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Abstract

We propose a non-iterative robust numerical method for the non-intrusive uncertainty quantification of
multivariate stochastic problems with reasonably compressible polynomial representations. The approxima-
tion is robust to data outliers or noisy evaluations which do not fall under the regularity assumption of a
stochastic truncation error but pertains to a more complete error model, capable of handling interpretations
of physical/computational model (or measurement) errors. The method relies on the cross-validation of a
pseudospectral projection of the response on generalized Polynomial Chaos approximation bases; this allows
an initial model selection and assessment yielding a preconditioned response. We then apply a `1−penalized
regression to the preconditioned response variable. Nonlinear test cases have shown this approximation to be
more effective in reducing the effect of scattered data outliers than standard compressed sensing techniques
and of comparable efficiency to iterated robust regression techniques.

1 Introduction

The aim of uncertainty quantification (UQ) comes down to numerically evaluating the stochastic response
of some physical quantity of interest (QoI) y(ξ), dependent upon various uncertain model parameters
ξ := (ξ(1), . . . , ξ(d)). Nowadays the majority of UQ developments makes use of non-intrusive uncertainty
propagation techniques: i.e. the sampling of N model solutions is done using any legacy solver for the
deterministic problem as a black box. When the number of uncertain input sources of a complex model
is too large (d � 1), the efficient propagation of these uncertainties through the system remains an open
problem due to the so-called curse of dimensionality. In any case, as the computational cost of a single
simulation model is often high, e.g. for computational fluid dynamics simulations (CFD), a compulsory ap-
proach for UQ is to build a surrogate model ỹ that approximates the exact response of the QoI as accurately
as possible based on the smallest number of observations or samples [3]. Once the samples are acquired,
the construction and interrogation of the surrogate model itself should be computationally efficient so that
the predictive capability of the metamodel is fully harnessed, for instance in terms of access to statistics of
interest.

Different methods are available to construct these surrogate models, examples are Gaussian processes
(Kriging) [49], Support Vector Machines [40], stochastic interpolation [43, 50] or stochastic spectral methods
such as polynomial-based representations. In this paper we will focus on the use of the latter technique:
generalized Polynomial Chaos (gPC) expansions [48, 6, 19, 51] that are well-suited for functions that belong
to the `2 space, and may be seen as discrete least-squares projection on a polynomial space. The gPC
represents a function as a weighted linear combination of P multivariate (polynomial) basis functions that
are mutually orthogonal with respect to the probability measure of the uncertain parameters.

The coefficients u in the expansion may be computed in different ways: e.g. – using pseudospectral
projection together with high-order (sparse) quadratures that are efficient for functions of moderately high
dimensionality [37] or – by least-squares regression type of approach based on (random) data sampling.
Written in a generic form, we have:

y ≈ ỹ = ŷ(ξ) + eT ,

where, for a given model, ỹ represents some numerical simulations or “observations” of the system, ŷ is what
we call the surrogate model and eT is the truncation error that obviously depends on ξ. Because we deal
with computer experiments, the observations are in practice corrupted by model errors. Let us consider a
family of models characterized by unobserved random variables χ (e.g. related to mesh quality criteria).
Now, y may be modeled as a functional of (ξ,χ) via a model error eM , and we have:

y(ξ,χ) = ỹ(ξ) + eM , where ỹ(ξ) = ŷ(ξ) + eT (ξ).
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A frequent assumption found in the literature is the one of a stochastic noise model, where eM ≡ eM (χ)
are centered i.i.d. (normal) random variables, with uniformly bounded variance. In real life, modeling
errors are often biased, not uncorrelated and uniform (heteroscedasticity) and not normally distributed.
Therefore, they bear a deterministic noise component that depends on ξ [10], such that eM ≡ eM (ξ,χ). In
practice, it is very hard to quantify these modeling errors as we do not directly observe χ. Moreover, the
system may not be in the asymptotic regime for which we may have convergence information/estimates for
the deterministic model error. The interplay between (the different scales related to) χ and ξ is also very
difficult to apprehend. Ideally, one would want to marginalize over the model error in order to assess the
conditional random variable:

y(ξ) := E [y(ξ,χ) | ξ] = ŷ(ξ) + e(ξ), where e(ξ) = eT (ξ) + E [eM (ξ,χ) | ξ] ,

but this approach is often out of reach [22]. Another strategy is to perform the regression for a given model,
which implicitly coincides with a given value of χ. When the dependence between the solution and the
random parameters ξ is smooth, model errors are generally relatively independent from the parameters ξ
and their effects often result in some form of biased predictions (e.g. under-prediction in case of model
numerical diffusion). When the dependence is not smooth due to some brutal change in the solution phys-
ical regime, bifurcations, instabilities, transients, etc.1, model or computational errors induce some local
large-amplitude oscillations that may be seen as data outliers and are very detrimental to the stability of
the stochastic quantification of the response. In this case, these large errors are unpredictably scattered and
increasing the number N of samples of ξ does not help as the prediction essentially fits the model error. This
is the well-known problem of overfitting when a model fits training data very well, but will do a poor job of
predicting results for new data. A first step toward robust UQ in this framework would be to automatically
detect the data outliers and reduce their influence in order to regularize the response on a given model basis.
A simple way of thinking about the eM error is to relate it, for instance, to the discretization error of the
computational model. Indeed, it is not always possible due to prohibitive computational cost to lower the
discretization error to levels that do not play a significant role in UQ. The case of CFD simulations of a
compressible flow past an airfoil at random angle of attack presented later in the paper is a nice illustration
of this setup and was the starting point of this work. For a given level of discretization (in practice a given
mesh) and Mach number, a small variation in the angle of attack may induce a change in the flow from sub-
sonic to transsonic regime, materialized by the emergence of a flow discontinuity (shock). This shock is then
poorly captured if the mesh is not properly adapted in space, inducing large model errors and fluctuations
in addition to the truncation error. In this case, the discretization error will strongly affect only few or a
short range of the angle of attack realization values.
One of our contributions in this work is to propose a numerical approach that automatically detects data
outliers and weighs them with low level of confidence. In this work, the detection and weighting is in part
based on exhaustive surrogate model cross-validation namely the leave-one-out (LOO) technique. The LOO
error estimation has been used before in the context of basis selection of gPC expansions [4, 25], and more
generally in statistical learning theory for model selection [23]. The negative effects of the outliers on the
construction of the surrogate model will then be minimized in order to avoid overfitting.

Another key aspect of this work is to take advantage of the sparsity of the solution structure. Indeed,
the solution of high-dimensional problems is sometimes sparse (or near-sparse) at the stochastic level. This
means that it may be accurately represented with only few terms when linearly expanded into a stochastic
approximation space, such as the one encompassed by a gPC basis. In this case, the number s of dominant
basis functions is small relative to the cardinality P of the full basis and the problem is said to be s−sparse.
Promising approaches for solving this kind of problem involve compressed sensing (CS) techniques, also
known under the names of Compressive Sensing, `1−minimization, convex relaxation and `1-regularized
least-squares minimization. Relatively recent results in CS have made it clear that sparse functions can be
accurately recovered from much fewer observations than necessary for classical solution methods [7, 9, 14].
Interestingly, this ability is preserved in the case of sparse solutions tainted by noise, as long as it is suffi-
ciently regular and bears a low signal-to-noise ratio [8, 15, 18, 45].
Several research groups have recently been using CS in a gPC framework [16, 28, 52, 53] and have considered
this noise as the truncation error of the gPC approximation. The efficiency of this approximation depends
on the type and cardinality of the gPC approximation basis selected [4, 25] and the choice of the collocation
samples to be used. The most readily available literature is about sparse Legendre and Hermite polynomi-
als with random sampling. For both cases, different sampling strategies are possible: – standard sampling
according to the underlying probability measure, and – asymptotic sampling according to the Chebyshev
measure for Legendre polynomials, and to Hermite functions for Hermite polynomials [22, 42]. For s-sparse
Legendre polynomial with maximal degree p, it was shown that the asymptotic relation between the num-
ber N of samples drawn according to Chebyshev distribution, s and p, guaranteeing recovery, is given by
N � s log4(p) [36]. Chebyshev sampling has been shown to be superior to uniform sampling for elliptic
stochastic partial differential equations of moderately high dimension (d ∼ 10) [53], but the results can not
be generalized. In fact, Yan et al. [52] show that for high-dimensional problems, sampling according to the
Chebyshev measure can become less efficient. Interestingly, in case of standard sampling, the Chebyshev

1Or due to some soft system faults (e.g. bit-flips), nowadays more frequent in petascale high performance computing.
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probability measure may be imposed afterwards by preconditioning the `1−minimization problem. This
approach inspired us to use data-driven preconditioning to improve approximation robustness. Finally, a
recently developed sampling strategy is thecoherence-optimal sampling [22], which guarantees recoverability
with a number of samples that is bound linearly by the number of basis functions up to a logarithmic factor.

Very recent works have investigated the efficiency of these methods for randomized quadratures: i.e. ran-
domly subsampling among structured Gauss quadrature nodes [41, 54]. Using the bounds from [36], Tang
& Iaccarino [41] show that for an efficient recovery of the gPC Legendre expansions, the number of observa-
tions scales with the sparsity s and only logarithmically with P . When the number of random dimensions is
small to moderate, and more specifically when p > d, it is conceivable to directly rely on complete structured
grids inherited from full or partial (also known as sparse) tensorization of quadrature rules, which is what we
propose in our contribution. Moreover, the use of these regular grids minimizes leverage effects in regressions
due to unusual design points.

The aim of this work is to fully harness the capability of CS techniques for UQ, even in the presence
of scattered data outliers attributable to computational model errors that do not fall under the common
Gaussianity and low signal-to-noise ratio assumptions. We wish to do so by regularizing the system response
for a given computational model. We propose preconditioned compressed sensing in order to build robust
polynomial surrogate of the stochastic response from sampling on structured grids. More specifically, after
selecting the best model by cross-validation using numerical quadrature, the weight for each observation will
be based on the inverse of its contribution to the cross-validation error of this model. Using confidence in
samples in the form of a weighted least squares solution has been done before, see for example [55]. Here
however, no a priori knowledge about the scale of the noise is needed, nor does one need to know beforehand
which observations have been affected by the noise. This weighting of the observations can be used in
combination with any available method for constructing the surrogate model. In this study, we have opted
for the use of the Least Absolute Shrinkage and Selection Operator (LASSO) technique [44], which is known
to be very robust, to compute the coefficients of the surrogate model, but as stated before, other methods
can be used as well.

The structure of the paper is as follows: section 2 will briefly recall the key points of the collocated
stochastic spectral approximation framework with and without `1−regularization. This will serve mostly
as an introduction for our notations. In section 3, we will discuss how we derive observation weights using
cross-validation and how it is interwoven with the `1−minimization constraint. The proposed technique
will be demonstrated on several test problems in section 4. This paper ends with some conclusions and
perspectives for future work.

2 Different formulations for the generalized Polynomial Chaos
approximation

As stated in the introduction, gPC expansions will be used to express the surrogate model in a closed form
[19, 27, 51]. Let (Ω,B,P) be the probability space where Ω is the space of random events ω, this domain
has a σ-algebra B and is equipped with a probability measure P. The vector of random parameters can be
written as ξ ≡ ξ(ω) = (ξ(1), . . . , ξ(d)), but we will often omit the dependence on ω to simplify notation. If we
consider a d−variate functional y : Iξ ⊆ Rd → R, then any second-order random variable2 y(ξ) ∈ `2(Ω,B,P),
can be expressed as a gPC expansion [51]:

y(ξ) =

∞∑
j=0

ujψj(ξ), (1)

where ψj(ξ) =
∏d
i=1 ψ

(i)
j (ξ(i)) are the multivariate basis functions that form a complete basis, orthonormal

with respect to the probability measure ρξ of the random input, and ψ
(i)
j are the univariate basis functions

along the ith dimension. We assume that all ξ(i) are independent and thus ρξ =
∏d
i=1 ρ

(i)(ξ(i)). Note
that Ω is a Hilbert space and that we can write its inner product in terms of the expectation operator
< y, g >≡ E[y · g], in this case:

E [y(ξ)g(ξ)] =

∫
Iξ
y(ξ)g(ξ)ρξdξ. (2)

Instead of indexing the expansion of equation (1) on a single integer amounting to the cardinality of the
entire approximation space, one can also make use of a multi-index notation that is equivalent. If Λp is an
index set (to be defined) for multi-index γ = (γ1, . . . , γd) ∈ Nd0, then PΛp ≡ span{ψγ | γ ∈ Λp} and we can

then write ψγ(ξ) =
∏d
i=1 ψ

(i)
γi (ξ(i)) where ψ

(i)
γi is the γthi order basis function in dimension (i). Using the

2Here, we drop the tilde notation introduced in the introduction for simplicity.
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notation introduced above, one can write out the truncated gPC expansion approximating y as follows:

y(ξ) =
∑
γ∈Λp

uγψγ(ξ) + eT (ξ), (3)

where uγ are the coefficients corresponding to the ψγ basis3. We will restrict ourselves to tensor-product
polynomial spaces PΛp , where Λp is an index set of “degree” p, and where P = dim(PΛp) ≡ #Λp, will denote
the cardinality of the selected polynomial space. There are different ways of constructing the approximating
polynomial spaces that will impact their cardinality:

• Tensor Product (TP): PTP
Λp with index set ΛTP

p = {γ ∈ Nd0 : ||γ||∞ ≤ p},

• Total Degree (TD): PTD
Λp with index set ΛTD

p = {γ ∈ Nd0 : ||γ||1 ≤ p}, or

• Hyperbolic Cross (HC): PHC
Λp with index set ΛHC

p = {γ ∈ Nd0 :
∏d
i=1(γi + 1) ≤ p+ 1} [39].

In this paper, without any loss of generality, we will be using approximation spaces of total degree (TD), so
Λp will refer to ΛTD

p in the following.

2.1 Galerkin projection

The first way of determining the coefficients is by use of a Galerkin projection [19]. One can write

E

∑
γ∈Λp

uγψγψβ

 = E [ψβy] , ∀ β ∈ Λp. (4)

Here, with some abuse of notation, we have written the above equation as an equality instead of an approx-
imation, the same will be done in the rest of this paper. Assuming the basis is orthonormal, the coefficients
can be found simply by computing:

uγ = E [ψγy] with γ ∈ Λp, (5)

making use of a quadrature in the case of a pseudospectral implementation [27].

2.2 Least-Squares Minimization

One can also use linear regression to compute the unknown coefficients uγ , e.g. [11, 2]. The Least-Squares
(LS) solution minimizes the residuals, r ≡ y−ψΛp

u in the `2−norm and may be written as an optimization
problem:

u = argmin
u∈RP

‖y −ψΛp
u‖2, (6)

where ψΛp
is the measurement matrix corresponding to the gPC expansion in the index set Λp. The solution

to (6) is obtained by computing the following system written in matrix form:

u =
(
ΨT

ΛpΨΛp

)−1

ΨT
Λpy, (7)

where y is a vector of observations of size N×1, ΨΛp the measurement matrix of size N×P with Ψij = ψj(ξi),
and u the vector of coefficients of size P × 1. There has been a growing interest in understanding the condi-
tions under which problem (6) leads to accurate and stable (multivariate) polynomial chaos approximations
for data randomly and independently sampled according (or not) to their natural orthogonality measures
[12, 30, 21]. More specifically, these studies focussed on the relation between the required number of samples
and the cardinality of the approximation basis for different sampling measures. If one uses enough sam-
pling points to be able to properly recover the orthonormality of the basis functions ψj, then the matrix(
ΨT

ΛpΨΛp

)
is the identity matrix and the link between (7) and (5) becomes clear. The aforementioned

works mainly deal with noiseless evaluations of the target function, and only few papers consider noisy data
samples [29]. In any case, response fittings based on standard or ordinary LS type objective functions are
not robust against outliers, i.e. data samples that strongly deviate from assumptions (e.g. of normality). It
is said that the LS estimator has a breakdown point of 1/N because just one leverage point may cause it to
break down [24]. In this case, the approximation might be biased, with an artificially inflated variance.

3If the functional to approximate is a random process, it may also depend on space and time and in that case the gPC coefficients
will be deterministic space- and time-dependent fields.
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2.2.1 Robust regression

In robust statistics, robust regression is a form of analysis designed to circumvent some limitations of
traditional parametric and non-parametric methods by dampening the influence of outlying cases [24]. Most
common robust regression methods fall into the class of M−estimators4 which attempt to minimize the
sum of a chosen objective (also called loss) function5 of the residuals, i.e.

∑N
j=1 ρ(rj). This minimization

may be equivalently written as a weighted LS problem; the weight of each sample being expressed via the
score function υ(r) ≡ ∂ρ/∂r, i.e. a derivative of the objective function at that point. Because of their
connection to the residual values, the weights are iteratively evaluated until numerical convergence. In this
framework, iteratively re-weighted least square (IRLS) algorithms are implemented for different choices of
objective functions, e.g. leading to Huber , Tukey’s bisquare, or Cauchy estimators, etc... [20, 26]. In
our numerical applications, we will often derive our sample weights from the Cauchy objective function:
ρ(rj) = log (1 + r2

j )/2. The different M−estimators are influenced by the scale of the residuals σr, so
a scale-invariant version based on r̃ = r/σr is preferred. A robust estimation for this scale, σ̂r, is the
normalized median absolute deviation (MADN), which is a robust measure of dispersion:

σr ≈ σ̂r ≡ MADN = MAD/K, with MAD = median |ri −median(r)| and K = Φ−1(3/4), (8)

where Φ is the cumulative distribution function of the standard normal distribution. M−estimators may be
vulnerable to high-level leverage observations due to unusual design points, but this effect is minimized in
our case due to our use of regularly/symmetrically spaced sampling grids.
Even with these approaches, gross outliers can still have a considerable negative effect on the model. More-
over, when the number of observations N is smaller than P , LS produces an underdetermined matrix system.
This is why we also wish to benefit from the robustness of the `1−norm type regression techniques described
in the next section.

2.3 Least squares minimization with `1−regularization

When a function admits a sparse representation, the sparsest representation is obtained by solving this
optimization problem:

u = argmin
u∈RP

‖u‖0 subject to ΨΛpu = y. (9)

The `0−norm of u is just the number of non-zero entries, it is a measure of the sparsity of u. This problem,
however, is a combinatorial optimization problem: one needs to go through all possible combinations of the
columns of ΨΛp to find the sparsest solution which is computationally too expensive. One can approximate
problem (9) instead by an `1−optimization problem called basis pursuit. This problem is convex and can be
solved using linear programming:

u = argmin
u∈RP

‖u‖1 subject to the constraint ‖y −ψΛp
u‖2 = 0, (10)

where ‖u‖1 =
∑P
j=1 |uj |. When the observations are noisy, the constraint is too strict and needs to be

relaxed. If the magnitude of the noise is bounded: ‖e‖2 = ε, then we may write:

u = argmin
u∈RP

‖u‖1 subject to ‖y −ψΛp
u‖2 ≤ δ, (11)

with δ ≥ ε. This problem is sometimes called basis pursuit denoising. It is also a convex minimization
problem. One can rewrite equation (11) as a corresponding optimization problem in Lagrangian form
yielding the so-called LASSO estimate:

u = argmin
u∈RP

1

2
‖y −ψΛp

u‖2
2

+ λ‖u‖1, (12)

where an appropriate λ = λ(y, δ) is required. In practice the right value of λ depends on the realizations of
the underlying random variables more than the random variables themselves. Therefore the delicate selection
of this parameter is often left to cross-validation techniques in order to avoid overfitting. The systems (11)
and (12) are equivalent under certain conditions [15] and depending on the formulation one chooses, one of
several existing solution techniques can be used to compute u [1, 17, 32, 46]. Several approaches have been
recently proposed in order to enhance the efficiency of the representation resulting from solving Equation
(11) or (12): – (a priori or iteratively) re-weighted `1−minimization: u = argminu ‖W u‖1 where W is
diagonal weight matrix, subject to ‖y −ψΛp

u‖
2
≤ δ in order to enhance sparsity [33, 53], – better sampling

strategies minimizing the mutual coherence of ΨΛp [22], – Bayesian compressive sensing [38], or – adaptive
basis selection [25].

4This class of estimators may be regarded as a generalization of “maximum likelihood” estimation, and hence the capital M
designation.

5This objective function must satisfy certain properties (non-negativity, symmetry, monotonicity in |r|, ρ(0) = 0). For ordinary
LS regression in the case of error terms that are i.i.d and normally distributed, then ρ(r) ∼ r2. For robust regressions, the goal is
to minimise some sum of less rapidly increasing function of rj .
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In our work, we will solve formulation (12), the Least Absolute Shrinkage and Selection Operator
(LASSO), to compute the coefficients. The solution will be computed for a range of values of λ, and
using cross-validation, the λ value that is best suited will be retained. The cross-validation used in LASSO
is independent from the cross-validation used to determine the weight of each observation. As an alternative,
one could use the result from [18] where a value for λ is computed that guarantees, under certain conditions,
that the true sparse representation will be recovered.

2.4 Model validation

In the absence of model error eM , truncation and aliasing/sampling error are the two main potential sources
of error in `2−based approximations. One can further distinguish internal from external aliasing errors [13].
The former exists when the number and position of the samples do not guarantee the numerical discrete
orthogonality within the chosen expansion basis. In practice, one can check this by verifying if one of these
equalities are satisfied: ΨT

ΛpΨΛp = I or E[ψiψj ] = δij . For pseudospectral gPC approximations, it is for
instance very easy to choose a (sparse) quadrature rule that insures null internal aliasing errors [37]. Inversely,
based on a given (sparse) quadrature, we know the (sparse) structure and the order pmax of the polynomial
approximation basis we can afford. In this case, the truncation error eT , already defined before, will remain.
One way to minimize its contribution is to perform cross-validation of the stochastic approximation in order
to identify the optimal approximation space frontier (e.g. PΛpopt

⊆ PΛpmax
) for the functional of interest.

This procedure is also appealing in the presence of model error eM because cross-validation can reduce the
sensitivity to data outliers. This is particularly true for functions that have a smooth noiseless component
ỹ. In section 3, we will show how we use a leave-one-out cross-validation approach as a first step for the
preconditioning strategy of the LS minimization with `1−regularization.

Resorting to CS techniques in order to exploit potential sparsity of the QoI is interesting because it
allows the exploration of a larger approximation space for the same sampling budget. It is therefore a
way of reducing the truncation error of the approximation at no cost. In terms of model validation, these
techniques, with their built-in property to perform basis selection, also prevent overfitting to some degree.
In the LASSO formulation, cf. for instance Eq. (12), there is a data fidelity term related to the `2−norm
and a sparsity term in the `1−norm. The LASSO evaluates the coefficients as a trade-off between these two
terms thanks to the adjustment of the λ tolerance parameter. The latter may be determined again from
cross-validation, e.g. [23, 4]. In this paper, we use a K = N−fold cross-validation in the 1D examples and
K = 10 in the higher dimensional test cases ( K = 10 is usually a good choice for model selection [5]). There
is still one more ingredient that may be added, that is the preconditioning of the data fidelity term. This
may be done by assigning some weights or “trust indices” to the samples. Again cross-validation is a handy
numerical tool used to evaluate the weight of each sample and this is the second step of our preconditioning
strategy.

3 Preconditioning and weight selection

In this section we explain in detail how we derive the observation weights. We aim to assign small weights
to observations in which we have a low level of confidence whilst granting a higher weight to observations
which we think are reliable. Weighing the observations is a customary technique used in LS regression when
one wants to filter out noise:

u = argmin
u∈RP

‖Wy −WψΛp
u‖2. (13)

The solution to Eq. (13) can be computed as follows:

u =
(
ΨT

ΛpWΨΛp

)−1

ΨT
ΛpWy, (14)

where W is a diagonal N ×N matrix containing the observation weights. It is also interesting to note that
when the sample points are taken as the abscissa of an appropriate quadrature rule and one chooses the
diagonal of W to be composed of the quadrature weights, then formulations (14) and (5) are equivalent.

Appointing weights to the observations can also be done in a compressed sensing framework, the weighted
equivalent of Eq. (11) is:

u = argmin
u∈RP

‖u‖1 subject to ‖Wy −WψΛp
u‖2 ≤ δ. (15)

Analogously, one can formulate the weighted equivalent to Eq. (12) as:

u = argmin
u∈RP

1

2
‖Wy −WψΛp

u‖2
2

+ λ‖u‖1. (16)

It is the formulation above that we will be using and the weights will be computed by cross-validation as
will be explained in the sections to follow.
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3.1 Cross-validation

Leave-one-out cross-validation is a form of K-fold cross-validation with replacement where K = N . One
constructs the surrogate model, using a method at will, with all but one of the samples. If the ith sample has
been left out in the construction of the surrogate model, we shall call the result ŷ

(−i)
Λp

to indicate that this

is the approximated surrogate model in Λp, computed without taking into account the ith sample. In the
framework of compressed sensing, the use of classical cross-validation has been investigated in [47], where
results were obtained regarding the number of samples that need to be withheld for the cross-validation
process to ensure an accurate representation of the error. The cross-validation method investigated there
however is not the same as LOO, so while these results do not directly apply here, heuristics indicate that
the LOO error yields a satisfactory estimate for the mean squared error [31]. The LOO error is usually
computed as:

εLOO
Λp =

1

N

N∑
j=1

(
y(ξj)− ŷ

(−i)
Λp

(ξj)
)2

. (17)

For LS solution methods based on a random sampling strategy, Eq. (17) can be more efficiently computed
as :

εLOO
Λp =

1

N

N∑
j=1

(
yj −ΨΛp,j u

1− hj

)2

, (18)

where hj is the jth diagonal term in the matrix ΨΛp

(
ΨT

ΛpΨΛp

)−1

ΨT
Λp , and ΨΛp,j is the jth row of ΨΛp .

When normalized by a variance estimation, this error is called the training error. In this work we will derive
this variance from the robust scale estimate introduced in equation (8).

3.2 Quadrature-based leave-one-out error estimation

Because we have intended to work with quadrature rules, we have to develop an accurate and flexible way
of computing LOO errors. That is, every time a point is left out from the grid, quadrature weights of the
remaining points need to be adjusted in order to insure adequate polynomial integration capability. In the
following, we explain in detail how this is done in d = 1 and d = 2, the generalization to higher dimensions
being straightforward.

In d = 1 dimension, let us consider a N−point: ΞN = {ξ1, . . . , ξN} quadrature rule of polynomial
accuracy (N − 1): QN−1[·], and corresponding nodal weights: WN = {w1, . . . , wN}. We now require the

(N−1)− point: Ξ̃
(−i)
N−1 = {ξ1, . . . , ξi−1, ξi+1, . . . , ξN}i∈{1...N} reduced quadratures (which will be missing one

point relative to the original grid) to be of accuracy (N − 2): Q(−i)
N−2[·], i.e. to integrate exactly all univariate

polynomials PΛN−2 . Let us decompose a member y ∈ PΛN−2 in a specific basis: i.e. the Lagrange basis

L constructed from the discrete nodal values Ξ̃
(−N)
N−1 : i.e. we left out the last point, ξN , for simplicity of

notation but the result holds for any other dropped point:

y(ξ) =

N−1∑
j=1

y(ξj)Lj(ξ), (19)

where Lj(ξ) is the Lagrange polynomial associated to ξj . Moving to the expectations, we have:

E [y(ξ)] =

N−1∑
j=1

y(ξj)E [Lj(ξ)] , (20)

We call the new weights W̃(−N)
N−1 = {w̃1, . . . w̃N−1}. These new weights should satisfy exact integration of y. It

then follows quite naturally from Eq. (20) that these weights should be w̃i = E [Li(ξ)] , for i = 1, . . . , N−1,
which may be evaluated in turn from the full original quadrature:

w̃i =

N∑
j=1

wjLi(ξj) = wiLi(ξi) + wNLi(ξN ) (because Li(ξj)|j =
j 6=i

1,...,N−1 = 0)

= wi + wNLi(ξN ), for i = 1, . . . , N − 1. (21)

The updated weights of the truncated quadrature are made of a summation of the weights from the full
quadrature plus the Lagrange polynomial contributions evaluated at the missing node weighted by the
original weight of that node. The new weights add up to unity:

N−1∑
j=1

w̃j =

N−1∑
j=1

(wj + wNLj(ξN )) =

N−1∑
j=1

wj + wN

N−1∑
j=1

Lj(ξN ) = 1− wN + wN × 1 = 1,
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Figure 1: Schematic illustration of quadrature breaking down for leave-one-out error estimation (here for a
Gauss-Legendre grid in d = 2 dimensions). Quadrature weight magnitudes (before adjustment) are proportional
to the circle diameters.

and the truncated quadrature is now valid.
The global LOO error is now evaluated on the full quadrature grid as:

εLOO
Λp =

N∑
j=1

wj r
2
Λp,j , with rΛp,j =

(
y(ξj)− ŷ(−i)

Λp
(ξj)

)
, (22)

where ŷ
(−i)
Λp

are constructed on the truncated quadratures with adjusted weights W̃(−i)
N−1, for i ∈ {1, . . . , N}.

In higher dimensions, it is common practice to rely on the assumption of independence of the random
variables to construct full-grid cubatures6, that are tensor-products of one-dimensional quadrature rules. In
our case, we perform the tensorization between one-dimensional quadratures with different number of points
and integration power.
In d = 2 dimensions for instance, we build the quadratures by tensorizing the first and the second dimension.
Dropping one point along the first direction results in the case of a truncated quadrature rule along the
first dimension and a full rule along the second dimension; we form quadratures of the type:

(
Q(−i1)
N1−2 ⊗

QN2−1

)
i1=1...N1

[·], which are exact for any polynomials7 from PΛN1−2 ⊗ PΛN2−1 , based on a Ξ̃
(−i1)
N1−1 × Ξ̃N2

grid of (N1−1)N2 points and corresponding W̃N1−1×W̃N2 weights. Due to symmetry of the computational

grid, we can also build
(
QN1−1 ⊗Q(−i2)

N2−2

)
[·], for polynomials from PΛN1−1 ⊗ PΛN2−2 , on Ξ̃N1 × Ξ̃

(−i2)
N2−1 grid,

with weights W̃N1 × W̃N2−1.
Figure 1 shows how we proceed to combine error estimation at a particular grid point based on those
quadratures. In this example, we are interested by the first point, i.e. (i1, i2) = (1, 1). The first grid
retained corresponds to the points selected by the dark blue dashed frame, once the left blue column has
been dropped from the full lattice. Based on the remaining points, and once the weights have been adjusted,
the updated quadrature is put to use to build a surrogate model of the QoI over the full integration domain.
This allows a prediction/error estimation at any point from the shaded blue column, such as the lowest left
point in red. Note that we can obtain a model error estimation at that point another way: by dropping the
points in the bottom green row. Only the points in the green solid frame would then be retained to construct
a surrogate model. These two different errors may be combined in several ways. After some testing, we have
opted for the arithmetic mean.
The combined residual error at any particular point rΛp,i is therefore taken as the mean value of the different
errors produced by the ensemble of the d surrogate model designs, each built on N = N1 × . . . (Nk=1...d −
(d− 1)) . . .×Nd points.

For the computational setup of the quadratures, all partially truncated grids and corresponding adjusted
weights combinations can be stored once and for all, for a given grid. Moreover, this step maybe by facilitated
by exploiting the natural symmetry of the original multi-dimensional grid. The evaluation of the LOO
errors for a given QoI on that grid are then very fast. As a side remark, we have found that estimating LOO
errors from truncated Gauss-based quadratures is not significantly more efficient than estimating errors from

6We will keep the quadrature nomenclature, no matter the integral dimensions.
7In practice, we choose N1 = N2 ≡ Ñ and restrain our approximation space to PΛTD

Ñ−2

in order to build the surrogate model.
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quadratures with a lower theoretical integration power such as the Clenshaw-Curtis rule. This is because the
truncation automatically deteriorates the integration capability from PTP

Λ2N−1
to PTP

ΛN−2
. In the application

section, we will be using Clenshaw-Curtis (CC) or Kronrod-Patterson (KP) quadrature rules.

3.3 LOO-weighted preconditioned `1−minimization approximation

In this section, we review how the different numerical ingredients introduced previously are put together
into the general approximation method we propose. There are essentially three main stages, that can be
summarized as follows:

1. Selection of a quadrature rule and level, providing a N−point grid. Numerical simulations are then
performed at these N sampling points and this grid is conserved for the rest of the method.

2. Evaluation of response sample weights that are a measure of confidence in the data obtained and will
serve as a preconditioning in the next step.

3. Construction of the cross-validation preconditioned `1−minimization approximation using a weighted
LASSO procedure in order to promote sparsity in a robust way.

The second stage requires more explanations as it is made from of several courses of action. The main idea
is to take advantage of cross-validation for the estimation of prediction error in order to guide our model
selection and perform robust model assessment. Here the different steps are: 2.i. to rely on the global LOO
error of Eq. (22) to determine the most accurate polynomial approximation of the problem response, with the
constraint that the aliasing error must be minimized. Then 2.ii. (this step is optional) in order to make the
process more robust, not only the optimal approximation but several levels of approximation that are within
a certain error threshold are retained. Finally, 2.iii and 2.iv. sample weights are computed as normalized
score functions taken at the (averaged) residual error contribution of the retained approximation(s).
More specifically, here are those main steps, revisited in more detail:

2.i. Designation of optimal total degree approximation space PΛpopt
for pseudospectral gPC representa-

tion of the data: popt = argminpl∈Npmax
0

εLOO
Λpl

, will provide the lowest truncation error in the LOO
cross-validation criterion with the guarantee of no internal aliasing error. pmax is the highest degree
authorized by the quadrature while maintaining no internal aliasing error. The different error estima-
tions εLOO

Λpl
are computed from Eq. (22).

2.ii. (this step is optional) Choice of a model cross-validation tolerance parameter α ≥ 1. Definition of
“neighbor” approximation spaces PΛp∈L with L = {l ∈ {1, . . . , pmax} | εLOO

Λl
≤ α · εLOO

Λpopt
} with lower

errors than threshold and that will be used in the following.

2.iii. Collect the residual errors at each grid point for the retained surrogate models: rΛl∈L, i∈{1,...,N}.

2.iv. Estimation of the (averaged) preconditioning weights as:

wi =
1

|L|
∑
l∈L

υ(rΛl,i)

rΛl,i
, ∀i = 1, . . . , N, (23)

where |L| is the set cardinality. This averaging is not always necessary (i.e. if α = 1 and l = popt) but
sometimes helps in particular when the LOO error function is not clearly convex nor the choice of popt

sharp. It is in some sense reminiscent of the damped version of the re-weighting procedure of Peng et
al. on p.8 [33].
In this work, Huber, Tukey bisquare and Cauchy score functions have been tested [26] in the numerical
applications.

The third stage then consists of the weighted regression and regularization on a space of approximation of
total degree larger than the one identified in step 2. i.

The algorithmic complexity and scaling of the computational framework just underlined can be split in
different components. The main effort obviously lies in 1. the solution sampling at the grid points. Full cuba-
tures scale exponentiallyO(N (d)) while sparse cubatures somewhat alleviate the costO

(
N−r(logN)(d−1)(r+1)

)
,

especially if the solution has high bounded mixed partial derivatives of order r and is isotropic. Then, 2.
the determination of response sample weights requires cross-validation evaluations that involve multiple
pseudospectral projections and arithmetic averaging. This part is computationally very efficient, even for
a large number of dimensions, as long as adjusted weights necessary to the truncated cubatures have been
tabulated and stored prior to the computation (cf. discussion at the end of section 3.2). Finally, 3. a regu-
larized weighted regression must be carried out. The computational cost of a `1 LASSO-type minimization
associated to the problem of Eq. (12) is always more expensive than ordinary or weighted LS methods for
the same problem. This is due to the “search” for the best parameter λ. Nevertheless, we have noted that
our LOO-weighted version sped up the computation. This is due to the preconditioning of the solution.
Computational savings differ depending on the problem size and complexity. We have noted savings 5−40%
in computational time (savings are more substantial for larger sample points number N). Further improve-
ments may make use of the preconditioning information in order to restrain the search range of λ.
The proposed method will now be demonstrated on several illustrative test problems of different dimension-
ality, sparsity and complexity.
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Figure 2: Continuous response surfaces of sparse Legendre polynomials obtained from different approximation
methods based on a CC grid of level l = 5 (left) and KP l = 4 (right). Randomly selected outliers data are iden-
tified by red circles. Green circles represent normally distributed data samples subject to background stochastic
noise. The SC curve refers the stochastic collocation based on Lagrange interpolation; IRLS is an iterative
reweighted least square approximation with the same predictors as the gPC pseudospectral representation. The
reference curve is the target noiseless QoI response.

4 Numerical Examples

4.1 Sparse polynomial test functions

The point of these tests is to check the robustness through an analysis of the mechanisms of the proposed
method on the approximation of sparse nonlinear polynomial functionals corrupted by few randomly selected
data outliers, accounting for deterministic noise. Consider the function z(ξ) = P10(ξ) +P3(ξ) +P0(ξ), where
Pk is the kth degree univariate Legendre polynomial, known at some discrete points, in the presence of
a stochastic noise component, we have: yi = z(ξi) + χi, with i ∈ {1, . . . , N} and χi are centered i.i.d.
random variables distributed according to N (0, σχ). These data also contain some outliers that do not
match this definition. In practice we have considered σχ values about one order of magnitude lower than
the variability scale associated to the outliers. The noiseless version of this functional has been previously
tested with iterative adaptive polynomial approximations [35]. Here, the random variable ξ ∼ U[−1,1] is
uniformly distributed. Continuous approximations will be constructed from discrete sampling on regular
grids. Without loss of generality, we will be presenting 1. a CC quadrature rule of level l = 5 (17 points)
and 2. a KP quadrature rule of level l = 4 (15 points). Finer grids have also been tested with success.
For case 1., the function we try to approximate by projection is of maximum order 10 which is out reach for
the polynomial integration capability of our grid. Standard pseudospectral methods are not able to capture
the correct solution in this case, but the function being sparse (only 3 active basis functions are needed), we
expect that the `1-regularization term will help in approaching the right solution. As stated before, we will
be using LASSO in order to solve Eq. (12), but our proposed technique for weighting the observations can
also be used in combination with other solution methods. The results are presented in Figure 2-(left). The
outliers data points are plotted as red open circles, the other points as green open circles. The number of
outliers are arbitrarily chosen and affect No = κ(%)×N samples (with κ ≈ 18%), while χi ∼ N (0, 4 · 10−2).
The chosen example is tricky as the outliers are placed within the [ min

ξ∈[−1,1]
y(ξ), max

ξ∈[−1,1]
y(ξ)] range. The

reference noiseless curve is depicted as a full dashed light blue line. The three solutions that are clearly off
the marks are the standard gPC (full blue line), the IRLS (full green line) and the stochastic collocation (thin
dotted-dashed gray line) which are also shown for sake of completeness and exhibit too little or too large
oscillations. LASSO solution (thin purple dashed line) performs better but not as good as the LOO-weighted
LASSO. It is clear that the preconditioned `1−regularized approximations perform best. These qualitative
observations are quantitatively confirmed in Table 1. Table 1 shows the errors in the `1, `∞ norm and the R2

(goodness of fit) and the errors in the global statistical moments. Results with stochastic noise-free (green)
samples but bearing the same outlying (red) cases are also included.
In Figure 3 some of the internal workings of the proposed technique are exposed. Subplot (a) shows how
the cross-validation with LOO technique clearly predicts, despite the noise, that polynomial approximation
of total degree p = 3 will minimize prediction errors within the range of affordable polynomial orders. This
is coherent with the 0th- and 3rd-order components present in the functional. Error estimation solely based
on domain integrated gPC residuals are lower as expected but less robust and the optimal polynomial order
choice within {3, . . . , 8} is therefore less obvious. Subplot (c) shows the weights assigned to the samples for
a Cauchy score function. As expected, levels of confidence are lower for data outliers (represented by red
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Grid Approximation pTD µ σ2 R2 `1 `∞

CCl=5 gPC 8 4.04·10−2 3.97·10−1 2.90·10−1 5.70 1.13
LASSO 16 2.82·10−2 3.25·10−1 9.74·10−1 1.53 1.61·10−1

weightedα=1-LASSO (3) 16 3.99·10−4 1.23·10−1 9.96·10−1 6.06·10−1 1.08·10−1

weightedα=1.35-LASSO (3) 16 1.03·10−2 1.61·10−1 9.92·10−1 8.51·10−1 9.32·10−2

IRLS 8 5.04·10−2 1.53 5.01·10−1 5.69 1.63

CCl=5 gPC 8 5.08·10−2 4.05·10−1 2.93·10−1 5.70 1.12
LASSO 16 4.16·10−2 3.42·10−1 9.68·10−1 1.64 1.93·10−1

weightedα=1-LASSO (3) 16 1.92·10−2 1.61·10−1 9.94·10−1 7.50·10−1 8.53·10−2

weightedα=1.35-LASSO (3) 16 2.47·10−2 1.84·10−1 9.92·10−1 8.88·10−1 1.04·10−1

IRLS 8 9.49·10−2 7.20·10−1 5.69·10−1 5.16 1.41

Table 1: In reference to the results of Figure 2-(left): overview of different functional error indicators for a sparse
polynomial test case with (top) and without (bottom) stochastic background noise and for different choices of
α. The best overall result in bold. p(TD) is the chosen total degree of the polynomial approximation basis;
for the weighted-LASSO approach, the value in parenthesis is the optimal order obtained from the original
pseudospectral gPC representation resulting in the lowest overall cross-validation LOO error.

Grid Approximation pTD µ σ2 R2 `1 `∞

KPl=4 gPC 10 1.48·10−3 2.10·10−1 8.47·10−1 2.58 6.18·10−1

LASSO 20 5.62·10−2 5.57·10−1 7.43·10−1 2.39 5.25·10−1

weighted-LASSO (10) 20 4.48·10−2 3.58·10−1 9.17·10−1 1.56 3.07·10−1

IRLS 10 1.92·10−2 4.27·10−1 5.89·10−1 3.82 1.80

Table 2: Same caption as in Table 1, but in reference to the results of Figure 2-(right).

circles). They are also low for the boundary samples that are negatively affected due to their distance to the
low-order approximation. Last two subplots show the subtle differences in the mean square errors (MSE)
distribution vs. λ for the LASSO (d) and the weighted-LASSO (e). Very low values of λ, to the right of
these plots, lead to approximations dominated by the first term of Eq. (16). Despite the preconditioning,
the `2 minimization alone produces larger errors with large error bars. Once the optimal λ selected, very
low MSE errors are obtained and coefficients amplitude in subplot (b) shows that the three leading modes of
the functional, including the tenth-order, are almost perfectly captured, despite some weak spurious energy
in the 5th and 12th modes.

The next test case has a similar setup but a larger noise, e.g. χi ∼ N (0, 7 · 10−2) and consequently more
severe data outliers, on a different sampling grid. For case 2., the KP quadrature/grid combination has a
higher integration capability than the previous grid. This time, results presented in Figure 2-(right) are not
visually as impressive, but weighted-LASSO still performs best in most of the error norms, cf. Table 2.

Additional results collected in Figure 4 better point to some of the differences with the previous case. This
time, the cross-validation is able to predict that polynomial of order 10 is also crucial to the approximation.
Data outliers are then endowed with low confidence but a few other data samples are misleadingly granted
with low weights as well (c). The LASSO error distribution plots (d-e) show that the error levels remain low
even for very small values of λ. In this case, the `1−regularization term does not contribute significantly in
terms of the accuracy improvement. However, the preconditioning still helps the LASSO algorithm in better
finding the optimal λ value. Looking at the emerging modal coefficients in (b), we notice again that despite
its better results, weighted-LASSO is not as sparse as the standard LASSO approximation.
Other one-dimensional tests were pursued in the same spirit, for non-sparse non-polynomial functions. For
instance, results for a noisy data set obtained from z(ξ) = (−3ξ5 + ξ2 + ξ)× tanh(ξ) and corrupted by four
data outliers (results not presented here) confirmed the performance advantage of weighted-LASSO with
respect to LASSO and standard gPC.

4.2 Higher-dimensional non-polynomial test function

Now, we consider a higher-dimensional test function that is not necessarily compressible so that we do not
favor `1−type regression method over robust iterative weighted least-square approximations. We assess the
continuous approximation of an algebraic noisy version of the Genz corner-peak function, known at some
discrete locations, which provides a flexible test for the proposed method:

yi =

(
1 +

d∑
k=1

ckξ
(k)
i

)−(d+1)

+ χi, with i = 1, . . . , N, (24)

and χi are centered i.i.d. random variables distributed according to N (0, σχ) and ξ ≡ (ξ(1), . . . , ξ(d)) ∼
U[0,1]d . Specifically, the coefficients ck can be used to control the effective dimensionality and the compress-
ibility of this function. In the following, we first test the d = 3−dimensional version using the anisotropic
coefficients ck = 1/k2 defined in [25]. The function is computed on a 73 KP grid but similar tests have been
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Grid Approximation pTD µ σ2 R2 `1 `∞

KPl=3 gPC 5 1.46e−02 2.07e−01 8.33e−01 1.75e+01 3.10e−01
LASSO 9 1.14e−02 1.52e−01 9.60e−01 7.24e+00 9.49e−02
weighted-LASSO (1.2) 9 6.82e−03 6.55e−02 9.89e−01 3.88e+00 5.38e−02
IRLS 5 3.67e−03 3.21e−02 9.91e−01 4.05e+00 5.05e−02

Table 3: Similar caption as Table 1 for d = 3 dimensions Genz corner-peak functional. But this time, all errors
are averaged as the test cases have been repeated 500 times for different initial conditions.

Grid Approximation pTD µ σ2 R2 `1 `∞

KPl=3 gPC 5 2.70·10−3 2.88·10−2 9.71·10−1 3.71·102 2.70·10−1

LASSO 9 3.38·10−3 1.93·10−2 9.98·10−1 8.29·101 4.44·10−2

weighted-LASSO (2) 9 1.28·10−3 5.20·10−3 9.99·10−1 5.37·101 2.79·10−2

IRLS 5 3.35·10−3 1.04·10−2 9.99·10−1 6.06·101 1.91·10−2

Table 4: Same caption as Table 1 for d = 5 dimensions Genz corner-peak test case.

performed for finer grids as well as for grids of different nature without affecting the overall conclusion. The
outlying cases amount to No = κ(%)×N randomly selected samples in the domain. In practice, the outlier
locations are randomly distributed in the computational domain with a uniform distribution. For these
high-dimensional cases, their magnitude is automatically drawn from either: - a non-normal distribution
or - a normal distribution with a standard deviation of one order of magnitude larger than σχ. The latter
definition has been used for the results presented next. Moreover, the procedure has been repeated 500
times (i.e. with different initial conditions both for outlier locations and magnitudes and for the stochastic
noise). Statistical results are presented in Figure 5. They show that the standard gPC approximation is not
robust. LASSO improves the error statistics, in particular in the `1 and `∞ norms. Mean values extracted
from these distributions and reported in Table 3 confirm these findings.
One-shot LOO-weighted LASSO improves the results even further, coming close to the IRLS iterative scheme.
A single test following a similar setup is carried out for d = 5 dimensions. We recall that this dimensional
limitation closely connected to memory requirement is inherited from the scaling of full cubature sampling
grid, but would be alleviated for a sparse cubature. The error results summarized in Table 4 demonstrate
again that LOO-weighted LASSO and IRLS are the best two contenders for robustness and that our approach
performs well compared to the iterative scheme.
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4.3 2D compressible, inviscid flow over an inclined NACA0012 airfoil

The study of compressible flows around a NACA0012 airfoil are considered in this example. The functional
of interest is the stagnation pressure Pa integrated along the airfoil profile Γ :

Pa =
1

L(Γ)pa∞

∫
Γ

padΓ, (25)

where pa = p
(
1 + γ−1

2
M2
∞
) γ
γ−1 (respectively pa∞) is the (upstream) stagnation pressure, γ is the specific

heat ratio, here fixed at 1.4 and the free-stream Mach number M∞ = 0.5, L(Γ) denotes the length of the
airfoil. We have considered for this analysis one uniformly distributed uncertain parameter: the angle of
attack AoA ≡ ξ ∼ U[0;8o]. It is well known that for subcritical Euler flows at zero or moderate angle of
incidence, the stagnation pressure should be exactly equal to unity [34]. In practice, even for low Mach
numbers this exact value is unreachable due to numerical (e.g. discretization) errors. Moreover, for larger
angles of incidence (i.e. AoA ' 6), the loss of symmetry is such that the flow switches from the subsonic to a
transonic regime, with a shock appearing on the upper surface close to the leading edge. Figure 6 illustrates
this phenomenon with three snapshots of the density field for AoA = 0 (left image), AoA = 6 (middle image)
and AoA = 8 (right image), respectively. The rise of this shock noticeably modifies the flow features and
negatively affects accuracy of the prediction if no adjustment is made to the model in order to account for
it. It especially impacts the discretization error if the retained mesh is too coarse and not adapted at the
shock location. In this case the model error magnitude will depend on the value of the AoA in quite an
unpredictable manner as can be seen in the stagnation pressure response pictured in Figure 7 (red circles).
The response was obtained for each AoA from the same coarse mesh: with about five thousand mesh cells

Figure 6: NACA0012: density field closeup for different angles of attack: AoA = 0 (left), AoA ≈ 6 (middle)
and AoA = 8 (right). Note the presence of small shocks close to the leading edge at large angles of attack.
Computational meshes are not displayed but have been adapted and refined to capture all relevant flow features.

regularly distributed around the airfoil and referred as the uniform 5K mesh. We notice strong oscillations in
the transcritical region for AoA larger than about six degrees. Consequently, high-order pseudospectral gPC
approximation (dotted blue curve) is corrupted with errors as expected. Cross-validation preconditioned
regularized approximation (solid red curve) does much better at filtering out small spurious fluctuations in
the left region where Pa is not dependent on the AoA, as well as controlling and erasing large unphysical Pa
oscillations on the right hand side of the domain.
Interestingly, for this problem, it is possible and still affordable to produce results that are almost model
error-free. By refining the mesh to 38000 mesh cells (38K), the discretization error is drastically reduced.
These refined meshes are adapted to each AoA scenario in order to capture the critical physics (e.g. shocks).
Computations on the refined and adapted meshes are represented by the green stars. We observe a flat
zone corresponding to low angles of attack where the stagnation pressure is very close to, but lower than
unity (due to still present numerical diffusion), followed by a sharp almost linear decrease for larger angles
of attack. In this case, our method does not alter the data and produces a smooth response (solid brown
curve) while perfectly maintaining the right slope.

If we now consider that the Mach number is also uncertain: for instance, M∞ ∼ U[0.3,0.5], the stagnation
pressure value departs from unity at a critical angle that depends on the Mach number; this angle being
larger for lower Mach numbers. This induces a narrow region with a steep slope that is difficult to capture
accurately by standard projection techniques and induces spurious oscillations, cf. Figures 8 and 9. Again
the proposed method increases the regularity of the surrogate where it is needed, with no a priori information
nor significant computational overhead, while capturing relevant local sharp features even on the coarser
mesh. We notice in particular that the surface goes through the data samples much better in the transcritical
region.

5 Conclusions

The main contribution of this paper was to propose a non-iterative robust numerical method for the uncer-
tainty quantification of reasonably compressible multivariate stochastic solutions. The goal was to make the
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Figure 7: NACA0012: averaged stagnation pressure Pa response surfaces vs. AoA, obtained from different
approximation methods based on a level l = 5 Kronrod-Patterson data sampling. Two classes of discretization
meshes of the Euler flow are investigated: – uniform coarse mesh (red circles) vs. – fine mesh adapted to each
flow incidence (green stars).
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Figure 8: NACA0012: averaged stagnation pressure Pa response surfaces vs. AoA and M∞, based on a 92

Clenshaw-Curtis data sampling: – pseudospectral gPC expansion with p = 4 (left) and – LOO-weighted LASSO
(right). Each deterministic CFD simulation is performed on a non-adapted mesh with ∼ 7000 cells.
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Figure 9: Same caption as the previous figure but based on a 172 Clenshaw-Curtis data sampling: – pseudospec-
tral gPC expansion with p = 8 (left) and – LOO-weighted LASSO (right).

approximation capable of dampening the effect of outlying data to that do not fit the assumption of small
additive stochastic noise represented by centered i.i.d. (normal) random variables with uniformly bounded
variance; in particular, noise which does not fall under the regularity assumption of the stochastic trunca-
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tion error but pertains to a more complete error model. The method required a preconditioning prior to a
dimension reduction of the solution, i.e.: 1. a `2−based cross-validation of a generalized Polynomial Chaos
approximation of the response; this allowed a first model selection and the computation of (preconditioning)
weights (i.e. confidence measures) associated to the samples, followed by 2. a preconditioned least-squares
polynomial approximation with regularization using the weighted Least Absolute Shrinkage and Selection
Operator. For the first step, observation weights were computed from sample contributions to the cross-
validation leave-one-out error of the selected surrogate model. For the second step, other algorithms may be
used to solve the optimization problem resulting from the `1−regularization. Numerical test cases treated in
this paper have proved the numerical method to be more effective in automatically canceling out or reducing
the influence of data outliers than standard compressed sensing techniques and of comparable efficiency to
iterative robust regression techniques.
A particularity of this work was to make use of quadrature rules/grids as opposed to random sampling. This
zero-variability sampling brings reliability to the recovery procedure but is better suited for low to moderate
dimensional problems (with possibly high-order representation). However, the approach remains general
and could be applied to higher dimensions by using random sampling or quadrature subsampling schemes
taking advantage of recent advances in terms of polynomial recovery optimization. In this case, the use of
other cross-validation techniques with potentially lower variance error estimations is also conceivable.
Potential perspectives for future work involve: – a different way of evaluating the preconditioning weights
that would be even less sensitive to data outliers. With this aim, one may argue that non-weighted LASSO–
type algorithms could be deployed upfront as we have noticed they often performed better in terms of
robustness than standard `2−projections. Once combined with the second step above, this approach could
then be generalized in the form of an adaptive formulation where the weights would be iteratively refined
in conjunction with the surrogate model level of complexity. In this case, it would be reminiscent of an
iteratively reweighted least squares technique; or – introduce a (re)weighted norm in the `1−minimization
which is known to produce better compressive performance. This information could be provided by the
spectrum of the low-order model, selected and validated in the initial step.
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