when the1081

particle is in a potential whose local curvature varies1082

Fig. 17 Stability diagram of the trivial state (q(t), q̇(t)) = (0, 0)
of the square-wave P.O.D.S. governed by Eqs. (5)–(7) in the
dimensionless (!Ṽ , Ẽ) space. Blue regions indicate that a basin
of attraction exist for which the mass is neutrally stable about
(0, 0) when white regions show an unstable trivial state. Black
and orange lines are the symmetric and antisymmetric master
curves from the Liouville eigenproblem in Eq. (9) where we
assumed TD → T with T = TO +TD and E < !V (or VD < 0).
The red line is the limit E = !V , i.e., VD = 0. Below this red
line, we have VD > 0, the case of a particle in a potential energy
with a time-varying local curvature that always remain positive.
a TD/T = 0.7. b TD/T = 0.25

between only positive values, in a square-wave fashion 1083

in our case. What we see in Fig. 17 is then the clas- 1084

sic instability tongues (white regions) of the Meissner 1085

equation Eq. (13) that has been extensively studied in 1086

the literature [9,17,18,21]. 1087
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