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Chladni patterns explained by the space-dependent diffusion of bouncing grains
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Although Chladni patterns are widely used to visualize the modes of vibration of an elastic plate, the
mechanism by which the grains form the pattern is still debated. In this Letter, we suggest that the pattern
results from space-dependent diffusion: grains gather where their diffusivity is low. We test this hypothesis in
experiments, wherein we generate Chladni patterns on a vibrating membrane. We measure the diffusivity of the
grains as a function of the vibration amplitude and propose an expression of the diffusive flux based on our
measurements. We find a steady-state distribution of the grains in agreement with observations. These findings
could inspire new methods to manipulate and segregate particles.
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When sand is sprinkled on a vibrating plate, the grains
gather on the vibration nodes of the plate to form the famous
Chladni patterns [1]. In this system, the grains behave as
passive particles to visualize the plate’s modes. These patterns
have contributed to the development of the theory of elastic
plates and are still used to design and tune the soundboard of
musical instruments [2].

This phenomenon allows for the rapid and precise posi-
tioning of microscopic particles on a surface, including live
cells, facilitating cell differentiation, tissue engineering, and
the cultivation of multiple cell types [3]. Occasionally, in a
liquid, micrometric particles concentrate in the antinodes, thus
forming an inverse Chladni pattern [4]. Numerical simulations
showed that, when the vibration acceleration is weaker than
gravity, the grains can indeed be pushed towards the antin-
odes [5]. Similarly, fine powders can be sensitive to the air
currents induced by vibrations and again driven towards the
antinodes [6].

Overall, what pushes the grains towards the nodes in the
classic experiment and, more broadly, what governs their mo-
tion remains an open question. A possible mechanism is that
the grains, as they bounce on a tilted plate, feel a net force
towards the nodes [5,7]. However, this explanation primarily
applies to grains that slide or creep on the vibrated surface.
Far from the bouncing threshold, a statistical approach be-
comes necessary and we need to consider the randomness of
their motion to understand the formation of patterns [8]. This
regime, which we investigate in this Letter, remains experi-
mentally uncharted and a rigorous statistical theory describing
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this behavior has yet to be established. Our focus is specifi-
cally on dilute grain concentrations, where collisions between
grains are negligible—unlike in previous studies [9-11].

In a recent experiment, Grabec [12] investigated how a
single grain moves over a vibrating membrane. He showed
that the jumps of the bouncing particle extend over a distance
roughly proportional to the local vibration amplitude. This
should result in a diffusivity D that varies over the membrane.
However, the dependency of diffusivity on amplitude and
frequency is elusive and the connection to the formation of
a Chladni pattern remains to be established. Motivated by this
question, we want to model the dynamics of a collection of
grains bouncing over a vibrated membrane. To do so, we set
up a Chladni experiment and track the particles therein. We
find that their fluctuating trajectories are essentially random
walks. This allows us to measure their diffusivity and its
variation over the membrane. We suggest that this variation
induces a heterogeneous grain density in steady state and we
identify this heterogeneity with the Chladni figure. This new
understanding could improve the controlled manipulation of
particles over vibrated surfaces.

The experimental setup consists in clamping an elas-
tomeric membrane of thickness 0.2 mm (ultrathin silicone
sheet, Silex Ltd), initially without tension, between two rings.
It is then stretched by placing a third rigid ring below the
membrane [13]. The thickness of this additional ring controls
the tension in the membrane. The radius of the clamped mem-
brane is set at 13 cm. To prevent sticking, talcum powder is
applied to the membrane before an experiment. The mem-
brane and rings are fixed on a vertical shaker (Tira Vib 51140)
excited by a sinusoidal signal of amplitude A and frequency
w/2r (Fig. 1).

To estimate the tension of the membrane, we measure
the vibration amplitude of its center as a function of the
shaking frequency, using a laser profilometer (Keyence LJ-
V7060). Meanwhile, an accelerometer records the vibration
of the frame (Briiel and Kjaer 4514). This reveals resonance
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FIG. 1. (a) Experimental setup. A circular membrane is stretched
over a ring and placed on a shaker. The vibration of the membrane
is measured using fringe projection and Fourier Transform Profilom-
etry. (b) Sketch of the membrane excited at a fixed amplitude and
(c) corresponding experiment, seen from above. The amplitude of
vibration and the grain concentration are homogeneous. See Movie 1
in the Supplemental Material. (d) Sketch of the membrane at the first
mode of vibration and (e) corresponding experiment. The vibration
is stronger in the center of the membrane and the grains gather along
the ring. See Movie 2 in the Supplemental Material.

peaks which correspond to the classical modes of a circular
membrane (Bessel functions). The resonance frequencies al-
low us to estimate the tension of the membrane (T = 32 +
2 N/m; see Supplemental Material). An inclined video projec-
tor (Qumi Q8), placed above the experiment projects a fringe
pattern on the membrane in order to measure the vibration of
the latter across its entire surface (Fig. 1).

To produce a Chladni pattern, we use rough plastic grains,
of mean diameter d = 830 um (blast media manufactured by
Guyson). Sprinkling these grains over the membrane reveals
the classical Chladni pattern, the two first modes being at
Jfo1r =73 Hz and fy; = 179 Hz. As both the membrane and
the forcing are axisymmetric, we observe only axisymmetric
figures.

We start our investigation by tracking the grains’ motion
over a membrane that vibrates uniformly. This configuration,
depicted in Fig. 1(b) and Movie 1, is achieved by fixing

the frequency at 40 Hz, away from any resonant frequency.
The grains randomly bounce in all directions and the overall
concentration reaches a homogeneous steady state after a few
seconds.

To characterize the grains’ motion, we track their position
over time and reconstruct their trajectory using the python
library BrownTrack [14]. This library is based on the Munkres
algorithm and facilitates the handling of a lot of trajecto-
ries (see Supplemental Material). Figure 2(a) shows a few
trajectories over a membrane that vibrates uniformly. These
trajectories appear to randomly explore the entire membrane.
They resemble the trajectories of some bacteria, with alternat-
ing “runs,” during which particles move along a straight path,
and “tumbles,” during which they undergo random reorienta-
tion [15]. In the present case, the runs correspond to jumps and
tumbles to bouncing. The irregular shape of the grains causes
the reorientation of the trajectory when the grain bounces (in
contrast, glass beads tend to maintain their direction as they
bounce).

As expected for a random walker, the average grain dis-
placement vanishes, but the dispersion of the trajectories
increases with time. To be quantitative, we define the root
mean square displacement (RMSD) o as

o = (V(xt + 1) —x(OP + [yt + 1) = yOP))n, (1)

where 7 varies from zero to half the duration of a trajec-
tory, (-); the average over the duration of a trajectory, and
(-)n indicates the ensemble mean over our set of trajectories.
Figure 2(b) shows this quantity for a fixed membrane fre-
quency (40 Hz) and different vibration amplitude A. For any
amplitude, the data follow two regimes: a ballistic regime,
where the RMSD is proportional to time, followed by a diffu-
sive regime, where it is proportional to the square root of time.
We are limited by the size of the circular membrane: when
a grain hits the edge of the membrane, its trajectory ends.
This explains why we do not have any measurement beyond
o ~ 5 cm. Although the transition between the two regimes
is not sharp, it occurs after approximately 0.05 s, which is
about twice the shaking period. Beyond this transition, one
can measure the diffusivity; the next paragraphs are devoted
to this measurement.

We now focus on the diffusive regime, which occurs after
a few bounces. We measure the diffusivity D by fitting the
relation o = /4Dt to our observations [Fig. 2(b)]. For ex-
ample, at f = 40 Hz and for an amplitude of A = 0.29 mm,
we measure D = 1.2 £ 0.1 cm?/s. In other words, a particle
typically needs one second to explore a square centimeter.

Varying the amplitude and the frequency, we report the
diffusivity in Fig. 2(c). Diffusivity increases with amplitude
at any frequency, but the grains begin to move only beyond
a threshold, which we interpret as follows: for a grain to
start bouncing, the membrane’s acceleration ®?A needs to
exceed that of gravity g. This interpretation suggests that the
amplitude threshold varies with frequency according to g/w?,
which closely match our observations [inset of Fig. 2(c)].

Because a bouncing grain follows a parabolic trajectory
during each jump, we expect its diffusivity to be proportional
to the horizontal component of its ballistic velocity v, defined
as £ = vt. If we neglect the friction of air, these parabola
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FIG. 2. (a) Grain trajectories, seen from above. The applied frequency is 40 Hz and the amplitude is 0.58 £ 0.02 mm. The dashed circle
represents the edge of the membrane. (b) Root mean square displacement of the bouncing grains. Colors show the vibration amplitude for
a fixed frequency of 40 Hz. These data reveal two regimes: ballistic (slope 1) and diffusive (slope 0.5). (c) Diffusivity as a function of the
vibration amplitude for different frequencies. The colored lines are a linear fit for each frequency. Inset: amplitude threshold for bouncing at

each frequency. The black line corresponds to A, = g/w>.

follow the equation z(t) = —gt?/2 + vt tan @, where 6 is the
angle at which the particle takes off, with respect to the
horizontal. The length of a jump is thus £ = 2v? tan 6 /g and,
according to this simple model, the diffusivity reads

3
D~ €2/4r = tanf . @)
2g

The exponent of 3 compares well with our observations (black
line, inset of Fig. 3). The fitted coefficient corresponds to an
average rebound angle of 53°.

Once we have established a relationship between diffusiv-
ity and velocity, we need to relate one of these quantities to
the amplitude and frequency of the membrane’s vibration. A
possible scaling for the velocity is v ~ 4/gA, akin to a fall
velocity, which yields the following scaling for the diffusivity:

D ~ /A3 3)

To test this scaling, we plot the rescaled diffusivity against
the rescaled membrane acceleration w?A/g (Fig. 3). The data
points gather along a common relation, which begins where
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FIG. 3. Rescaled diffusivity as a function of the rescaled accel-
eration of the membrane. The black line corresponds to Eq. (3).
Inset: diffusivity as a function of the grain velocity. The black line
corresponds to Eq. (2).

w?A ~ g, and accords with the threshold of bouncing. Then,
we observe two distinct regimes, determined by the closeness
of the amplitude to the bouncing threshold (w?A/g ~ 1).

Near the threshold (w?A/g < 2), diffusivity remains low
and rapidly increases with acceleration. We suspect that this
phenomenon is due to synchronized bouncing [16], wherein
the grain’s flight duration matches the membrane’s vibration
period. Avoiding such synchronization requires a large accel-
eration, particularly at 10 Hz, causing grains to bounce over
the ring that corrals them. This explains why the measure-
ments at 10 Hz are confined to the first regime.

Beyond a specific acceleration threshold (w?A/g > 2), the
diffusivity reaches the scaling of Eq. (3). Consequently, our
experiments suggest that the dominant control on the diffusiv-
ity is the vibration amplitude and that frequency plays only
a secondary role through the threshold of bouncing. This is
visible in Fig. 2(c): changing the frequency merely shifts the
relation between diffusivity and amplitude. This scaling also
suggests that the grain velocity is set by the freefall velocity,
with the height typically equal to the vibration amplitude. The
proportionality coefficient is D/ \/ng3 = 4.6. This coefficient
should also capture the influence of the energy restitution dur-
ing a collision on the membrane that we maintained constant
in our experiments.

In contrast with this observation, Warr et al. [17] proposed
that velocity scales with the velocity of the vibrating plate
of their experiment (wA), leading to a slope 3 in the Fig. 3,
which falls between the two aforementioned regimes. This
may originate from a larger acceleration or from the rigidity
of the vibrating plate of their experiment.

Overall, this diffusive coefficient is measured here for free
grains on a vibrated membrane, as a function of the vibration
amplitude, in a previously unexplored configuration. Unlike
previous works [9-11], in our system, the grain population is
dilute and thus most collisions occur between a grain and the
membrane and not between grains themselves (pd? < 0.1).
One could also use stochastic force inference to measure the
diffusivity, but this method is sensitive to the existence of
a ballistic regime [18]. Here, however, the trajectories were
abundant enough to guarantee statistical accuracy.

So far, we have established a strong correlation between
diffusivity and the vibration amplitude of the membrane. Now,
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FIG. 4. (a), (b) Mode 1, at 74 Hz. (c), (d) Mode 2, at 179 Hz. (a), (c) Grain concentration as a function of their radial position. (b),
(d) Vibration amplitude with Fourier Transform Profilometry. (e) Grain concentration as a function of diffusivity. Equation (4), in black,

matches experiments (first and second mode) and numerics (first mode).

when the membrane is excited at resonance, it forms nodes
and antinodes [Fig. 1(c)]. The resulting heterogeneity of the
vibration amplitude will make diffusivity vary over the mem-
brane. Nodes, which are the loci of a vanishing amplitude,
and thus of low diffusivity, coincide with areas of large grain
concentration. We now explore the relationship between local
diffusivity and grain concentration.

We focus on the first two modes of vibration of the mem-
brane and measure the local grain concentration p (Movie 2 in
the Supplemental Material). To ensure a sufficient concentra-
tion of grains in the antinodes, we increase the total number
of grains N, at the cost of accumulating a large density of
grains along the nodal lines. We check with the profilome-
ter that this does not affect the vibration of the membrane.
Using image analysis to measure the grain concentration,
we confirm our expectations: grains cluster along the nodes
of vibration, like in Chladni’s original experiment. In the
first mode, the only nodal line is the edge of the membrane
[Figs. 1(e) and 4(a), top], whereas in the second mode, the
nodal lines form two concentric circles [Fig. 4(b), top].

We independently measure the local diffusivity through the
local vibration amplitude of the membrane, when it is free of
grains, using Fourier Transform Profilometry [Fig. 1(a)]. This
method consists in projecting fringes onto the surface and cor-
relating their phase with the elevation of the membrane (see
the Supplemental Material [19]). This yields the instantaneous
elevation of the entire membrane. We then take the absolute
value of this elevation and identify the maximum of this quan-
tity with A [Figs. 4(a) and 4(b)]. Finally, as the acceleration
w’A/g significantly exceeds 2, we can confidently apply the
scaling provided by Eq. (3) to estimate the diffusivity D.

To correlate diffusivity and grain concentration for all our
experiments, we need to normalize the concentration. Assum-
ing this concentration is a power-law function of diffusivity,
p o D%, where « is a real constant, we plot the normal-
ized concentration as a function of the normalized diffusivity,
D/{D), where

1 1/a
(D)y = <— //D‘Udrd@) ,
S

with S the membrane’s surface. We find that « = —1 matches
our observations well [Fig. 4(e)] and thus
S D)_
P @ )
N D

To understand this correlation, we must consider the spatial
variation of diffusivity. However, how to take into account
this variation in the diffusion flux is not obvious [20]. Should
the particle flux be J = —DVp or J = —V(Dp)—or anything
in between [21]? The answer depends on the system, and
intermediate cases are also possible [22]. In particular, it de-
pends on where D is to be evaluated: before, during, or after
a jump. In our experiments, we expect that the velocity, and
consequently the diffusivity, is controlled by the bounce that
initiates the parabolic trajectory. Accordingly, following Van
Kampen [20], we hypothesize that

J ==V (Dp). &)

At equilibrium, this flux vanishes, which yields after inte-
gration p o 1/D. The proportionality coefficient is then such
that the integral of the concentration over the entire membrane
is N, the total number of particles, which accords with Eq. (4)
without fitting parameter over more than two orders of magni-
tude [Fig. 4(e), black line]. We observe a larger dispersion in
the data for the second mode and attribute it to a finite-size
effect: the grains jump over a distance comparable to the
wavelength of the mode. This dispersion might also originate
from a diffusivity regime wherein Eq. (3) does not apply.

To support this interpretation, we conducted numerical
simulations of random-walk trajectories with spatially varying
step lengths (see Supplemental Material, Sec. V [23]). The
data in Fig. 4(e) shows, once again, a remarkable alignment
with our model predictions.

Equation (4) means that, in steady state, the concentra-
tion of grains is inversely proportional to diffusivity. In other
words, grains tend to accumulate where diffusivity is low. This
phenomenon provides a sensible explanation for the formation
of the Chladni patterns, where nodes coincide with areas of
high grain concentration. Alternatively, this distribution could
be interpreted as Boltzman’s equilibrium, with an ad hoc
external potential V = kT log D, where kT is a temperature
[24]. However, our numerical simulations, which involve only
statistical effects and no external force, support the present
interpretation. The present steady state does not apply to
all systems where diffusivity varies; colloidal particles, for
instance, distribute themselves uniformly in a close cell, al-
though diffusivity decreases near the walls [25,26]. Unlike our
bouncing grains, however, the motion of colloid particles is
overdamped, which causes diffusion to take the classical form
of Fick’s law, J = —DVp [27].
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In summary, when grains bounce freely over a vibrated
surface, they behave as random walkers whose diffusivity
depends on the vibration amplitude. If taken into account
in the expression of diffusion, this space-dependent diffu-
sivity results in a heterogeneous distribution of grains in
steady state, which explains the formation of Chladni patterns.
This out-of-equilibrium system represents an elementary form
of active matter, wherein individual particles constantly ex-
tract energy from areas of intense vibration and transfer it
to quieter areas [28-30]. Despite its simplicity, this system
shows a remarkably consistent, and nontrivial, macroscopic
behavior.

In the future, investigating the system’s dynamics should
be possible. Based on expression (5), the mass balance for

the grains reads 9,0 = A(Dp). As a preliminary investigation,
we started an experiment with a uniform grain concentration.
Despite reproducibility challenges, we estimated a character-
istic relaxation time of t =5+ 2 s, close to the expected
T ~ D?/R, given R ~ 10 cm and D = 1-10 cm?/s.

Finally, other configurations could lead to space-dependent
diffusion. For example, tuning the elasticity coefficient of the
membrane, upon which the grains bounce, should also induce
spatial variations in the grain concentration [31].

We are indebted to P. Szymczak and P. Popovi¢ for stim-
ulating and illuminating discussions on the subject. We also
warmly thank A. Eddi and P. Cobelli for their help on the
Fourier Transform Profilometry technique.
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