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Abstract. We report on simulations of capillary filling of high-wetting fluids in

nano-channels with and without obstacles. We use atomistic (molecular dynamics)

and hydrokinetic (lattice-Boltzmann) approaches which point out clear evidence of

the formation of thin precursor films, moving ahead of the main capillary front. The

dynamics of the precursor films is found to obey a square-root law as the main capillary

front, z2(t) ∝ t, although with a larger prefactor, which we find to take the same

value for the different geometries (2D-3D) under inspection. The two methods show

a quantitative agreement which indicates that the formation and propagation of thin

precursors can be handled at a mesoscopic/hydrokinetic level. This can be considered

as a validation of the Lattice-Boltzmann (LB) method and opens the possibility of

using hydrokinetic methods to explore space-time scales and complex geometries of

direct experimental relevance. Then, LB approach is used to study the fluid behaviour

in a nano-channel when the precursor film encounters a square obstacle. A complete

parametric analysis is performed which suggests that thin-film precursors may have an

important influence on the efficiency of nanochannel-coating strategies.

http://lanl.arXiv.org/abs/0901.0677v2
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1. Introduction

Micro- and nano-hydrodynamic flows are prominent in many applications in material

science, chemistry and biology [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 10, 11]. A thorough

fundamental understanding as well as the development of corresponding efficient

computational tools are demanded. The formation of thin precursor films in capillary

experiments with highly wetting fluids (near-zero contact angle) has been reported

by a number of experiments and theoretical works [13, 14, 15, 16, 17], mostly in

connection with droplet spreading, and only very recently [18] for the case of capillary

filling. In this latter case the presence of precursor films could help to reduce the

drag, and this could have an enormous economic impact as mechanical technology is

miniaturized, microfluidic devices become more widely used, and biomedical analysis

moves aggressively towards lab on a chip technologies. In this direction, patterned

channels [19] and more specifically ultra-hydrophobic surfaces have been considered [20,

21]. At microscopic scales, inertia subsides and fluid motion is mainly governed by the

competition between dissipation, surface-tension and external pressure. In this realm,

the continuum assumption behind the macroscopic description of fluid flow goes often

under question, typical cases in point being slip-flow at solid walls and moving a contact

line of liquid/gas interface on solid walls [1, 13]. In order to keep a continuum description

at nanoscopic scales and close to the boundaries, the hydrodynamic equations are usually

enriched with generalised boundary conditions, designed in such a way as to collect

the complex physics of fluid-wall interactions into a few effective parameters, such as

the slip length and the contact angle [22, 23]. A more radical approach is to quit

the continuum level and turn directly to the atomistic description of fluid flows as a

collection of moving molecules [24], typically interacting via a classical 6-12 Lennard-

Jones potential. This approach is computationally demanding, thus preventing the

attainment of space and time macroscopic scales of experimental interest. In between the

macroscopic and microscopic vision, a mesoscopic approach has been lately developed

in the form of minimal lattice versions of the Boltzmann kinetic equation [25, 26].

This mesoscopic/hydro-kinetic approach offers a compromise between the two methods,

i.e. physical realism combined with high computational efficiency. By definition,

such a mesoscopic approach is best suited to situations where molecular details, while

sufficiently important to require substantial amendments of the continuum assumption,

still possess a sufficient degree of universality to allow general continuum symmetries

to survive, a situation that we shall dub supra-molecular for simplicity. Lacking a

rigorous bottom-up derivation, the validity of the hydro-kinetic approach for supra-

molecular physics must be assessed case-by-case, a program which is already counting

a number of recent successes [27, 28, 29, 30]. The aim of this paper is two-fold. First,

we validate the Lattice-Boltzmann (LB) hydro-kinetic method in another potentially

’supramolecular’ situation, i.e. the formation and propagation of precursor films in

capillary filling at nanoscopic scales. We employ both MD and hydrokinetic simulations,

finding quantitative agreement for both bulk quantities and local density profiles, at all
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times during the capillary filling process. Then, we carry out a complete LB study

of a nanochannel in the presence of a square obstacle for a large range of value for

the different parameters at play. These results seem to suggest that, by forming and

propagating ahead of the main capillary front, thin-film precursors may manage to hide

the chemical/geometrical details of the nanochannel walls, thereby exerting a major

influence on the efficiency of nanochannel-coating strategies [31, 32]. The paper is

organised as follows: in the first two sections the models employed are presented with

some details. In section IV, the numerical results are discussed: first the study of

a nanochannel for a complete wetting is presented and, then, the LB analysis of a

nanochannel in presence of a square obstacle is reported. Finally, conclusions are made.

2. Lattice-Boltzmann model

In this work we use the multicomponent LB model proposed by Shan and Chen [33].

This model allows for distribution functions of an arbitrary number of components, with

different molecular mass:

fk
i (x + ci∆t, t + ∆t) − fk

i (x, t) = −∆t

τk

[

fk
i (x, t) − f

k(eq)
i (x, t)

]

(1)

where fk
i (x, t) is the kinetic probability density function associated with a mesoscopic

velocity ci for the kth fluid, τk is a mean collision time of the kth component (with ∆t

a time step), and f
k(eq)
i (x, t) the corresponding equilibrium function. The collision-time

is related to kinematic viscosity by the formula νk = 1
3
(τk − 1

2
). For a two-dimensional

9-speed LB model (D2Q9) f
k(eq)
i (x, t) takes the following form [26]:

f
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2

3
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k (2)
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In the above equations ci’s are discrete velocities, defined as follows

ci =















0, i = 0,
(

cos (i−1)π
2

, sin (i−1)π
2

)

, i = 1 − 4√
2
(

cos[ (i−5)π
2

+ π
4
], sin[ (i−5)π

2
+ π

4
]
)

, i = 5 − 8

(5)

where αk is a free parameter related to the sound speed of the kth component, according

to (ck
s)

2 = 3
5
(1−αk); nk =

∑

i f
k
i is the number density of the kth component. The mass

density is defined as ρk = mknk, and the fluid velocity of the kth fluid uk is defined

through ρkuk = mk
∑

i cif
k
i , where mk is the molecular mass of the kth component. The

equilibrium velocity u
eq
k is determined by the relation

ρku
eq
k = ρkU + τkFk (6)
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where U is the common velocity of the two components. To conserve momentum at

each collision in the absence of interaction (i.e. in the case of Fk = 0) U has to satisfy

the relation

U =

(

s
∑

i

ρkuk

τk

)

/

(

s
∑

i

ρk

τk

)

. (7)

The interaction force between particles is the sum of a bulk and a wall components.

The bulk force is given by

F1k(x) = −Ψk(x)
∑

x
′

s
∑

k̄=1

Gkk̄Ψk̄(x
′)(x′ − x) (8)

where Gkk̄ is symmetric and Ψk is a function of nk. In our model, the interaction-matrix

is given by

Gkk̄ =















gkk̄, |x′ − x| = 1,

gkk̄/4, |x′ − x| =
√

2,

0, otherwise.

(9)

where gkk̄ is the strength of the inter-particle potential between components k and k̄. In

this study, the effective number density Ψk(nk) is taken simply as Ψk(nk) = nk. Other

choices would lead to a different equation of state (see below).

At the fluid/solid interface, the wall is regarded as a phase with constant number

density. The interaction force between the fluid and wall is described as

F2k(x) = −nk(x)
∑

x
′

gkwρw(x′)(x′ − x) (10)

where ρw is the number density of the wall and gkw is the interaction strength between

component k and the wall. By adjusting gkw and ρw , different wettabilities can

be obtained. This approach allows the definition of a static contact angle θ, by

introducing a suitable value for the wall density ρw [34], which can span the range

θ ∈ [0o : 180o]. In that work [34], for the first time to the best of our knowledge,

this phenomenological definition of the contact angle was put forward and the multi-

component lattice Boltzmann method was used to study the displacement of a two-

dimensional immiscible droplet subject to gravitational forces in a channel. In particular,

the dynamic behavior of the droplet was analysed, and the effects of the contact angle,

Bond number (the ratio of gravitational to surface forces), droplet size, and density

and viscosity ratios of the droplet to the displacing fluid were investigated. It is worth

noting that, with this method, it is not possible to know “a priori” the value of the

contact angle from the phenomenological parameters. Thus, an “a posteriori” map of

the value of the static contact angle versus the value of the interaction strength gw has

to be obtained. To this aim, we have carried out several simulations of a static droplet

attached to a wall for different values of gw [34, 35]. In particular, in our work, the

value of the static contact angle has been computed directly as the slope of the contours

of near-wall density field, and independently through the Laplace’s law, ∆P = 2γcosθ
H

,

where H is the channel height. The value so obtained is computed within an error

∼ 2% − 3%. Recently, a different approach has been proposed, which is able to give an
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“a priori” estimate of the static contact angle from the phenomenological parameter [36].

Nevertheless, we have preferred to retain our “a posteriori” method for its simplicity

and efficiency.

In a region of pure kth component, the pressure is given by pk = (ck
s)

2mknk, where

(ck
s)

2 = 3
5
(1 − αk). To simulate a multiple component fluid with different densities, we

let (ck
s)

2mk = c2
0, where c2

0 = 1/3. Then, the pressure of the whole fluid is given by

p = c2
0

∑

k nk + 3
2

∑

k,k̄ gk,k̄ΨkΨk̄, which represents a non-ideal gas law.

The Chapman-Enskog expansion [26] shows that the fluid mixture follows the

Navier-Stokes equations for a single fluid:

∂tρ + ∇ · (ρu) = 0, (11)

ρ[∂tu + (u · ∇)u] = −∇P + F + ∇ · (µ(∇u + u∇))

where ρ =
∑

k ρk is the total density of the fluid mixture, the whole fluid velocity

u is defined by ρu =
∑

k ρkuk + 1
2

∑

k Fk and the dynamic viscosity is given by

µ = ρν =
∑

k µk =
∑

k(ρkνk).

To the purpose of analysing the physics of film precursors, it is important to notice

that , in the limit where the hard-core repulsion is negligible, both the Shan-Chen

pseudo-potential and Van der Waals interactions predict a non-ideal equation of state,

in which the leading correction to the ideal pressure is ∝ ρ2. Therefore, both models

obey the Maxwell area rule [35].

3. MD model

In the Molecular Dynamics simulation we use the simplest model, consisting of a fluid of

point-size particles that interact via a Lennard-Jones potential. Henceforth all lengths

will be quoted in units of σ, the atom diameter. The snapshot in Fig. 1b, illustrates our

simulation geometry. We consider a cylindrical nanotube of radius R = 11 and length

L = 80, whereby the capillary walls are represented by densely packed atoms forming

a triangular lattice with lattice constant 1.0. The wall atoms may fluctuate around

their equilibrium positions, subjected to a finitely extensible non-linear elastic (FENE)

potential,

UFENE = −15ǫwR2
0 ln

(

1 − r2/R2
0

)

, R0 = 1.5 (12)

Here r is the distance between the particle and the virtual point which represents the

equilibrium position of the particle in the wall structure, ǫw = 1.0kBT , kB denotes the

Boltzmann constant, and T is the temperature of the system. In addition, the wall

atoms interact by a Lennard-Jones (LJ) potential,

ULJ(r) = 4ǫww

[

(σww/r)12 − (σww/r)6
]

, (13)

where ǫww = 1.0 and σww = 0.8. This choice of interactions guarantees no penetration

of liquid particles through the wall while in the same time the mobility of the wall atoms

corresponds to the system temperature. The particles of the liquid interact with each

another by a LJ-potential with ǫll = 1.40 so that the resulting fluid attains a density of
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ρl ≈ 0.77. The liquid film is in equilibrium with its vapor both in the tube as well as in

the partially empty right part of the reservoir. The interaction between fluid particles

and wall atoms is also described by a Lennard-Jones potential, Eq. (13), of range σwl = 1

and strength ǫwl = 1.4.

Molecular Dynamics (MD) simulations were performed using the standard Velocity-

Verlet algorithm [24] with an integration time step δt = 0.01t0 where the MD time

unit (t. u.) t0 = (σ2m/48ǫLJ)1/2 = 1/
√

48 and the mass of solvent particles m = 1.

Temperature was held constant at T = 1 using a standard dissipative particle dynamics

(DPD) thermostat [37, 38] with a friction constant ζ = 0.5 and a step-function like

weight function with cutoff rc = 1.5σ. All interactions are cut off at rcut = 2.5σ. The

time needed to fill the capillary is of the order of several thousands MD time units.

The top of the capillary is closed by a hypothetical impenetrable wall which prevents

liquid atoms escaping from the tube. At its bottom the capillary is attached to a

rectangular 40 × 40 reservoir for the liquid with periodic boundaries perpendicular to

the tube axis, see Fig. 1b. Although the liquid particles may move freely between the

reservoir and the capillary tube, initially, with the capillary walls being taken distinctly

lyophobic, these particles stay in the reservoir as a thick liquid film which sticks to the

reservoir lyophilic right wall. At time t = 0, set to be the onset of capillary filling, we

switch the lyophobic wall-liquid interactions into lyophilic ones and the fluid enters the

tube. Then we perform measurements of the structural and kinetic properties of the

imbibition process at equal intervals of time. The total number of liquid particles is

4 × 105 while the number of particles forming the tube is 4800.

4. Numerical Results

4.1. Nanochannel capillary filling with complete wetting

We consider a capillary filling experiment, whereby a dense fluid, of density and dynamic

viscosity ρ1, µ1, penetrates into a channel filled up by a lighter fluid, ρ2, µ2, see fig. 1. For

this kind of fluid flow, the Lucas-Washburn law [39, 40] is expected to hold, at least at

macroscopic scales and in the limit µ1 ≫ µ2. Recently, the same law has been observed

even in nanoscopic experiments [41]. In these limits, the LW equation governing the

position, z(t) of the macroscopic meniscus reads:

z2(t) − z2(0) =
γHcos(θ)

Cµ
t, (14)

where γ is the surface tension between liquid and gas, θ is the static contact angle, µ

is the liquid viscosity, H is the channel height and the factor C depends on the flow

geometry (in the present geometry CLB = 3 ; CMD = 2). The geometry we are going to

investigate is depicted in fig. 1 for both models. It is important to underline that in the

LB case, we simulate two immiscible fluids, without any phase transition.

Since binary LB methods do not easily support high density ratios between the

two species, we impose the correct ratio between the two dynamic viscosities through
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(a)

(b)

Figure 1. Sketch of the geometry used for the description of the capillary imbibition

in the LB and MD simulations. (a) The 2 dimensional geometry, with length L1 + L2

and width H , is divided in two parts. The left part has top and bottom periodic

boundary conditions, so as to support a perfectly flat gas-liquid interface, mimicking

an “infinite reservoir”. In the right half, of length L2, there is the actual capillary:

the top and bottom boundary conditions are solid wall, with a given contact angle

θ. Periodic boundary conditions are also imposed at the inlet and outlet sides. The

main LB parameters are: H ≡ ny = 40, L2 = nz = 170, ρ1 = 1; ρ2 = 0.35, µ1 =

0.66, µ2 = 0.014, γ = 0.016 where H is the channel height, L2 is the channel length,

ρ2 and ρ1 the gas and liquid densities respectively: µk, k = 1, 2 the dynamic

viscosities, and γ the surface tension. (b) Snapshot of fluid imbibition for MD in

the capillary at time t = 1300 MD time-steps. The fluid is in equilibrium with

its vapour. Fluid atoms are in blue. Vapour is yellow, tube walls are red and the

precursor is green. One distinguishes between vapour and precursor, subject to the

radial distance of the respective atoms from the tube wall, if a certain particle has no

contact with the wall, it is deemed ’vapour’. The MD parameters are as follows [42]:

R = 11σ, L = 80σ, ρl = 0.774, µ = 6.3, γ = 0.735, σ = 1, where R is the capillary

radius and L its length.

an appropriate choice of the kinematic viscosities. The chosen parameters correspond

to an average capillary number Ca ≈ 3 10−2 and Ca ∼ 0.1 for LB and MD respectively.

In order to emphasise the universal character of the phenomenon and to match directly

MD and LB profiles, results are presented in natural units, namely, space is measured

in units of the capillary size, lcap and time in units of the capillary time tcap = lcap/Vcap,

where Vcap = γ/µ is the capillary speed and lcap = H/CLB for LB and lcap = R/CMD

for MD. The reduced variables are denoted as ẑ and t̂.

In figure 2a, we show ρ(z) at various instants (in capillary units), for both MD and

LB simulations. Choosing a constant time-interval ∆t̂ = 7 between subsequent profiles,

it is clear that the interface position advances slower than linearly with time. The

relatively high average density ρ(z) near the wall witnesses the presence of a precursor

film attached to the wall. Indeed, the profiles ρ(z) at late times become distinctly
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Figure 2. Dynamics of the bulk and precursor meniscus. (a) Position of the liquid

meniscus ẑ2(t) for LB and MD simulations. The position of the precursor film, ẑ2

prec(t)

is also plotted for both models. ẑprec is defined as the rightmost location with density

ρ = ρbulk/3. All quantities are given in natural “capillary” units (see text). The

asymptotic (t > 15tcap) rise of both precursor and bulk menisci follows a t1/2 law, with

different prefactors (see the two straight lines), even though the underlying microscopic

physics is different. Notably, the precursor film is found to proceed with the law:

ẑ2

prec(t) = 1.35t̂. (b) Profiles of the average fluid density ρ(z) in the capillary at

various times for LB and MD models.

Figure 3. The two figures show the fluid density profile in the vicinity of the meniscus,

LJ-MD (left) and LB (right), at time t̂ = 20 The MD results are rescaled so that the

width is the same for both methods.

nonzero far ahead of the interface position (near the right wall at ẑ ≈ 10 where the

capillary ends), due to a fluid monolayer attached to the wall of the capillary: this

precursor advances faster then the fluid meniscus in the pore center, but also with a√
t law (see below). From this figure, it is appreciated that quantitative agreement

between MD and LB is found also between the spatial profiles of the density field. This

is plausible, since the LB simulations operate on similar principles as the MD ones,

namely the fluid-wall interactions are not expressed in terms of boundary conditions

on the contact angle, like in continuum methods, but rather in terms of fluid-solid

(pseudo)-potentials. In particular, the degree of hydrophob/philicity of the two species
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can be tuned independently, by choosing different values of the fluid-solid interaction

strengths (for details see [42, 43]). In figure 2b, we show the position of the advancing

front and the precursor film as a function of time, for both MD and LB simulations.

Even though the average capillary numbers are not exactly the same, a pretty good

agreement between LB and MD is observed. In particular, in both cases, the precursor

is found to obey a
√

t scaling in time, although with a larger prefactor than the front.

As a result, the relative distance between the two keeps growing in time, with the

precursors serving as a sort of ’carpet’, hiding the chemical structure of the wall to the

advancing front. In spite of the different capillary number, the agreement between LB

and MD can be attributed to the fact that these two approaches share the same static

angle, θ0 = 0, since the “maximal film” [1], or complete wetting, configuration has been

imposed by increasing the strength of the wall-fluid attraction [42, 43], i.e. imposing

that the spreading coefficient S > 0 [1].

In natural units, the Lucas-Washburn law takes a very simple universal form

ẑ2 = ẑ2
0 + t̂ , (15)

where we have inserted the value of cos(θ) = 1, corresponding to complete wetting.

As to the bulk front position, fig.2a shows that both MD and LB results superpose

with the law (15), while the precursor position develops a faster dynamics, fitted by the

relation [18]:

ẑ2
prec = ẑ2

0 + 1.35t̂ . (16)

Similar speed-up of the precursor has been reported also in different experimental and

numerical situations [15, 44]. The precursor is here defined through the density profile,

ρ(z), averaged over the direction across the channel.

In figure 3, we show a visual representation of the quantitative agreement between

MD and LB dynamics: we present the density isocontour which can be imagined as the

advancing front. It is seen that the interface positions are in good agreement and also

density structures are very similar.

These results achieve the validation of the LB method against the MD simulations.

Moreover, as recently pointed out [42, 41, 18], our findings indicate that hydrodynamics

persists down to nanoscopic scales. The fact that the MD precursor dynamics

quantitatively matches with mesoscopic simulations, suggests that the precursor physics

also shows the same kind of nanoscopic persistence.

Fig. 4 shows the whole interface in the vicinity of the meniscus and, in particular,

the shape of the precursor computed with both methods. The plot emphasises the

presence of a precursor film at the wall. The agreement between the two methods is

again quantitative. The interface in both methods turns out to be about 5 units. The

precursor film profile, defined by the isoline of points with density ρ = ρbulk/3, is split

in two regions. In the first that arrives until y ≈ 7, it is fitted by a circular profile with

center at z0 = 0, y0 = 20 and radius r = 18. In the second, from y ≈ 7 to the wall,

the film is fitted by the function a2

Caz
. In this formula, a is a characteristic molecular

size which is taken to be a = 1 in our case. This profile is obtained in the lubrication
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MD
Circular fit
theoretical max. film

Figure 4. The extrapolated interface position for both methods and the theoretical

profile for “maximal film”. The x- and y- axis are normalised in order to reproduce

the LB units. The colored region represents the whole interface. It is delimited, on the

left, by the solid line representing the isolines of the bulk density (ρ = 0.9) and on the

right by the one describing the beginning of the lighter fluid (ρ = 0.1), where only few

molecules of the penetrating fluid are present because of diffusion. The length of the

precursor film appear in line with the relation Lp = 7.210−1Ca−1 found in a recent

nanoscale experiment [14].

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0.5 1 2 3 4 5 6

P
(y

)

y

theoretical fit
LBE

Figure 5. Disjoining pressure in LB and its fit based upon analytical expression

are shown versus the distance from wall. The analytical expression for Van der Waals

forces is given by A
6πy3 , where is the Hamakar constant A = π2kαl(αs−αL) and αs, αL

are the polarizabilities of the solid and the liquid. In our case of total wetting, A > 0 [2]

and our data are fitted by using A = 0.019.
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Figure 6. A channel of length L = 200 LB units and width H = 41 LB units is

studied. The contact angles at the bottom and top walls are taken to be θ1 = θ2 = θ.

An square obstacle is also present, whose dimensions are given by the height h and the

width w.

approximation considering Van der Waals interaction between fluid and walls [1], in

the case of “maximal film” (perfect wetting). Quantitative agreement is again found

between LB, MD and analytics, thus corroborating the idea of the Shan-Chen pseudo-

potential as a quantitative proxy of attractive Van der Waals interactions in the low

density regime, where hard-core repulsion can be neglected. It is interesting to note

that the presence of the precursor film guarantees an apparent angle θ = 0◦,whereas the

angle calculated from the circular fit of the bulk meniscus would be θ ≈ 40◦ Since these

forces are, apparently, the key microscopic ingredient to be injected into an otherwise

continuum framework, it is plausible to expect that LB should be capable of providing a

realistic and quantitative description of precursor dynamics. The results of the present

simulations confirm these expectations and turn them into quantitative evidence. We

have also computed the disjoining pressure inside the film in order to corroborate the

idea that LB is capable of correctly describing the dynamics of the precursor film. Such

pressure is related to the chemical potential and it is function of the distance from walls,

that is of the thickness of the film [2]. In fig. 5, the disjoining pressure computed inside

the film in the LB is compared with the fit based upon the analytical expression given for

Van-der-Waals forces. LB is a diffuse-interface model and, therefore, can not guarantee

a pure hydrodynamical behaviour with ideal interfaces inside a thin film, such as the

precursor film experienced in this work. Nevertheless, is seems to assure a disjoining

pressure at least compatible with microscopic physics, with the correct divergence at

the wall. This appears to be consistent with the fact that real interfaces are found to

be diffuse also in experiments at macroscopic scales [15].
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Figure 7. Snapshots of density at different times t =

20000, 30000, 40000, 50000, 60000, 100000 LB units.

4.2. Nanochannel in presence of an obstacle

In this section, we study the capillary filling in a nano-channel in presence of an obstacle.

In particular, we want to analyse the effect of the precursor films on the dynamics of

the fluid when crossing the obstacle. This test-case has been simulated through the

LB model and the geometry is depicted in figure 6. First, we simulate a channel with

hydrophilic walls which support a complete wetting (θ = 0◦). An obstacle is put in the

middle of the channel length with dimensions w = h = 20 LB units. Six snapshots of the

density evolution with time are represented in figure 7. Precursor films are visible ahead

of the meniscus of the penetrating fluid at the bottom wall. Such film wets the obstacle

before the front encounters it. The obstacle is large (its width is equal to the half of

the channel) but the contact angle is small and therefore the front does not pin and is

able to pass the obstacle in a relative short time, as known according to the Gibbs, or

Concus-Finn, criterion [45, 46]. Nevertheless, the meniscus dynamics is deeply affected

by the presence of the obstacle. It is seen that the liquid on the top wall advances much

more rapidly than the one on the bottom wall. In particular, at the beginning and at

the end of the obstacle the meniscus line is strongly distorted. After some time,

We now perform a systematic series of simulations, where we vary the height of the

obstacle in order to check to what extent the dynamics is affected by wall roughness.

In figure 8, the detailed characteristics of the front dynamics are analysed. In figure 8a,

it is possible to appreciate that, for complete wetting θ = 0◦, the presence of a small
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Figure 8. In all figures square obstacles (with width equal to the height) are considered

and the front position versus time is shown. (a) Different obstacle height are considered

for θ = 0◦. (b)The contact angle is changed (from 0 to 40 degrees) taking the height

of the obstacle constant and equal to h = 10. The front dynamics for the case with no

obstacle and θ = 40◦ is also shown for comparison. (c) Same as in (b) but with h = 5.
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obstacle (h = 5 = H/8) is negligible. The front advances almost in the same way for the

cases h = 0◦ and h = 5. This is possibly due to the presence in these cases of precursor

films which wet the obstacle anticipating the meniscus. In this way, they “hide” the

roughness and let the front pass through the obstacle without feeling any roughness. For

an obstacle of middle width h = 10, the front is strongly distorted and slowed down but

it recovers the initial slope, after it has passed through the obstacle. On the contrary, for

larger obstacles h ≥ 15 the dynamics of the meniscus seems to be irreversibly changed

and it advances with a decreased slope after the obstacle. Then, we carry out numerical

simulations keeping the height of the obstacle (h = 10) constant, while varying the

contact angle. In figure 8b, it is seen that the slope of the curve is strongly affected by

the value of the contact angle and, notably, for θ > 20◦ the curve is not able to recover

the initial dynamics but it results much slower. Moreover, the velocity of the advancing

front is strongly decreased when the walls are not very hydrophilic and with roughness.

For instance, the front advances very similarly for θ = 40◦ without roughness h = 0 and

for h = 10, θ = 10◦. This seems to confirm the guess that the precursor films can reduce

the drag in presence of roughness. In figure 8c, the same analysis is worked out for an

obstacle with width w = 5. The effect of such obstacle is quite small for θ < 10◦, where

precursor films are supposed to be present. Naturally, it results increasingly important

with the increase of the contact angle and it causes a change in slope for θ > 30◦.

5. Conclusions

Summarising, we have thoroughly analysed the capillary filling in a nanochannel by

using atomistic and hydrokinetic methods.

We have reported quantitative evidence of the formation and the dynamics of

precursor films in capillary filling with highly wettable boundaries. The precursor

shape shows persistent deviation from an ideal circular meniscus, due to the nanoscopic

distortion induced by the interactions with the walls. When properly scaled, the

results do not seem sensitive to geometry (in this work we investigate two different

geometries) and resolution. This has been connected to the disjoining pressure induced

by Van der Waals interactions between fluid and solid and approximated in the LB

approach by a suitable phenomenological model. Our findings are supported by direct

comparison between LB, MD simulations and theoretical predictions, which suggests

that a continuum description (LB) together with a proper inclusion of the solid-fluid

interaction is able to reproduce this phenomenon. In this sense, this work provides a

complete assessment of the LB method for the study of nanochannel capillary filling.

Then, a nanochannel with a square obstacle has been simulated via the LB model.

The complete parametric analysis points out that for highly wetting walls (θ < 10◦) the

presence of precursor films make the presence of small obstacles (with a width smaller

than 1/8 of the channel height) negligible. Furthermore, results seems to indicate that

to reach high flow rate it is preferable to choose very hydrophilic and rough walls rather

than to use very smooth but hydrophobic walls.
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3-D simulations will be carried out in order to assess these affirmations and to

evaluate the effect of different obstacle geometry and position.
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