
Turbulent boundary layer

0.     Are they so different from laminar flows ?
1. Three main effects of a solid wall
2. Statistical description: equations & results
3. Mean velocity field: classical asymptotic theory
4. Rugosity
5. Coherent structures & turbulence dynamics
6. Turbulent drag: generation & control



Example: Planetary Boundary Layer
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Boundary layer thickness evolution

(Schlichting, 8th edn)



Remarks

• Turbulent flows are very different from their 
laminar counterpart:
– Increased skin friction/pressure loss                           

Increased thickness
– Increased heat/mass transfer properties
– --> technological importance !

• What are the associated physical mechanisms ?
• Understanding is required to design/optimize 

systems and control devices



   The three effects of a solid wall

• Hypotheses about the solid surface:
– Impermeable
– Infinitely rigid
– Plane
– Non-reactive, cold
– No-slip boundary condition holds (beware of 

micro/nano-channel dynamics !)



Cont’d
1- The shear effect: the no-slip boundary 

condition involves the existence of a mean 
shear (matching with outer flow condition)

– Anisotropic TKE production term

– Anisotropy forcing



Cont’d
2- Viscous effects: the mean velocity decreases 

when approaching the wall
– --> the local Reynolds number diminishes
– --> viscous effects are more important near the 

wall
• Effect 1: viscous diffusion

• Effect 2: dissipation



Cont’d
3- Effects due to the impermeability assumption

– Kinematic « splash » effect: structures impinging the 
wall induce a redistribution of TKE from wall-normal 
toward tangential velocity components

• --> damping of the wall-normal Reynolds stress
• --> increase of the 2 other diagonal stresses
• --> increase of anisotropy

Note: also present in shear-free boundary layer (e.g. 
boundary layer developing above a moving belt)



Cont’d
– Dynamic « echo » effect: a non-local modification of 

the pressure field is induced.

Let us consider the Poisson equation for pressure:

One can see that the Green-function-based solution (defined for  an 
unbounded domain) must be modified to account for the solid surface



Cont’d
Idea: image source model
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• Additional assumption: quasi-parallel flow
– Almost true for ‘canonical’ zero-pressure 

gradient flat plate boundary layer
– Exact condition for internal flows in straight 

pipes and plane 2D channels

Present framework



Boundary layer: a multiple scale problem
• External region (far from the wall)

– High local Re
– Characteristic velocity scale = external velocity
– Characteristic length-scale = geometry fixed (BL 

thickness, pipe/channel radius)
• Internal region (near the wall)

– Viscous effects & impermeability effects important
– Characteristic velocity scale = friction velocity
– Characteristic lengthscale = viscous length





  Mean flow: equations & results
Mean momentum equations simplify as 



Mean flow classical theory

• Mean velocity profile can be predicted (at least 
partially):
– Using phenomenological analysis (von Karman & 

Prandtl, early 1930s) 
– Using Asymptotic Matched Expansions (Isakson & 

Millikan, late 1930s + later works)



Phenomenological analysis

Momentum equation with zero-pressure-gradient hypothesis

Integrating once in the vertical direction between 0 and y

A priori unknown turbulent term A priori known



• Phenomenological hypotheses
– R12 is constant and negative
– friction velocity is relevant to describe fluctuations
– It is possible to define a turbulent viscosity

Von Karman constant: 0.38-0.41



Negligible molecular viscosity assumption

•Logarithmic solution
•Logarithmic layer, inertial layer, constant shear layer
• not consistent with no-slip boundary condition !



Mean flow kinetic energy balance

(Schlichting, 8th edn)



Matched Asymptotic Expansions

Dimensional analysis:

Symmetry condition at channel centerline:

No-slip condition at solid walls:



Integrating momentum in the vertical direction, taking y=2h

Fundamental equation for MAE analysis:

Dimensionless formulation





Inner layer



Viscous sublayer

Log Law



Velocity defect law



The channel flow case

Typical « universal » mean velocity profile
(Tennekes & Lumley)



 Turbulent Drag: generation & control

laminar

turbulent



Many available formulas



Non-local FIK formula (2002)

• Skin friction is a local quantity
– Difficult to measure in wind tunnel
– Highly sensitive to errors
– Poor understanding of generation by turbulent events

• Non-local formula much more helpful
• Triple integration of momentum equation:



Drag reduction: example



  Reynolds stresses & TKE balance

Governing equations for Reynolds stresses and TKE read

Main difference with homogeneous shear: wall-normal diffusion 
term (turbulent+pressure+viscous contributions)   



Typical profiles (channel flow, inner layer)

(Schlichting, 8th edn)



Streamwise RST balance - R11
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Wall-normal RST balance - R22
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Spanwise RST balance - R33
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Shear stress balance - R12
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TKE balance

(Schlichting, 8th edn)
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Pipe flows



Is asymptotic theory valid ?

(Hoyas & al., 2006)
Strong deviations in internal flows 
observed --> open issue



Is the Log Law observable?
(with available experimental setups & computers)

Logarithmic layer extent: y+ > 30, y+ < 0.1δ+

 Necessary condition: δ+ ≥ 300

1-decade Log Layer: δ+ ≥ 3000

•Larger by a factor about 10 than existing DNS
•Almost equal to maximum reached in wind tunnels (Lille, Melbourne)
•Lower by a factor about 10-100 than real applications !



What about « universal constants »?

Asymptotic value ?



Roughness effects

• Previous results hold for « ideally smooth » 
surfaces

• Real materials are not perfect
– --> a new lengthscale is involved to describe 

rugous walls: 
– --> how are previous results modified ?



Sand roughness ks

• Def: sand roughness = height of ideal 
spherical sand grains

• Hyp: in the inertial layer, one can write



Smooth/fully rough surfaces

• Smooth  surface: 

•  Rough surface:
•  logarithmic law can be rewritten as

• fully rough regime (1<< k+
s ): viscosity independent solution

(experimental value)

0



Roughness length yk

• Logarithmic law can be rewritten as

• Fully rough regime
• y=0  chosen so that the logarithmic law 

holds



Equivalent sand roughness

• An equivalent sand roughness can be 
determined for each technical roughness:

Measured in laboratory experiment



Roughness regimes

(Schlichting, 8th edn)

regime height constant
Hydraulically smooth 0≤ k+

s ≤5 C+ ~ 5.0

Transition regime 5≤ k+
s ≤70 C+(k+

s)

Fully rough 70≤ k+
s C+

r ~ 5.0



Coherent structures & turbulence dynamics

• The dynamics is associated with a very 
complex instantaneous flow organization

• Several types of flow structures are observed
• Each layer exhibits different coherent events
• Identification of the exact role of each 

structure is still an open controversial issue



Near-wall region structures 

Mean flow

Q-criterion colored by 
streamwise vorticity

(Pamies & Garnier, ONERA)



Cont’d

Vortex with ωx >0Vortex with ωx < 0

(Pamies & Garnier, ONERA)

Region with low instantaneous 
streamwise velocity



What is observed in viscous/buffer layers:

• Low/high-speed Streamwise velocity streaks : 
sinuous arrays of alternating streamwise jets 
superimposed on the mean shear (Kim & al., 1971) 
– Average spanwise wavelength z+=50-100 (Smith & al., 

1983)
– Average streamwise length x+=1000
– Wall shear is higher than the average at locations where 

the jets point forward (resp. backward) for high speed 
(resp. low speed) streaks



Cont’d
• Quasi-streamwise vortices

– Slightly tilted from the wall
– Stay in the near-wall region only for x+=200       

(Jeong & al., 1997)
– Several vortices are associated with each streak, with 

longitudinal spacing x+=400
– Some of them are connected to legs of hairpin vortices 

in the log layer, but most merge in uncoherent 
vorticity away from the wall

– Are advected at speed c+=10



Vortices, streaks & turbulent drag

• Quasi-streamwise vortices :
–  cause the streaks by advecting the mean shear 

(Blackwelder & Eckelman, 1979)
– Are independent of the presence of the wall 

(Rashidi & Banerjee, 1990)
– Are responsible for the turbulent drag     (Orlandi 

& Jimenez, 1994)



Cont’d
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Cont’d

(Pamies & Garnier, ONERA)



  Autonomous cycle and SSP

(Jimenez, 1999)

TKE production/dissipation balance

Positive balance in the buffer layer only !



Cont’d

• The fact that TKE balance is positive in a 
single small part of the full channel raises 
several question:
– Existence of  a « turbulent engine » located in the 

buffer layer, which feds the rest of the flow ?
– Is this mechanism (if any)  autonomous, i.e. 

independent of the flow in the outer layer
– If any, may it be understood/modelled ?



Autonomous cycle in the buffer layer

Numerical simulations make it possible to prove 
the existence of an autonomous cycle in the 
buffer layer:

1. Streamwise vortices extract energy from the mean 
flow to create alternating streaks of streamwise 
velocity

2. Streaks experience inflectional instabilities
3. Perturbations regenerate the vortices



Cont’d

• Features of the autonomous cycle:
– Located in region   10≤ y+≤60
– Independent from the outer flow
– The main role of the solid wall is to sustain the 

main shear
– Global turbulence level decays if the cycle is 

killed



Cont’d

(Jimenez, 1999)
Low-dimensional autonomous flow



(Jimenez & al., 2001)

Shaded: autonomous cycle
Lines: full channel computations



Example of another vorticity 
generation mechanism at the wall 

(Jimenez & al., 1999)

primary vortices secondary vortices

--> occurs certainly, but is not dominant



Minimal wall flow (Jimenez & Moin, 1991)

• Concept: what is the size of the smallest box 
in which the cycle is sustained ?

• Numerical experiments lead to λx
+ ≈ λz

+ ≈150
• Typical pattern: one wavy low-speed streak 

flanked by two  quasi-streamwise vortices



Cont’d

(Jimenez & al., 2001)



Bridging with theory

• May the autonomous minimal cycle be 
related to a theoretical model ?

• --> there are several attempts to find exact 
analytical nonlinear solutions of the Navier-
Stokes equations with similar features
– Steady solutions: the ‘minimal flow’ is 

interpreted as a deviation of the flow from a 
fixed point in phase space

– Unsteady periodic solutions



E.g. Nagata’s steady waves (1990)
(periodic solutions of Couette flow)

Streak dominated mode

Vortex dominated mode




