
Int. J. Engineering Systems Modelling and Simulation, Vol. 2, Nos. 1/2, 2010 65

Copyright © 2010 Inderscience Enterprises Ltd.

AD-based perturbation methods for uncertainties
and errors

M. Martinelli*, A. Dervieux, L. Hascoët, V. Pascual and
A. Belme
Institut National de Recherche en Informatique et en Automatique,
INRIA Sophia Antipolis – Méditerranée,
route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
E-mail: Massimiliano.Martinelli@sophia.inria.fr
E-mail: Alain.Dervieux@sophia.inria.fr
E-mail: Laurent.Hascoet@sophia.inria.fr
E-mail: Valerie.Pascual@sophia.inria.fr
E-mail: Anca.Belme@sophia.inria.fr
*Corresponding author

Abstract: The progress of automatic differentiation (AD) and its impact on perturbation methods
is the object of this paper. AD studies show an important activity for developing methods
addressing the management of modern CFD kernels, taking into account the language evolution
and intensive parallel computing. The evaluation of a posteriori error analysis and of resulting
correctors will be addressed. Recent works in the AD-based construction of second-derivatives
for building reduced-order models based on a Taylor formula will be presented on the test case of
a steady compressible flow around an aircraft.

Keywords: automatic differentiation; AD; second-order derivatives; uncertainty; error
correction; design; CFD; systems modelling; simulation.

Reference to this paper should be made as follows: Martinelli, M., Dervieux, A., Hascoët, L.,
Pascual, V. and Belme, A. (2010) ‘AD-based perturbation methods for uncertainties and errors’,
Int. J. Engineering Systems Modelling and Simulation, Vol. 2, Nos. 1/2, pp.65–74.

Biographical notes: Massimiliano Martinelli received his PhD in ‘Applied Mathematics at
Scuola Normale Superiore of Pisa (2007) and his MSc in Applied Mathematics at University of
Bologna (2003). After two years at INRIA – Sophia Antipolis, he is now a Contract Professor at
Università Politecnica delle Marche and has a research grant at the Department of Mathematics at
University of Pavia. Its research interests are CFD, automatic differentiation and
high-performance computing.

Alain Dervieux received his PhD at University of Paris VI and is a Research Scientist at INRIA.
He has created and directed a CFD team there during 15 years. His scientific contributions
concern approximations methods on unstructured meshes for CFD applications, multigrid
methods, shape optimal design, mesh adaption methods and theory.

Laurent Hascoët, Ingenieur from Ecole Polytechnique, Palaiseau, France, received his PhD from
University of Nice in 1987. He is a Permanent Researcher at INRIA since 1986. He has also been
working in a small company, CONNEXITE, from 1991 to 1993, when it merged into SIMULOG.
CONNEXITE was building tools for restructuring and parallelising FORTRAN programs. Since
1998, he has been working on automatic differentiation, and leading a research team named
TROPICS.

Valérie Pascual as a student at Ecole Normale Supérieure de Jeunes Filles in Paris, she received
her PhD in Computer Science from Paris XI University in 1983. She joined INRIA in 1984 as a
Permanent Researcher. She developed programming environments and structured editors for Lisp
and Java languages and worked on interactive structured editing tools using program
transformations. In 1999 she joined the new TROPICS team. Her current area of research
includes analysis and transformation of programs applied to automatic differentiation. She
participates in the development of the TAPENADE automatic differentiation tool.

Anca Belme received her Master degree in Applied Mathematics at University of Montpellier II,
France in 2008. She started her PhD thesis the same year at INRIA Sophia-Antipolis, France,
under the direction of M. Alain Dervieux. Her subject is adjoint methods for numerical error
correction of unsteady flows.

66 M. Martinelli et al.

1 Introduction

While high fidelity models are mainly used for
deterministic design, which assumes a perfect knowledge
of the environmental and operational parameters,
uncertainty can arise in many aspects of the
entire design-production-operational process: from the
assumptions done in the mathematical model describing the
underlying physical process to the manufacturing tolerances
and to the operational parameters and conditions that could
be affected by unpredictable factors (e.g., atmospheric
conditions). Exact and approximate techniques for
propagating these uncertainties require additional
computational effort but are progressively well-established.
The proposed study takes place in NODESIM-CFD FP6
project (Martinelli and Hascoët, 2008; NODESIM-CFD,
2008). The automatic differentiation (AD) tool TAPENADE
(Hascoët and Pascual, 2004) is discussed in Section 2. It has
been developed for a large range of applications where the
code-to-code direct and reverse differentiation is needed.
Direct and reverse ADs are used for addressing numerical
error reduction since they help building correctors
(Section 3). In Section 4, uncertainty propagation is
addressed by a perturbation technique using the first terms
of Taylor series of the high-fidelity model (method of
moments). Previous investigation of these methods can be
found in Ghate and Giles (2006, 2007). We present as
example the response surface of a wing.

2 AD improvements

Our AD tool TAPENADE has been extended to deal with
Fortran95 and with ANSI C (Pascual and Hascoët, 2005;
Pascual and Hascoët, 2008). Figure 1 shows the architecture
of TAPENADE. It is implemented mostly in Java (115,000
lines) except for the separate front-ends which can be
written in their own languages. Front- and back-ends
communicate with the kernel via an intermediate abstract
language (‘IL’) that makes the union of the constructs of
individual imperative languages. Notice also the clear
separation between the general-purpose program analysis
and the differentiation engine itself.

Figure 1 Overall architecture of TAPENADE

Thanks to the language-independent internal representation
of programs, this still makes a single and only tool and
every development benefits to differentiation of each input
language. One of these developments concerned the pointer
analysis. The reverse mode now accepts most uses of

pointers and allocation. Another development concerned
declarations. The differentiated program respects the order
of declarations, uses the include files and keeps the
comments from the original program. Generated codes are
more readable and often smaller. We also investigated
extensions to TAPENADE to successive differentiations, in
particular to efficiently handle tangent differentiation of the
stack primitives present in the reverse differentiated codes.
We implemented user directives for the reverse
differentiation of a frequent class of parallel loops (directive
II-LOOP) and for optimal checkpointing in reverse
differentiation (Naumann et al., 2008; Hascoët et al., 2008;
Tber et al., 2007). TAPENADE lets the user specify finely
which procedure calls must be checkpointed or not with the
directive NOCHECKPOINT.

3 Numerical errors reduction

3.1 Error estimates and correctors

Let us recall first how linearised – direct or adjoint – states
can be useful for improving numerical accuracy issues.

Numerical error involves the deviation between the
solution (, ,)=W W x y z of mathematical model, i.e., of the
non-linear PDE symbolised by:

() 0,=WΨ (1)

and the output data produced by the computations, i.e., the
more or less perfect numerical solution of the discrete
system:

() 0 .N= ∈Rh hΨ W (2)

The discrete unknown hW is the N-dimensional array of
degrees of freedom:

, = [()].N∈Rh h h iW W W

The output data produced by the computation do not involve
a function hW but, instead the array hW which needs to be

transformed via an interpolation: let 2 ()∈V L Ω a space of

rather smooth function. In practice, 0 ().V ⊂ ΩC Let hR be
a linear interpolation operator transforming an array of N
degrees of freedom into a continuous function:

: .N → 6Rh h h hR V Rv v (3)

Let:

(, ,) ()(, ,).=h h hW x y z R x y zW

Similarly, we need an operator from continuous functions to
arrays. Let hT be an operator transforming a continuous
function into an array of N degrees of freedom:

: .N→ 6Rh hT V v T v (4)

It is useful to take the adjoint of :hR

 AD-based perturbation methods for uncertainties and errors 67

.∗=h hT R (5)

The deviation between the PDE solution and the numerical
one can be defined as .− hW W It consists mainly of
approximation errors, of algorithmic errors arising typically
because iterative algorithms are not iterated infinitely, and
of round-off errors due to the fact that the programme is run
in floating point arithmetic. We discuss here mainly of
approximation errors, although the other ones may be also
addressed in part by the method studied here. Another way
to post-process a computation is to use it for evaluating a
‘scalar’ functional:

Let j a smooth linear functional applying W into the
scalar number:

2 ()() (,)=
L

j u g W Ω

where g is a given 2 ()L Ω function. This allows to define:

 =gh hT g

= =gh h h h hg R R T g (6)

The continuous adjoint writes:

()* .=p g
W
∂Ψ
∂

The discrete adjoint equation is then defined by:

.⎡ ⎤ =⎣ ⎦
∂Ψ
∂
h

h

T

h hW T gp (7)

And we can then consider:

.=h h hp R p

A fundamental assumption of the present analysis is that
this discrete adjoint is a good enough approximation of
continuous adjoint p for allowing to replace p by hp the
calculations which follow. In order to evaluate the
approximation error, two kinds of estimates can be applied:

• A posteriori estimate:

() () ()− = −Ψ Ψ Ψh hW W W (8)

where ()Ψ hW is the continuous residual applied to
discrete solution. Then:

1
().

−
⎡ ⎤− ≈ − ⎣ ⎦

∂Ψ
∂ Ψh hWW W W (9)

• A priori estimate:

() () ()− = −Ψ Ψ Ψh h h h h hTW W TW (10)

where ()Ψh hTW is the discrete residual applied to
discretised continuous solution. Then:

1
().

−
⎡ ⎤− ≈ − ⎣ ⎦
∂Ψ
∂ Ψh

h
h h h hWTW TWW (11)

We observe that these estimates involve unavailable
continuous functions. In the a posteriori estimate, the
solution of the continuous linearised system can be
approximated thanks to the discrete Jacobian. For the
a priori estimate, we can also solve this issue in some
particular case (see Loseille, 2008), by replacing ()Ψh hTW
by an expression ()Θh hT h W depending only of .hW
Corresponding to these estimates, we have the following
‘field correctors’:

1
()

−
⎡ ⎤= − ⎣ ⎦
∂Ψ
∂ Ψh

h
h h h hWW R T Wδ (12)

1
()

−
⎡ ⎤= − ⎣ ⎦
∂Ψ
∂ Θh

h
h h h h hWR R T h WWδ (13)

and the following ‘direct-linearised goal-oriented
correctors’:

2

1

1
()

, ()
L

−⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠
∂Ψ
∂

Ω
Ψh

h
h h hWj g R T Wδ (14)

2

1

2
()

, ()
L

−⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠
∂Ψ
∂

Ω
Θh

h
h h h hWj g R T Wδ (15)

Also follows the ‘adjoint-based goal-oriented correctors’:

21 ()(, ())L= − ΩΨh h hj p T Wδ (16)

22 ()(, ())L= − ΩΘh h h hj p T Wδ (17)

We recognize here the superconvergent corrector of Pierce
and Giles (1998). We observe that, thanks to the choice of
hT as the adjoint operator of ,hR the linearised-based and

adjoint-based formulation are perfectly equivalent. At the
contrary, the effort to compute them is very different,
particularly in the case of unsteady PDE, since the adjoint
system has to be solved reverse in time while using the state
solution at all time levels (Hascoët and Dauvergne, 2008).
This remark leads to the following recommendations:

• use the direct linearised formulation in any case, you
only need a corrector for the field as well as a corrector
for one or several output functionals

• the adjoint formulation is compulsory when you wish to
derive a goal-oriented optimal mesh.

The second recommendation is motivated by the fact that an
optimal mesh will be derived from minimisation of the error
term in which we need to put in evidence the dependance of
error with respect to mesh. Since the adjoint is an
approximation of a continuous function, it does not much
depend of mesh. At the contrary, the continuous residual

()Ψh hT W or the truncation error ()Θh h hT W are

68 M. Martinelli et al.

proportional to a power of the mesh size. In Loseille (2008),
the truncation error is expressed in terms of second
derivatives of solution field and allows the derivation of an
optimal mesh.

3.2 An example

To end this discussion, we give a numerical example of
corrector evaluation built on a finite-element approximation.
We can write Euler equations under the form:

1 5() , ,
ˆ() (). 0

φ

φ φ
∂

∈ = ∀ ∈

∇ − Γ =∫ ∫
W V H V

W d W nd
Ω Ω

Ω

ΩF F
 (18)

where ˆ ()F W accounts for the different boundary
conditions. Let us introduce a discretisation of the previous
EDP. Let hτ a tetrahedrisation of Ω with N vertices. It
will rely on a discrete space of functions:

11 5{ () , , }φ φ= ∈ ∀ ∈ ∈PΩh h h hV H T Tτ

the canonical basis of which is denoted:

[], () , , vertices of ,= = ∀h i i j i j hV span N N x i jδ τ

and on the interpolation operator:

: , () (), , vertex of .φ φ∏ → ∏ = ∀Vh h h i i hV x x i τ

Comparing with the previous abstract theory, we get:
5

5
: , [] ,
: , [()].

N

N φ φ φ
→ = ∑

→ =
6
6

R
RV

h h h h h i h i i

h h i

R V R N

T T x

f f f

The discretisation is set into the discrete space, but also it
differs from the continuous statement in two features, a
discrete flux Fh instead of :F

: ′→F Vh V

and an extra term of artificial diffusion :hD

, , ((),) 0,
with
((),) ().

() .

φ φ

φ φ

φ

′×

′×

∈ ∀ ∈ =

= Γ

+

∫
∫

F �
Ω

Ω

Ψ

Ψ

Ω

h h h h h h h V V

h h h V V h h h

h k h

W V V W

W W n d

D W d

 (19)

The discrete fluxes are chosen as follows:

() () ().
() () ().

= ∏ = ∏ ∏
= ∏ = ∏ ∏

F F F
F F F
h h h h h

h h h h h

W W W
W W W

 (20)

After some calculations and simplifications, the main error
term appears as follows:

(,) (() ())

ˆ ˆ(() ()).

φ φ

φ
Γ

= − ∇ −∏

+ −∏

∫
∫

F F

F F

Ω

∂Ψ
Ω

∂

Ω

h
h h h h

h
out out

h h

W W W d
W

W W n d

δ
 (21)

with ˆ(). (). (). .= −F F FW n W n W n A Gauss quadrature is
applied for the evaluation of the right hand side. We have
applied this to a steady subsonic flow and give some
preliminary results. Figure 2 compares the entropy
generation in the flow computed directly and the same flow
corrected by formula (21). Entropy level is one order of
magnitude smaller.

Figure 2 Entropy spurious generation for, (a) direct computation
of a steady flow (b) for a corrected one (see online
version for colours)

(a)

(b)

4 Uncertainty propagation

In optimisation problems, uncertainty propagation analysis
may concern the study of the ‘cost functional’

: () : (,)= ∈6 Rj j J Wγ γ γ (22)

where all varying parameters are represented by the
‘uncertain (i.e., not-deterministic) control variables;

,∈Rnγ and where the state variables ()= ∈RNW W γ are
solution of the (non-linear) ‘state equation’

(,) 0.=Ψ Wγ (23)

 AD-based perturbation methods for uncertainties and errors 69

It is important to note that the state equation (23) contains
the governing PDE of the mathematical model of the
physical system of interest (for example, the stationary part
of the Euler or Navier-Stokes equations) and it can be
viewed as an ‘equality constraint’ for the functional (22).
The basic probabilistic approaches for analysing the
propagation of uncertainties are Monte-Carlo methods. A
full non-linear Monte-Carlo method gives us complete and
exact information about uncertainty propagation in the form
of its PDF, but with a prohibitively expensive cost in terms
of CPU time. In NODESIM-CFD, several other
‘probabilistic’ approaches for analysing the propagation of
uncertainties are considered such as Latine Hypercubes and
Polynomial Chaos. We contribute on perturbative methods
based on the Taylor expansion (Martinelli, 2007).

4.1 Perturbation methods

To reduce the computational cost, we may think to use only
some (derivate) quantities characterising the distribution of
the input variables instead of an entire sample drawn from a
population with a given PDF. Therefore, the idea behind the
method of moments is based on the Taylor series expansion
of the original non-linear functional (22) around the ‘mean
value’ of the input control ([]),=Eγμ γ and then
computing some statistical moments of the output (usually
mean and variance). In this way, we are assuming that the
input control γ can be decomposed as sum of a fully
deterministic quantity γμ with a stochastic perturbation

uδγ with the property [] 0.=uE δγ With these definitions,
the Taylor series expansion of the functional ()j γ around
the mean value γμ is:

3

() () ()
1 ()
2

O∗

= + = +

+ +

u u

u u u

j j j G

H

γ γγ μ δγ μ δγ

δγ δγ δγ
 (24)

where ∂
=
∂ u

j
G

γμ
γ

 is the gradient of the functional respect

to the uncertain variables and
2

2
∂

=
∂ u

j
H

γμ
γ

 is the Hessian

matrix, both evaluated at the mean of the input variables
.γμ
By considering various orders of the Taylor expansion

(24) and taking the first and the second statistical moment,
we can approximate the mean jμ and the variance 2σ j of
the functional ()j γ in terms of its derivatives evaluated at

γμ and in terms of statistical moments of the control .γ
First order moment methods:

()
()2

2 2 3
() []

() []
O

Oσ

⎧ = +⎪
⎨ ⎡ ⎤= +⎪ ⎣ ⎦⎩

j u

j u u

j E

E G E
γμ μ δγ

δγ δγ
 (25)

Second order moment methods:

()

()

3

2

2

2 2

4

1()
2

[]

() ()()
1 1 ()
4 4

O

O

σ

∗

∗

∗ ∗

⎡ ⎤= + ⎣ ⎦

+

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦

+

γμ μ δγ δγ

δγ

δγ δγ δγ δγ

δγ δγ δγ δγ

δγ

j u u

u

j

u u u u

u u u u

u

j E H

E

E G E G H

E H E H

With this method, it is clear that we are using only
some partial information about the input uncertainties, in
fact, we are using only some statistical moments of the
control variable instead of full information available
with its PDF, and we will not have anymore the PDF
of the propagated uncertainty, but only its approximate
mean and variance. Another important point is that the
method of moments is applicable only for small
uncertainties, due to the local nature of Taylor expansion
approximation.

Two things should be noted here: the first one is that for
the method of moments ‘we need the derivatives’ of the
functional respect to the control variables affected by
uncertainties: in particular, we need the gradient for the first
order method, and gradient and Hessian for the second order
method. Due to the fact that () (,),=j j Wγ γ where

()=W W γ is the solution of the state equation (23), we
have for the derivative:

= +
u u u

j J J W
W

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂γ γ γ

Since we know the solution ()W γ by its numerical values
as result of a program (implementing an appropriate
method, e.g., fixed point method), it is interesting to use of
AD tools (like TAPENADE) in order to obtain the needed
derivatives (Martinelli et al., 2007). The same remarks
apply to the computation of the Hessian matrix.
In particular, we note that the derivatives are computed
at the mean value of the control ,γμ so they are fully
deterministic and can be picked out from the expectations
in the equations (25) or (26). In other words, we can
write

2 () ()

, ,
() ()

, ,
() () ()

, ,
2 () () (

()

()()

()

∗

∗

∗

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤= =⎣ ⎦

∑ ∑
∑ ∑

∑

i k
u i k u u i k ik

i k i k
i k

u u ik u u i k ik
i k i k

i k l
u u u l ik u u u

i k l
i k

u u ik lm u u u

E G GG E GG C

E H H E GG C

E G H GH E

E H H H E

δγ δγ δγ

δγ δγ δγ δγ

δγ δγ δγ δγ δγ δγ

δγ δγ δγ δγ δγ) ()

, , ,

⎡ ⎤⎣ ⎦∑ l m
u

i k l m

δγ

(26)

70 M. Martinelli et al.

where ()
∂

=
∂

i i
u

j
G

γμ
γ

 are the elements of the gradient,

2

() ()
∂

=
∂ ∂

ik i k
u u

j
H

γμ
γ γ

 are the elements of the Hessian matrix

and () () () ()[] cov()= =i k i k
ik u u u uC E δγ δγ γ γ are the elements of

the ‘covariance matrix’. Every expectation term []…E in
the equation (26) is defined by the statistical model of the
uncertainties and could be computed in a pre-processing
phase.

For example, for the important case where the
uncertainties are random and normally distributed, we have:

() () ()

() () () ()

0⎡ ⎤ =⎣ ⎦
⎡ ⎤ = + +⎣ ⎦

i k l
u u u
i k l m
u u u u ik lm il km im kl

E

E C C C C C C

δγ δγ δγ

δγ δγ δγ δγ

and if these (normal) uncertainties are independent, then
hold the relation 2σ=ik i ijC δ where 2 () ()σ ⎡ ⎤= ⎣ ⎦

i i
i u uE δγ δγ

and the equations (26) become

2 2 2

2

2 2 2 2

,

()

()() 0

() (2)

σ

σ

σ σ

∗

∗

∗

⎡ ⎤= =⎣ ⎦

⎡ ⎤= =⎣ ⎦

⎡ ⎤= =⎣ ⎦
⎡ ⎤= = +⎣ ⎦

∑
∑

∑

u i i
i

u u ii i
i

u u u

u u ii kk ik i k
i k

E G G

E H H

E G H

E H H H H

δγ

δγ δγ

δγ δγ δγ

δγ δγ

 (27)

Since we have the term 2() 4,∗⎡ ⎤= ⎣ ⎦u uE Hδγ δγ the error is

still of the order of 4 .⎡ ⎤= ⎣ ⎦uE δγ Computing the other terms
of same order require the knowledge of order of derivatives
higher than the second. From the previous discussion, it is
clear that in order to apply the method of moments we need
to solve only one (expensive) non-linear system with
derivatives (at the mean γμ) and then apply the
(inexpensive) equations (25) or (26) where, for the fully
non-linear Monte-Carlo approach of the previous section,
we need to solve 1�N non-linear systems (23).

4.2 First and second-order derivatives of a
functional

We are interested by obtaining the first and second
derivatives of a functional j depending of ,∈RNγ and

expressed in terms of a state ∈RNW as follows:

{ () (, ()) 0
() (, ())

= =
=

W
j J W

Ψψ γ γ γ
γ γ γ (28)

Our problem can be viewed from two different points of
view: the first one is consider the solution algorithm for
state equation as part of j itself, i.e., considering j as a
function of the control variables γ only. The second one is
consider the system made by two different routines: one of

them is the routine that solves the non-linear system
(, ()) 0=WΨ γ γ (and contains the evaluation the residual
(,)),WΨ γ and the other is the routine (,)J Wγ that

computes the value of the functional from the state variables
W and (eventually) the control variables .γ

The first approach leads to a straightforward algorithm
for first order derivatives, in fact, we just need to
differentiate the entire routine j with tangent or reverse
mode. In this context, the routine j contains the iterative
solver method for the state equation, and the differentiated
routines will also contain this loop in differentiated form. If
we need itern loop iterations in order to obtain the
non-linear solution, and we assume for each iteration a
unitary cost, we can analyse the cost for the gradient of the
functional.

Using tangent mode, the cost for the entire gradient will
be iter()Tn n α where n is the number of components of the
gradient and 1 4< <Tα is the overhead associated with the
differentiated code respect to the original one. For this
strategy, the memory requirements will be of the same order
of the undifferentiated code.

With reverse mode (Hascoët et al., 2005) we are able to
obtain the entire gradient with a single evaluation of the
differentiated routine, but the total cost (in terms of CPU
time and memory) will depends on the strategy used by the
AD tool to solve the problem of inverse order differentiation
for the original routine. For the case of a store-all (SA)
strategy, the CPU cost will be iter()Rn α with 1 ,< <Rα i.e.,

Rα times the undifferentiated code, but the required
memory will be n times greater. For a recompute-all (RA)
strategy, the CPU cost will be 2

iter(),Rn α i.e., iter()Rn α the
non-linear solution, but the memory will be the same of the
undifferentiated routine. For real large programs, neither SA
nor RA strategy can work, so we need a special
storage/recomputation trade-off in order to be efficient
using ‘checkpoints’. Obviously, with checkpointing the
CPU cost will be greater than the cost of SA strategy and
can be shown that the cost for the differentiated code will be
of the order of iter

s n (where s is the number of snapshots
available).

It is clear that for gradient computation with 1,�n the
reverse mode is faster than tangent mode, but for a program
containing an iterative algorithm, the reverse mode is not
always applicable. The problem relies on the fact that the
reverse mode computation is performed in the opposite way
of the original code (‘backward sweep’) after a ‘forward
sweep’ needed to store the variable needed in the successive
phases.

For the previous arguments, we prefer differentiate not
the entire program (solution of the state equation +
functional evaluation), but the two main component in a
separate way, using the fact that at the solution, the
residuals will be zero (i.e., we do not differentiate the
routine containing the main loop, but only the quantities
involved after the last iteration). For this second approach,

 AD-based perturbation methods for uncertainties and errors 71

we have to analyse the influence of state equation and the
functional evaluation in more details. This is the purpose of
the next sections.

4.2.1 First derivative

Using the chain rule, the gradient of the functional
() (, ())=j J Wγ γ γ is given by:

= +
dj J J dW
d W d

∂ ∂
∂ ∂γ γ γ

where the derivatives of the state variables ()W c are
obtained solving the linear system

0.= + =
d dW
d W d
ψ
γ γ γ

∂Ψ ∂Ψ
∂ ∂

Therefore, two strategies can be applied.

Direct differentiation

It consists in computing the Gateaux-derivatives
with respect to each component direction
(((0, 0,1,0, ,0) ,= … … T
ie where 1 is at the i -esim

component):

= = +i
i i i

dj dj J J dW
e

d d W d
∂ ∂
∂ ∂γ γ γ γ

 (29)

with:

= i
i

dW
e

W d
∂Ψ ∂Ψ
∂ ∂γ γ

 (30)

This has to be applied to each component of ,γ i.e., n
times and the cost is n linearised N-dimensional systems to
solve. If we choose to solve the single system (30) with an
iterative matrix-free method, and the solution is obtained
after itern step, the total cost will be of the order of

iter, ,αT Tn i.e., iter,Tn evaluation of the matrix-by-vector

operation ,⎛ ⎞
⎜ ⎟
⎝ ⎠

x
W
∂Ψ
∂

 where each evaluation costs αT times

the evaluation of the state residual (,)WΨ γ (and the cost of
the state residual is taken as reference equal to 1).
Therefore, the cost of the full gradient will be iter, .αT Tn n

Inverse differentiation (reverse mode)

The complete gradient is given by the equation
* * *

0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − Π⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

dj j
d

∂ ∂Ψ
∂ ∂γ γ γ

 (31)

where 0Π is the solution of the linear system

* *
⎛ ⎞ ⎛ ⎞Π =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

j
W W
∂Ψ ∂
∂ ∂

 (32)

This computation needs only one extra linearised
N-dimensional system, the adjoint system (some methods
for calculation of the adjoint solutions are described in). If
we choose to solve the adjoint system (32) with an iterative
matrix-free method, we can apply the same estimate done as
in the case of the tangent mode differentiation, but this time
the overhead associated with the evaluation of the matrix-

by-vector operation
*

⎛ ⎞
⎜ ⎟
⎝ ⎠

x
W
∂Ψ
∂

 respect to the state residual

evaluation will be αR and usually ,α α>R T and the
number of iteration iter,Rn for the convergence of the
solution could be different from iter,Tn of the previous case
(but the asymptotical rate of convergence will be the same

of the original linear system ,⎛ ⎞ =⎜ ⎟
⎝ ⎠

x b
W
∂Ψ
∂

 see Pierce and

Giles (1998) for more details. Therefore, the cost for the
gradient will be iter, ,αR Rn and the reverse mode
differentiation for the gradient computation is cheaper than
the tangent mode if 1.�n

4.2.2 Second derivative

For second derivatives we have different possibilities.

Direct-direct option

This method was initially investigated along with various
other algorithms, but the publication does not go into the
implementation details for a generic fluid dynamic code.
Here we present the mathematical background behind the
idea and the efficient AD implementation of Ghate and
Giles but with a different analysis of the computational cost.

Starting from the derivative (29), we perform another
differentiation respect to the variable kγ obtaining

2 2
2
,= +i k

i k i k

d j j d W
D J

d d W d d
∂
∂γ γ γ γ

 (33)

where

2
,

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i k i k i
k

k
i i k

J J dW
D J e e e

W d
J dW J dW dW
e

W d W W d d

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

γ γ γ γ

γ γ γ γ

Differentiating the equation (30) we get
2

2
, 0+ =i k

i k

d W
D

W d d
∂Ψ

Ψ
∂ γ γ

 (34)

where

2
,

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i k i k i
k

k
i i k

dW
D e e e

W d
dW dW dW

e
W d W W d d

∂ ∂Ψ ∂ ∂Ψ
Ψ

∂ ∂ ∂ ∂
∂ ∂Ψ ∂ ∂Ψ

∂ ∂ ∂ ∂

γ γ γ γ

γ γ γ γ

72 M. Martinelli et al.

Substituting the second derivatives of the state respect to the

control variables
2

i k

d W
d dγ γ

 in equation (33) from equation

(34) we get
12

2 2
, ,

2 * 2
, 0 ,

−
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

= −∏

i k i k
i k

i k i k

d j J
D J D

d d W W

D J D

∂ ∂Ψ
Ψ

∂ ∂
Ψ

γ γ (35)

where 0∏ is the solution of the adjoint system (32)
evaluated at the point (, ())Wγ γ solution of the state

equation (,) 0.=WΨ γ The n derivatives
i

dW
dγ

 should be

computed (and stored) using tangent mode differentiation of
the non-linear solver algorithm, and each derivatives costs

iter .αTn If we need the full Hessian matrix, we have to
evaluate the quantity (35) (1) 2+n n times, i.e., we have to

evaluate the terms 2
,i kD Ψ and 2

,i kD J for 1, ,= …i n and
, ,= …j i n due to the symmetry of the Hessian, and each

evaluation of 2
,(i kD Ψ costs 2αT (the evaluation of 2

,)i kD J is

negligible respect to 2
,()).i kD Ψ Therefore, the full Hessian

costs iter,[(1) 2].α α+ +T T Tn n n With similar arguments, if
we want only the diagonal part of the Hessian, the cost is

iter,[].α α+T T Tn n

Inverse-direct

This consists in the direct derivation in any direction
, 1,=ie i n of the (non-scalar) function:

* *

*

(, ()) (, ())

(, ())

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− ∏⎜ ⎟
⎝ ⎠

j J
W W

W

∂ ∂
∂ ∂

∂Ψ
∂

γ γ γ γ
γ γ

γ γ
γ

where ()W γ and (, ())∏ Wγ γ are solutions of the above
two state systems. With some algebra we obtain

* *2

2

* *

0

* *

0

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ∏⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− ∏ −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

i i
i

i i

i i

j j J
e e

j
e

W

W

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂Ψ
∂ ∂ ∂ ∂

∂ ∂Ψ ∂Ψ
∂ ∂ ∂

γ
γ γ γ γ

θ
γ γ γ

θ λ
γ γ

The derivation needs the solution of the adjoint systems
* *

0
⎛ ⎞ ⎛ ⎞∏ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

j
W W
∂Ψ ∂
∂ ∂

 (36)

and 2n perturbed N-dimensional linear systems (for the full
Hessian):

* *

* *

0

*

0

⎧ = −⎪
⎪
⎪⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎪
⎨ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪+ − ∏⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎪ ⎡ ⎤⎪ ⎛ ⎞− ∏⎢ ⎥⎜ ⎟⎪ ⎝ ⎠⎣ ⎦⎩

∂Ψ ∂Ψ
∂ ∂

∂Ψ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂Ψ
∂ ∂ ∂ ∂

∂ ∂Ψ
∂ ∂

i i

i i

i i

i

e
W

J
e

W W

J
e

W W W

W W

θ
γ

λ
γ

θ
γ

θ

where all the functions in the equations (36)–(37) are
evaluated at the final state (in order to verify

(, ()) 0).=WΨ γ γ

Inverse-inverse

If we are interested in a (scalar!) functional depending on
the gradient, then it can be interesting to apply a second
inverse differentiation. We do not focus on this direction at
the moment.

5 Numerical experiments

The interest of this approach is briefly illustrated by the
building of a response surface for the wing shape of a
business aircraft (courtesy of Piaggio Aero Ind.), for a
transonic regime (see the shape and the mesh in Figure 3).
The nominal operational conditions are defined by the
free-stream Mach number 0.83∞ =M and the incidence

2 .α = ° We suppose that only these two quantities are
subject to random fluctuations. For simplicity, we assume
that their PDF are Gaussian with given mean and variance.
The mean values correspond to the nominal values. The
section of the initial wing shape corresponds to the NACA
0012 airfoil.

Figure 3 Wing shape and mesh in the symmetry

For the present work, due to the fact that we consider only
two uncertain variables, we used a ToT approach for the
Hessian evaluation. The accuracy of the second-order
response surface obtained with the differentiated software is
not different from the one obtained with other works, such

 AD-based perturbation methods for uncertainties and errors 73

as those of Ghate and Giles (2007) (who, by the way, also
used TAPENADE, but on another CFD software). We
illustrate this accuracy in Figure 4. The direct evaluation
required 21 × 21 non-linear simulations. The second-order
approximation required only one non-linear state equation

0=Ψ plus four linear systems using ToT. Relative error is
less than 2% while using only first derivatives produce
errors of 16%. Let us mention that this method compares
also well with Kriging methods as was demonstrated in the
comparison paper of Martinelli and Duvigneau (2008).

Figure 4 Drag coefficient vs. Mach number and angle of attack
(first-order spatial accuracy) for the transonic wing,
(a) non-linear simulations (b) percentage relative
difference between the non-linear simulations and the
second order Taylor approximation (see online version
for colours)

(a)

(b)

Note: For the top plot we have solved 21 × 21 non-linear
systems 0.=Ψ

6 Concluding remarks

AD methods and tools take place in a process which tends
to make numerical simulation more secure by contributing
to build the derived software necessary for addressing
uncertainty and error. Thanks to AD, the derivation of this
software is performed with more and more safety. This
paper has displayed two main examples of this process.
First, uncertain data are modelled by random variables and
their impact on the simulation process is evaluated by a
method of moments. The complexity of the proposed
method is analysed for large number of uncertain variables.
The two methods studied are already competitive for a small
number of variables and even more for a large one.

Acknowledgments

These studies are supported in part by NODESIM-CFD, an
FP-6 European project.

References
Ghate, D. and Giles, M.B. (2007) ‘Efficient Hessian calculation

using automatic differentiation’, Proc. of 25th Applied
Aerodynamics Conference, AIAA Miami, Florida,
Vol. 2007–4059.

Ghate, D. and Giles, M.B. (2006) ‘Inexpensive Monte Carlo
uncertainty analysis’, Recent Trends in Aerospace Design
and Optimization Book, pp.203–210, available at
http://www.comlab.ox.ac.uk/mike.giles/psfiles/sarod05.pdf.

Hascoët, L. and Dauvergne, B. (2008) ‘Adjoints of large
simulation codes through automatic differentiation’,
European Journal of Computational Mechanics, Vol. 17,
pp.63–86.

Hascoët, L. and Pascual, V. (2004) ‘TAPENADE 2.1 user’s
guide’, INRIA Technical Report, available at
http://www.inria.fr/rrrt/rt-0300.html.

Hascoët, L., Naumann, U. and Pascual, V. (2005) ‘‘To be
recorded’ analysis in reverse-mode automatic differentiation’,
Future Generation Comp. Syst., Vol. 21, No. 8,
pp.1401–1417.

Hascoët, L., Utke, J. and Naumann, U. (2008) ‘Cheaper adjoints
by reversing address computations’, Scientific Programming,
Vol. 16, No. 1.

Loseille, A. (2008) ‘Adaptation de maillage anisotrope 3D multi-
echelles et ciblée à une fonctionnelle pour la Mécanique des
Fluides, application à la prédiction du bang sonique’, in
French, PhD dissertation at the University P.M. Curie,
available at http://tel.archives-ouvertes.fr/tel-00361961/fr/.

Martinelli, M. (2007),’Sensitivity evaluation in aerodynamics
optimal design’, PhD dissertation, Scuola Normale di Pisa,
Italy.

Martinelli, M. and Duvigneau, R. (2008) ‘Comparison of second-
order derivatives and metamodel-based Monte Carlo
approaches to estimate statistics for robust design of a
transonic wing’, Proceedings of the 10th AIAA
Non-Deterministic Approaches Conference, AIAA 2008-
2071, Schaumburg, IL, USA.

Martinelli, M. and Hascoët, L. (2008) ‘Tangent-on-tangent vs.
tangent-on-reverse for second differentiation of constrained
functionals’, Proceedings of the AD2008 Conference, Bonn,
Germany, to appear in Lecture Notes in Computational
Science and Engineering, Springer.

Martinelli, M., Dervieux, A. and Hascoët, L. (2007) ‘Strategies for
computing second-order derivatives in CFD design
problems’, Proc. of West-East High Speed Flow Field
Conference, 19–22 November, Moscou, Russia.

Naumann, U., Hascoët, L., Hill, C., Hovland, P.D., Riehme, J. and
Utke, J. (2008) A Framework for Proving Correctness of
Adjoint Message-Passing Programs, PVM/MPI Dublin,
Ireland, pp.316–321.

NODESIM-CFD (2008) Non-deterministic Simulation for CFD-
based Design Technologies, FP6 Program, available at
http://www.nodesim.eu/conference.html.

74 M. Martinelli et al.

Pascual, V. and Hascoët, L. (2005) ‘Extension of TAPENADE
towards Fortran 95’, Automatic Differentiation: Applications,
Theory, and Tools, Lecture Notes in Computational Science
and Engineering, Selected papers from AD2004, Chicago,
Springer.

Pascual, V. and Hascoët, L. (2008) ‘TAPENADE for C’, Advances
in Automatic Differentiation, Springer.

Pierce, N.A. and Giles, M.B. (1998) ‘Adjoint recovery of
superconvergent functionals from approximate solutions of
partial differential equations’, Oxford University Computing
Laboratory Report, AMS (MOS): 65G99,76N15.

Tber, M-H., Hascoët, L., Vidard, A. and Dauvergne, B. (2007)
‘Building the tangent and adjoint codes of the ocean general
circulation model OPA with the automatic differentiation tool
TAPENADE’, Research Report, INRIA, No. 6372, available
at http://hal.inria.fr/inria- 00192415, also in The Computing
Research Repository (CoRR) abs/0711.4444.

