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Abstract. We present a systematic study of capillary filling for multi-phase flows by using mesoscopic
lattice Boltzmann models describing a diffusive interface moving at a given contact angle with respect to
the walls. We compare the numerical results at changing the density ratio between liquid and gas phases,
δρ/ρ and the ratio, δξ/H , between the typical size of the capillary, H , and the interface width, δξ. It is
shown that numerical results yield quantitative agreement with the Washburn law when both ratios are
large, i./e. as the hydrodynamic limit of a infinitely thin interface is approached. We also show that in
the initial stage of the filling process, transient behaviour induced by inertial effects and “vena contracta”
mechanisms, may induce significant departure from the Washburn law. Both effects are under control in
our lattice Boltzmann equation and in good agreement with the phenomenology of capillary filling.

PACS. 83.50.Rp , – 68.03.Cd

1 Introduction

The physics of capillary filling is an old problem, originat-
ing with the pioneering works of Washburn [1] and Lucas
[2]. Recently, with the explosion of theoretical, experimen-
tal and numerical works on microphysics and nanophysics,
the problem attracted a renewed interest [3,4,5,6]. Capil-
lary filling is a typical “contact line” problem, where the
subtle non-hydrodynamic effects taking place at the con-
tact point between liquid-gas and solid phase allows the
interface to move, pulled by capillary forces and contrasted
by viscous forces. Usually, only the late asymptotic stage
is studied, leading to the well-known Washburn law, which
predicts the following relation for the position of the in-
terface inside the capillary:

z̃2(t) − z̃2(0) =
γHcos(θ)

3µ
t̃ (1)

where γ is the surface tension between liquid and gas,
θ is the static contact angle, µ is the liquid viscosity, H
is the channel height and the factor 3 depends on the
geometry of the channel (here a two dimensional geometry
given by two infinite parallel plates separated by a distance
H – see fig. 1). The above expression can be recasted in
dimensionless variables t = t̃/tcap and z = z̃/H , being the
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capillary time tcap = Hµ/γ. This leads to the universal
law:

z2(t) − z2(0) =
cos(θ)

3
t. (2)

As already remarked in many works [5], the asymptotic
behaviour (2) is obtained under the assumption that (i)
the inertial terms in the Navier-Stokes evolution are neg-
ligible, (ii) the instantaneous bulk profile is given by the
Poiseuille flow, (iii) the microscopic slip mechanism which
allow for the movement of the interface is not relevant
for bulk quantities (as the overall position of the inter-
face inside the channel), (iv) inlet and outlet phenomena
can be neglected (limit of infinitely long channels); (v) the
liquid is filling in a capillary, either empty or filled with
gas whose total mass is negligible with respect to the liq-
uid one. In the following, we will address all these effects
and show to which extent they can described by using a
mesoscopic model for multiphase flows based on the dis-
cretized version of Boltzmann Equations in a lattice. The
model here used is a suitable adaptation of the Shan-Chen
pseudo-potential LBE [7] with hydrophobic/hydrophilic
boundaries conditions, as developed in [8,9]. Other mod-
els with different boundary conditions and/or non-ideal
interactions have been also used in [10].
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2 LBE for capillary filling

The geometry we are going to investigate is depicted in
fig. (1). The bottom and top surface is coated only in
the rigth half of the channel with a boundary condition
imposing a given static contact angle [8]; in the left half we
impose periodic boundary conditions at top and bottom
surface in order to have a flat liquid-gas interface which
should mimic an “infinite reservoir”. Periodic boundary
conditions are also imposed at the two lateral sides such
as to ensure total conservation of mass inside the system.

2.1 LBE algorithm for multi-phase flows

We start from the usual lattice Boltzmann equation with
a single-time relaxation [11,12]:

fl(x+cl∆t, t+∆t)−fl(x, t) = −
∆t

τB

(

fl(x, t) − f
(eq)
l (ρ, ρu)

)

(3)
where fl(x, t) is the kinetic probability density function
associated with a mesoscopic velocity cl, τB is a mean

collision time (with ∆t a time lapse), f
(eq)
l (ρ, ρu) the equi-

librium distribution, corresponding to the Maxwellian dis-
tribution in the continuum limit. From the kinetic distri-
butions we can define macroscopic density and momentum
fields as [11,12]:

ρ(x) =
∑

l

fl(x); ρu(x) =
∑

l

clfl(x). (4)

For technical details and numerical simulations we shall
refer to the nine-speed, two-dimensional 2DQ9 model [11].
The equilibrium distribution in the lattice Boltzmann equa-
tions is obtained via a low Mach number expansion of the
equilibrium Maxwellian [11,12]. In order to study non-
ideal effects we need to supplement the previous descrip-
tion with an interparticle forcing. This is done by adding
a suitable Fl in (3). In the original model [7], the bulk in-
terparticle interaction is proportional to a free parameter
(the ratio of potential to thermal energy), Gb, entering the
equation for the momentum balance:

Fi = −Gbc
2
s

∑

l

w(|cl|
2)ψ(x, t)ψ(x + cl∆t, t)c

i
l (5)

being w(|cl|
2) the static weights for the standard case of

2DQ9 [11] and ψ(x, t) = ψ(ρ(x, t)) the pseudo-potential
function which describes the fluid-fluid interactions trig-
gered by inhomogeneities of the density profile (see [7,8,
9] for details).

One may show [8,9] that the above pseudo-potential,
leads to a non-ideal pressure tensor given by (upon Taylor
expanding the forcing term):

Pij =

(

c2sρ+ Gb

c2s
2
ψ2 + Gb

c4s
4
|∇ψ|2 + Gb

c4s
2
ψ∆ψ

)

δij −

−
1

2
Gbc

4
s∂iψ∂jψ + O(∂4), (6)

Fig. 1. Geometrical set-up of the numerical LBE. The 2 di-
mensional geometry, with length 2L and width H , is divided in
two parts. The left part has top and bottom periodic bound-
ary conditions such as to support a perfectly flat gas-liquid
interface, mimicking a “infinite reservoir”. In the right half, of
length L, there is the true capillary: the top and bottom bound-
ary conditions are those of a solid wall, with a given contact
angle θ [8]. Periodic boundary conditions are also imposed at
the west and east sides.

where cs is the sound speed. This approach allows the def-
inition of a static contact angle θ, by introducing at the
walls a suitable value for the pseudo-potential ψ(ρw) [8],
which can span the range θ ∈ [0o : 180o]. Moreover, it
also defines a specific value for the surface tension, γlg,
via the usual integration of the offset between normal and
transverse components of the pressure tensor along the
liquid-gas interface allows for[7,8,9].
As to the boundary conditions on the Boltzmann popu-
lations, the standard bounce-back rule is imposed. One
can show that the bounce-back rule gives no-slip bound-
ary conditions up to second order in the Knudsen num-
ber in the hydrodynamical limit of single phase flows [13].
In presence of strong density variation, close to the walls
across the interface, the velocity parallel to the wall may
develop a small slip length (of the order of the interface
thickness, λs ∝ δξ) which in turn, allows for the interface
to move. It is difficult to control exactly the phenomenon,
because even imposing an exact no-slip boundary condi-
tions at the wall [14], the model will develop non triv-
ial dynamics at the first node away from the wall, where
both condensation/evaporation phenomena and/or spuri-
ous currents may conspire, leading to an overall non-zero
slip velocity. For the scope of controlling the capillary fill-
ing, one may reabsorb all these effects within the usual
Maxwell slip boundary conditions: us = λs∂nu. It is easy
to show that in presence of a slip velocity, the Poiseuille
profile becomes:

u(y) = 6
ū

H2

y(H − y) + λH

1 + 6λs/H
(7)

where the velocity of the front must be identified with

the mean velocity, ū = 1/H
∫ H

0 dyu(y) = ż. Therefore,
Washburn law (2) becomes:

z(t)2 − z2
0 =

cos(θ)

3
(1 + 6

λs

H
)t (8)
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2.2 Corrections to the Wahsburn law

As already remarked many yeas ago [15], the Wahsburn
law (2) can be valid only if inertial forces are negligible
with respect to the viscous and capillary ones. This cannot
be true at the beginning of the filling process, where strong
acceleration drives the interface inside the capillary. How-
ever, putting reasonable numbers for a typical microde-
vices experiments with water (H ≃ 1µm, γ ≃ 0.072N/m,
ρl ≃ 10−3kg/m3, µ ≃ 10−3Ns/m2), one realizes that the
transient time, τdiff = Hγρl/µ

2, is usually very small, of
the order of a few nanoseconds, and therefore negligible
for most experimental purposes. Another important effect
which must be kept in mind when trying to simulate cap-
illary filling, is the unavoidable “resistance” of the gas oc-
cupying the capillary during the liquid invasion. This is a
particular “sensitive” question, because reaching the typi-
cal 1 : 1000 density ratio between liquid and gas of exper-
imental set up represents a challenge for most numerical
methods, particularly for multiphase Lattice Boltzmann
which typically operates with density ratios of the order
1 : 10 or 1 : 100. In order to take in to account both ef-
fects, inertia and gas dynamics, one may write down the
balance between the total momentum change inside the
capillary and the force acting on the liquid+gas system:

d(żM(t))

dt
= Fcap + Fvis (9)

where M(t) = Mg +Ml is the total mass of liquid and gas
inside the capillary at any given time. The two forces in the
right hand side correspond to the capillary force, Fcap =
2γcos(θ), and to the viscous drag Fvis = −2(µg(L − z) +
µlz)∂nu(0). Following the notation of fig.(1) and the ex-
pression for the velocity profile (7) one obtains the final
expression (see also [16] for a similar derivation, without
considering the slip velocity):

(ρg(L− z) + ρlz)z̈ + (ρl − ρg)(ż)
2 =

2
γcos(θ)

H
−

12ż

H2(1 + 6λs

H
)
[(µg(L− z) + µlz)] (10)

In the above equation for the front dynamics, the terms
in the LHS take into account the fluid inertia. Being pro-
portional either to the acceleration or to the squared ve-
locity, they become negligible for long times. Washburn
law plus the slip correction (8) is therefore correctly re-
covered asymptotically, for t→ ∞, and in the limit when
ρg/ρl → 0. The above equation is exact, in the case where
evaporation-condensation effects are negligible, i.e. when
the gas is pushed out of the capillary without any interac-
tion with the liquid. This is not always the case for most
of the mesoscopic models available in the literature [7,14],
based on a diffusive interface dynamics [18]. As we will see,
only when either the limit of thin interface δξ/H → 0 is
reached or when the gas phase is negligible, δρ/ρ→ ∞, the
dynamics given by (10) is correctly recovered. Otherwise,
deviations are observed, which are induced by condensa-
tion/evaporation effects, which may result in significant
departure from the Poiseuille profile inside the gas phase.

Fig. 2. Evolution of the front in adimensional variables. Po-
sition of the front, z(t), versus t for H/(∆x) = 15, 61, 121
and L/(∆x) = 1200, 1500, 2000 respectively, and with z̃(0) =
10∆x. The solid curve is the theoretical solution obtained by
integration of eq.(10) with λs = 2. The data have been ob-
tained with Gb = 5 which corresponds to ρg = 0.157 and
ρl = 1.92 (in LBE units). Let us notice that the solutions
of eq.10 does not show any sensitive variations on H for those
times and distances here explored. In the inset we show the
position of the front for (H/∆x) = 15, 61, 121 (same symbols)
normalized with the adimensional asymptotic solution of eq.10

given by expression (8): zasym(t) ∼

√

cos(θ)
3

(1 + 6λs

H
)t, notice

that the departure from the predicted asymptotic Washburn
law is never larger then %10 even for small channel width, and
becomes almost negligible already for H = 121∆x

2.3 Numerical Results

In fig. (2) we show the behaviour of the front position,
z(t), as a function of time for a given contact angle (θ =
55o ± 3o), a given density ration δρ/ρ = 11 and a given
surface tension γ = 0.0569 (in LBE units), at varying the
channel width H , from H = 15∆x up to H = 121∆x.
As one can see the numerical results tends to be in good
agreement with the solutions of (10), only for large enough
values of H , i.e. only when the interface becomes thin
enough. For small to moderate values of H , the overall
asymptotic trend is only qualitatively reproduced by the
Washburn law (plus slip effects) (8) with deviations which
may be of the order of 10% in the prefactor (see inset of
the same figure).

Similarly, increasing the surface tension and the δρ/ρ
factor, leads to a early convergence towards the asymp-
totic Washburn law and to the solution of (10) even for
small channel width H . This is shown in fig. (3) where, at
fixed H = 31∆x, we increase δρ/ρ and the Washburn law
is approached better and better.

From both figure (2-3) one may notice that for short
filling time, t < τdiff , strong deviations from the Wash-
burn law are detected, even considering the extra effects
induced by the inertial terms of (10). This slowing down at
the early stage of the filling is indeed mainly induced by a
sort of vena contracta term [17], reflecting the non-trivial



4 F. Diotallevi et al.: Capillary filling using Lattice Boltzmann Equations: the case of multi-phase flows

Fig. 3. Same plot of fig. (2) but for fixed H = 31∆x at chang-
ing the density ration. We have for Gb = 5, δρ/ρ = 11 and
for Gb = 6, δρ/ρ = 34. Notice that the second case is already
enough to have a very good agreement with the solution of (10)
(adimensionalized as explained in the text) also at this small
channel width (solid line Gb = 6, dashed line Gb = 5).

matching between the reservoir and the capillary dynam-
ics at the inlet. This term, has been argued to be describ-
able by an additive apparent-mass correction, cρlHz̈, to
the LHS of (10).

In Fig. (4) we show an enlargement of fig(2) for small
filling time superposed with the results of a numerical in-
tegration of eq. (10) with a phenomenological value c = 30
for the vena contracta factor. As one can see, the agree-
ment between the numerics and the evolution of (10) is
now excellent also at short times.

3 Conclusions

The present study shows that Lattice Boltzmann mod-
els with pseudo-potential energy interactions are capa-
ble of reproducing the basic features of capillary filling,
as described within the Washburn approximation. Two
conditions for quantitative agreement have been identi-
fied: i) a sufficiently high density contrast between the
dense/light phase, ρl/ρg > 10 and a sufficiently thin in-
terface, δξ/H < 0.1. Both conditions can be met within
the current LB methodology, although it would clearly
be desirable to extend the LB scheme in such a way to
achieve density contrasts in the order of 1 : 1000 (the cur-
rent state-of-the-art is approximately 1 : 50) and interface
widths of the order of the lattice spacing ∆x (current val-
ues are about 5 − 10∆x).

The present results set the stage for future computa-
tional studies aimed at identifying optimal interface func-
tionalization strategies, based on physical, chemical and
geometrical coating processes. Work along these lines is
currently underway.

Fig. 4. Enlargement of the early stage evolution during the
filling process for H = 121∆x (in LBE units), with the vena
contracta term choosing an optimal value for c = 30. The front
position and time are make dimensionless normalizing with tcap

and with H .
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