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A multi-component lattice Boltzmann model recently introduced (R. Benzi et al., Phys. Rev. Lett.

102, 026002 (2009)) to describe some dynamical behaviors of soft-flowing materials is theoretically
analyzed. Equilibrium and transport properties are derived within the framework of a continuum
free-energy formulation, and checked against numerical simulations. Due to the competition between
short-range inter-species repulsion and mid-range intra-species attraction, the model is shown to
give rise to a very rich configurational dynamics of the density field, exhibiting numerous features
of soft-flowing materials, such as long-time relaxation due to caging effects, enhanced viscosity
and structural arrest, ageing under moderate shear and shear-thinning flow above a critical shear
threshold.

I. INTRODUCTION

The study of the rheology of flowing soft systems, such as emulsions, foams, gels, slurries, colloidal glasses and
related complex fluids, is gaining an increasing role in modern science and engineering [1, 2, 3, 4, 5, 6, 7, 8]. From the
theoretical standpoint, much of the fascination of these systems stems from the fact that they do not fall within any
of three basic states of matter, gas-liquid-solid, but live rather on a moving border between them. Foams are typically
a mixture of gas and liquids, whose properties can change dramatically with the changing proportion of the two; wet-
foams can flow almost like a liquid, whereas dry-foams may conform to regular patterns, exhibiting solid-like behavior
[9]. Emulsions can be paralleled to bi-liquid foams, with the minority species dispersed in the dominant (continuous)
one. The behavior and, to same extent, the very existence itself of both foams and emulsions are vitally dependent on
surface tension, namely the interactions that control the physics at the interface between different phases/components.
Indeed, the presence of surfactants, i.e. a third constituent with the capability of lowering surface tension, has a
profound impact on the behavior of foams and emulsions; by lowering the surface tension, surfactants can greatly
facilitate mixing, a much sought-for property in countless practical endeavors, from oil-recovery, to chemical and
biological applications. Another basic property of foams and emulsions is metastability/disorder. Indeed, in most
instances, these materials consist of a disordered collection of droplets/bubbles with a broad distribution of sizes,
randomly mixed and arranged, which do not correspond to the (global) minimum of any thermodynamic function.
This is even truer in the case of complex flowing systems, which live consistently out of (thermodynamic) equilibrium.
As a result, they exhibit a number of distinctive features, such as long-time relaxation, anomalous viscosity, aging
behavior, whose quantitative description is calling for profound extensions of non-equilibrium statistical mechanics
[1, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The study of these phenomena sets a pressing challenge for computer simulation
as well, since characteristic time-lengths of disordered fluids can escalate tens of decades over the molecular time scales
[19, 20, 21]. In addition, tracking the time evolution of complex interfaces represents a serious hurdle for traditional
discretization techniques. These split into two broad categories: Eulerian and Lagrangian. In Eulerian methods,
the physical observables are attached to a fixed grid and monitored as they change in time at each grid location.
Lagrangian methods, on the contrary, ”go with the flow”, i.e. the degrees of freedom are attached to the moving
fields, and most notably to the critical regions of the flow where the most abrupt changes take place (interfaces).
As usual, both methods have their merits and pitfalls. Lagrangian methods do not waste degrees of freedom on
uninteresting regions of the flow; however, since the grid adapts to the changing fields, when these changes are too
abrupt the numerics is forced to ad-hoc readjustments (grid-rezoning) which may eventually fail and lead to collapse
of the numerics [22] . Eulerian methods are free from these problems, because the interface is not tracked, but just
tagged as the region where strong gradients are detected. The downside is that very high resolution is needed around
the interface, for otherwise excessive smoothing (numerical diffusion) results (diffuse-interface) [23] . A special variant
of Eulerian methods does not attempt to resolve the interface, which is treated as a zero-thickness mathematical
interface, across which jumps of the observables are specified. A proper handling of the discontinuities, and the
avoidance of spurious oscillations, is however a non-trivial task [24].

On a more microscopic scale, often too small for hydrodynamic purposes, to date the most credited techniques for
complex flowing materials are Molecular Dynamics and Monte Carlo simulations [19, 20, 21]. Molecular Dynamics
in principle provides a fully ab-initio description of the system, but it is limited to space-time scales significantly
shorter than experimental ones. Monte Carlo methods are somehow less affected by this limitation, since they can be
designed in compliance with accelerated-dynamic sampling rules. However, these rules meet with some difficulties in
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FIG. 1: Sketch of the interaction forces between two species, say A and B. The two components A and B interact via a repulsive
pseudo-potential, which supports a surface tension σAB . Moreover, each component experiences an attractive interaction in
the first Brillouin zone and a repulsive one acting on both Brillouin zones (see also figure 2 for the technical details). Each of
these interactions can be tuned through a separate coupling constant.

accounting for hydrodynamic interactions [25]. As a result, neither MD nor MC can easily take into account the non-
equilibrium dynamics of complex flowing materials, such as micro-emulsions, on space-time scales of hydrodynamic
interest. Besides these general techniques, a number of specialized methods are also available, such as dissipative
particle dynamics [26] and others. More in details, a special kind of Molecular Dynamics (MD) for dry granular,
Stokesian Dynamics (SD) for viscous suspensions and Bubble-Model for foams [27, 28, 29] have been developed with
several adjustable particle interactions in order to have a good agreement with experiments [30, 31, 32]. By contrast,
the combination of both particle deformation and viscous flow has not been fully described yet, although it is central
in such materials as foams and emulsions. For macroscopic complex flows, particularly interesting is the approach by
Doi et al. [33], which construct a set of evolution equations for the volume fraction of the oriented interface elements
within a complex flows, and more recently the soft dynamics approach [34].

In the last decade, a new class of mesoscopic methods, based on minimal lattice formulations of Boltzmann’s
kinetic equation, have captured significant interest as an efficient alternative to continuum methods based on the
discretization of the Navier-Stokes equations for non-ideal fluids [35, 36, 37, 38, 40, 41]. A very popular mesoscopic
technique is the pseudo-potential-Lattice-Boltzmann (LB) method, developed over a decade ago by Shan & Chen
[42, 43]. In the SC method, potential energy interactions are represented through a density-dependent mean-field
pseudo-potential, Ψ(ρ), and phase separation is achieved by imposing a short-range attraction between the light and
dense phases. In this work, we discuss extensions of two-species, mesoscopic lattice Boltzmann model which prove
capable of reproducing some features of flowing soft- materials, such as structural arrest, anomalous viscosity, cage-
effects and ageing under shear [44]. The key feature of the model is the capability to investigate the rheology of
these systems on space-time scales of hydrodynamic interest at an affordable computational cost. Among others, this
model shows the first evidence of mesoscopic cage formation and rupture within a hydrodynamic lattice Boltzmann
description.

The present work is organized in two major parts: Theory and Numerical Results. In section II, we provide
the basic elements of the multicomponent lattice kinetic model with multi-range non-ideal interactions, short-range
attraction and mid-range repulsion. In section III, we derive the macroscopic equations associated with the large-scale
hydrodynamic limit of the kinetic model. In section IV and V, we present an explicit calculation of the equilibrium
(equation of state) and transport (surface-tension) properties, both for the case of intra-species repulsion alone, as well
as its combination with intra-species attraction. In the process, we detail how the combination of this short/mid-range
attractive/repulsive interactions allows to bring the surface tension down to vanishingly small values, a property which
is key to the complex and heterogeneous dynamics displayed by the model, and notably by the density field. The
numerical part follows in section VI. In section VII we discuss the morphological features of the density configurations,
and demonstrate the existence of long-lived metastable states resulting from the interplay/competition between short-
range attraction and mid-range repulsion. In section VIII, we investigate the dynamic response of system under an
external shear drive, and provide several evidences of complex behaviors, such as cage formation and rupture under
shear, ageing and its disappearance above a critical shear threshold, long-term non-Newtonian shear-strain correlations
and Barkhausen intermittency, namely a power-law distribution of the waiting times between sliding events events. In
section IX we discuss the issues of sensitivity to initial conditions and finite-size effects. In section X, we conclude with
an outlook and future perspectives for the application of the present model, and generalizations thereof, to a broad
class of complex soft-flowing systems, such as foams, emulsions and similar. Finally, in the Appendix we provide the
conversion rules from/to lattice to physical units.
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II. THE MULTI-COMPONENT KINETIC MODEL

Kinetic theory and its discrete (lattice Boltzmann) counterparts for multicomponent fluids and gas mixtures have
received much attention in the literature [42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Many of the kinetic models
for mixtures are based on the linearized Boltzmann equations, especially the single-relaxation-time model due to
Bhatnagar, Gross, and Krook -the celebrated BGK model [39]. Here we shall consider the multicomponent model
introduced by Shan & Chen [42, 43]: after a brief summary the main properties of the model we will proceed
to analyze the equilibrium states relevant on the hydrodynamic scales. We start from a kinetic lattice Boltzmann
equation [38, 40, 41] for a multicomponent fluid with Ns species [54, 55] whose evolution equations over a characteristic
time lapse ∆t read as follows

fis(~r + ~ci∆t, t+ ∆t) − fis(~r, t) = −
∆t

τs
[fis(~r, t) − f

(eq)
is (ρs, ~u+ τs ~Fs/ρs)] (1)

where fis(~r, t) is the probability density function of finding a particle of species s = 1...Ns at site ~r and time t, moving
along the i-th lattice direction defined by the discrete speeds ~ci with i = 0...b. For simplicity, the characteristic time
lapse ∆t is assumed to be equal to unity in the following. The left hand-side of (1) stands for molecular free-streaming,
whereas the right-hand side represents the time relaxation (due to collisions) towards local Maxwellian equilibrium

f
(eq)
is (ρs, ~u) on a time scale τs [38, 39, 40, 41]. The local Maxwellian is truncated at second order, an approximation

that is sufficient to recover correct hydrodynamic balance in the isothermal regime

f
(eq)
is (ρs, ~u) = w

(eq)
i ρs

(

1 +
(uacia)

c2S
+

(ciacib − c2Sδab)

2c4S
uaub

)

with c2S the square of the sound speed velocity in the model and δab the Kronecker delta with a, b indicating the

Cartesian components (repeated indices are summed upon). The w
(eq)
i ’s are equilibrium weights used to enforce

isotropy of the hydrodynamic equations [38, 40, 41]. To be noted that the equilibrium for the s species is a function
of the local species density

ρs(~r, t) =
∑

i

fis(~r, t)

and the common velocity defined as

~u(~r, t) =

∑

s
1
τs

∑

i fis(~r, t)~ci
∑

s
1
τs
ρs(~r, t)

.

This common velocity receives a shift from the force ~Fs acting on the s species [42, 54]. This force may be an external
one or it could also be due to intermolecular (pseudo)-potential interactions. The pseudo-potential force within each
species consists of an attractive (a) component , acting only on the first Brillouin region (belt, for simplicity), and a
repulsive (r) one acting on both belts, whereas the force between species (X) is short-ranged and repulsive:

~Fs(~r, t) = ~F a
s (~r, t) + ~F r

s (~r, t) + ~FX
s (~r, t)

where

~F a
s (~r, t) = −Ga

sΨs(~r, t)
∑

i∈belt1

wiΨs(~ri, t)~ci

~F r
s (~r, t) = −Gr

sΨs(~r, t)
∑

i∈belt1

piΨs(~ri, t)~ci −Gr
sΨs(~r, t)

∑

i∈belt2

piΨs(~ri, t)~ci (2)

~FX
s (~r, t) = −

1

(ρ
(s)
0 )2

ρs(~r, t)
∑

s′ 6=s

∑

i∈belt1

Gss′wiρs′(~ri, t)~ci.

In the above, the groups ’belt 1’ and ’belt 2’ refer to the first and second Brillouin zones in the lattice and ~ci, pi, wi

are the corresponding discrete speeds and associated weights (see figure 2 and table I). Apart from a normalization
factor, these correspond to the values given in [56, 57]. Also, Gss′ = Gs′s, s

′ 6= s, is the cross-coupling between
species, ρ0 a reference density to be defined shortly and, finally, ~ri = ~r + ~ci are the displacements along the ~ci
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velocity vector. These interactions are sketched in Figure 1 for the case of a two component fluid (say species A
and B). Note that positive (negative) G code for repulsion (attraction) respectively. This model is reminiscent of the
potentials used to investigate arrested phase-separation and structural arrest in charged-colloidal systems, and also
bears similarities to the NNN (next-to-nearest-neighbor) frustrated lattice spin models [58, 59, 60, 61]. As compared
with lattice spin models, in our case a high lattice connectivity is required to ensure compliance with macroscopic
non-ideal hydrodynamics, particularly the isotropy of potential energy interactions, which lies at the heart of the
complex rheology to be discussed in this work. To this purpose, the first belt is discretized with 9 speeds, while the
second with 16, for a total of b = 25 connections (including rest-particles, for normalization purposes). The weights
are chosen in such a way as to fulfill the following normalization constraints:

w0 +
∑

i∈belt1

wi = p0 +
∑

i∈belt1

pi +
∑

i∈belt2

pi = 1 (3)

∑

i∈belt1

wic
2
ix =

∑

i∈belt1

pic
2
ix +

∑

i∈belt2

pic
2
ix = c2S . (4)

with c2S = 1/3 the lattice sound speed and w0 and p0 the weights associated to the velocity at rest. All the weights
take the values illustrated in Table I. The set of discrete speeds and corresponding weights are such as to recover
4th order isotropy for the interactions running on the first belt and 8th order isotropy for those extending over the
second one. This choice is naturally patterned after reference [56, 57], although different options might be available.
The pseudo-potential Ψs(ρs) is taken in the form originally suggested by Shan & Chen [42, 43]

Ψ(ρs) = ρ
(s)
0 (1 − e−ρs/ρ

(s)
0 ), (5)

where ρ
(s)
0 marks the density value above which non ideal-effects come into play for species s. For the sake of simplicity,

in the sequel we shall take a common value for all species, ρ
(s)
0 = ρ0.

Forcing Weigths (for ~F r
s )

pi = 247/420 i = 0

pi = 4/63 i = 1, 4

pi = 4/135 i = 5, 8

pi = 1/180 i = 9, 12

pi = 2/945 i = 13, 20

pi = 1/15120 i = 21, 24

Forcing Weights (for ~F a
s and ~F X

s )

wi = 4/9 i = 0

wi = 1/9 i = 1, 4

wi = 1/36 i = 5, 8

TABLE I: Links and weights of the two belts, 25-speeds lattice [57, 62] for all interactions sketched in equations (2). The first
belt lattice velocities are indicated with i = 1...8 while the second belt ones with i = 9...24 (see also figure 2 for a sketch). pi or
wi is indicating the weight associated with the i-th velocity in the various interactions. The weights associated to the velocity
at rest, w0 and p0, are chosen to enforce a unitary normalization (3).

III. MACROSCOPIC EQUATIONS

The set of macroscopic equations associated with our kinetic model consists of the continuity equations, one for
each component separately, plus an equation of motion for total fluid momentum. Under the assumption of the same
characteristic time scale for all the components τs = τ , [85] these equations read as follows:

∂tρs + ∂a(ρsua) = ∂aJsa (6)
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FIG. 2: The discrete 25-speed lattice. Both belts are illustrated with the corresponding velocities.

∂t(ρua) + ∂b(ρuaub) = −∂b(c
2
Sρ+ σab) +

∑

s

Fsa = −∂b(Pab − σ
(visco)
ab ) (7)

where ρ =
∑

s ρs is the total density, ~u =
∑

s ρs~us/ρ is the baricentric (total) fluid velocity, Fsa the a-th component

of the force acting on specie s and σ
(visco)
ab the dissipative component of the momentum-flux tensor. The diffusive

current in (18) is given by

Jsa = c2S

(

τ −
1

2

)(

∂aρs −
ρs

ρ
∂aρ

)

− τ

(

Fsa −
ρs

ρ

∑

s′

Fs′a

)

. (8)

Central to this analysis is the momentum-flux tensor, defined as the sum of a kinetic component plus an interaction
term:

Pab = P kin
ab + P int

ab (9)

where

P kin
ab =

∑

is

fisciacib (10)

plus the interaction component, P int
ab , defined by the condition:

∂bP
int
ab = −

∑

s

Fsa. (11)

Taylor expansion of the forcing terms will allow for a direct computation of P int
ab and the diffusion currents [54, 55].

It has to be noted that relation (11) can also be directly satisfied on the lattice using the idea developed in a recent
paper by Shan [63], thus leading to more refined computational results for the momentum equation.

A. Two component fluid

The picture simplifies significantly for the case of a two-component fluid (say A and B). When the distribution
functions fiA, fiB are close to the equilibrium, the kinetic part of the pressure tensor takes the following form:

P kin
ab = (ρA + ρB)c2Sδab +K

(τ)
ab (12)

K
(τ)
ab = c4S

ρAρB

ρ

(

τ −
1

2

)2(
∂aρA

ρA
−
∂aρB

ρB

)(

∂bρA

ρA
−
∂bρB

ρB

)

. (13)
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where we recognize an ideal part (ρA + ρB)c2Sδab plus some extra τ dependent terms. The origin of these terms will
be elucidated in the section devoted to transport properties when we will detail the calculations of the surface tension
coefficients across curved interfaces. Upon Taylor expanding [57] up to the fourth order the forcing terms in the
momentum equation, the interaction terms of the pressure tensor can be recast into the following form

P int
ab =

(

c2S
GA1

2
Ψ2

A + c2S
GB1

2
Ψ2

B + c2SgABρAρB + c4SΠ

)

δab − Γab (14)

Π =
∑

s=A,B

Gs2

(

1

4
|∇Ψs|

2 +
1

2
Ψs∆Ψs

)

+
gAB

2
(ρA∆ρB + ρB∆ρA + ∇ρA · ∇ρB) (15)

Γab =
1

2
c4S (G2A∂aΨA∂bΨA +G2B∂aΨB∂bΨB + gAB(∂aρA∂bρB + ∂aρB∂bρA)) . (16)

In the above, we have set

gAB ≡ GAB/ρ
2
0

and introduced the effective couplings

Gs1 = Ga
s +Gr

s Gs2 = Ga
s +

12

7
Gr

s s = A,B. (17)

From these expressions, we note that the presence of the second-neighbor repulsive layer allows a separate control
of the equilibrium (equation of state, i.e. terms proportional to c2S) and transport properties (surface tension, i.e.
terms proportional to c4S). For the diffusive current, we can Taylor expand the forcing terms up to the second order
to obtain

Jsa =
∑

s′

Dss′(ρA, ρB)∂aρs′ s, s′ = A,B (18)

where the (non-linear) diffusion coefficients are given by:

DAA = c2S

(

ρB

ρ

(

τ −
1

2

)

+
τ

ρ
(GA1ρBΨAΨ′

A − gABρBρA)

)

(19)

DBB = c2S

(

ρA

ρ

(

τ −
1

2

)

+
τ

ρ
(GB1ρAΨBΨ′

B − gABρAρB)

)

(20)

These are nothing but equations (26)-(29), already discussed in a earlier paper by Shan & Doolen [54]. The above
expressions indicate that the intra-species mass flow consists of an internal component, proportional to the density
of the other species, and a force-induced component, proportional to the intermolecular couplings [54, 55]. Note that
the latter does not vanish even in the limit of zero inter-species interactions, gAB → 0. The following reciprocity
relations:

DAB = −DBB, DBA = −DAA. (21)

secure conservation of the total density. The continuum-time limit τ ≫ 1
2 is thus characterized by

DAA → c2Sτ

(

ρB

ρ
+

1

ρ
(GA1ρBΨAΨ′

A − gABρBρA)

)

(22)

DBB → c2Sτ

(

ρA

ρ
+

1

ρ
(GB1ρAΨBΨ′

B − gABρAρB)

)

(23)

with the relaxation properties factorizing outside. It is therefore natural and convenient to introduce a τ -dependent
parameter

θ(τ) =
τ − 1

2

τ
(24)
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measuring the importance of discrete-time effects in the macroscopic equations. Clearly, in the continuum time limit
θ(τ) → 1, while for τ → 1/2 we have θ(τ) = 0 (in terms of lattice Boltzmann fluids this is a dissipation free limit
[41]). The diffusion coefficients can thus be recast into the following form

DAA = τc2S

(

θ(τ)
ρB

ρ
+

1

ρ
(GA1ρBΨAΨ′

A − gABρBρA)

)

(25)

DBB = τc2S

(

θ(τ)
ρA

ρ
+

1

ρ
(GB1ρAΨBΨ′

B − gABρAρB)

)

. (26)

IV. EQUILIBRIUM PROPERTIES

In this section we study the main equilibrium properties of the model previously introduced whenever stable inter-
faces between the two fluids set in. To this purpose, we will focus on a one-dimensional problem, where inhomogeneities
in the density profiles develop only across a single coordinate, say x. It proves expedient to start with the case of two

components with mutual density repulsion (i.e. equation (2) with ~F r
s = 0, ~F a

s = 0 ), where an exact matching with
a free-energy functional can be achieved in the continuum limit, i.e. when the discrete lattice effects are negligible.
This allows us to envisage efficient strategies to describe the bulk equilibrium properties in special situations where
all pseudo-potentials interactions are included (i.e. equation (2) with all the interactions on).

A. Multicomponent Model with pure Density Repulsion

At equilibrium, the relevant properties of the interfaces emerging from the separation of the fluids can be obtained
by imposing a constant diffusion current and a constant pressure all across the interface (zero net flow can safely be
assumed). This yields:

τc2S

(

ρB

ρ
θ(τ) −

1

ρ
(gABρBρA)

)

∂xρA − τc2S

(

ρA

ρ
θ(τ) −

1

ρ
(gABρAρB)

)

∂xρB = J0 (27)

Pxx = c2SρA + c2SρB + c2SgABρAρB + c4S
gAB

2
(ρA∂xxρB + ρB∂xxρA − ∂xρA∂xρB) +K(τ)

xx = P0 (28)

where P0 is the constant value of the pressure across the interface and J0 is the constant diffusion current predicted by

the single component continuity equation. For simplicity we have not expanded the extra τ dependent terms (K
(τ)
xx ) of

the kinetic pressure tensor (13). Since J0 = 0 in the bulk phases (∂xρA,B = 0), one concludes that J0 = 0 everywhere.
Next, we observe that the equation (27) can be recast in the form of a differential equation relating the values of the
two densities at each spatial location:

dρA

dρB
=
ρAρ

(τ)
g − ρAρB

ρBρ
(τ)
g − ρAρB

.

In the above, we have defined

ρ(τ)
g =

θ(τ)

gAB
(29)

as a characteristic density depending both on the relaxation properties in θ(τ) and on the intermolecular coupling
gAB, above which inter-species repulsion becomes dominant. At the spatial location where ρA = ρB , we also have
∂xρA = −∂xρB because of the symmetry of the system upon the interchange ρA ↔ ρB . Equation (27) also shows that,

at this location, ρA = ρB = ρ
(τ)
g . By integrating the previous differential equation backward and forward in density

space, starting from the point where dρA

dρB
= −1, it is possible to construct the manifold of density pairs (ρA, ρB)

obeying the condition of zero mass flow. For the specific case in point, these equations can be solved exactly, leading
to the following relation

ρA

ρB
= exp

(

(ρA − ρB)/ρ(τ)
g

)

.
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Obviously, this relation is fulfilled by the trivial solution ρA = ρB; owing to the non-linearity of the above equations,
non trivial solutions are expected beyond a critical value of gAB. These identify with the bulk densities once separation
between the fluids has occurred.

Since we have neglected higher order terms in the Taylor-expansion yielding the diffusive current, this relationship
is not expected to hold uniformly across the interface. However, it can be be regarded as an excellent approximation
to compute the bulk densities after separation of the two fluids. To this end, we note that, out of the full set of
pair densities, (ρA, ρB) belonging to the density manifold, only one is compatible with the condition of equilibrium.
Mechanical equilibrium, as obtained by imposing a constant pressure tensor across the interface, equation (28), cannot
serve as a selection criteria, because of the invariance under the interchange ρA ↔ ρB . The two values of the bulk
densities can however be fixed by imposing the total average density in the numerical simulations 〈ρA + ρB〉 = 〈ρ〉.
This provides a system of two equations determining the two bulk densities:

{

ρA

ρB
= exp

(

(ρA − ρB)/ρ
(τ)
g

)

ρA + ρB = 〈ρ〉.
(30)

Once the bulk densities have been fixed, the momentum equation (28), consistently with the higher order in the
Taylor expansion for the density equation (27), would allow to reconstruct the profiles across the interface. Such
technical construction will make the object of a forthcoming paper.

B. Free-energy procedure

In order to better elucidate the mechanism fixing the bulk densities in the phase separation process, we can also
resort to a direct exact link with a free energy functional in the continuum limit, where all discrete lattice effects
disappear. We begin by considering a free-energy density in the form

L(ρA, ρB) = c2SρA log ρA + c2SρB log ρB + c2SgABρAρB − c4S
gAB

2
∇ρA · ∇ρB. (31)

This consists of the sum of two ideal free-energy densities (c2SρA,B log ρA,B) plus an interaction term. It has to be
stressed that the terms proportional to c2SgAB in front of the interacting terms should by no means be related to the
fluid temperature, as they simply disappear upon a suitable choice of the lattice forcing weights [62]. On the other
hand, the term proportional to c2S in front of the ideal parts (∼ ρA,B log ρA,B) plays the role of a global reference
temperature. This is of no relevance for the present athermal case, but may become important for generalizations
involving temperature fluctuations [64], where internal energies need to be introduced. As to the free-energy in (31),
it is readily checked that the bulk contribution

fb(ρA, ρB) = c2SρA log ρA + c2SρB log ρB + c2SgABρAρB

correctly reproduces the bulk pressure:

Pb(ρA, ρB) = ρA
∂fb

∂ρA
+ ρB

∂fb

∂ρB
− fb = c2S(ρA + ρB) + c2SgABρAρB

that is the generalization of the standard Legendre’s relation Pb(ρ) = ρ∂f(ρ)
∂ρ − f(ρ) connecting the free-energy to

the bulk pressure of a single-component fluid. In order to preserve both densities separately, we next introduce two
Lagrange multipliers, say λA and λB, thus leading to the following constrained free-energy density:

L(ρA, ρB) = fb(ρA, ρB) − c4S
gAB

2
∇ρA · ∇ρB − λAρA − λBρB. (32)

Variations of this constrained free-energy with respect to ρA and ρB delivers the following two Euler-Lagrange equa-
tions:







∂L
∂ρA

− ∂α

(

∂L
∂(∂αρA)

)

= 0

∂L
∂ρB

− ∂α

(

∂L
∂(∂αρB)

)

= 0.
(33)

Based on (31), these yield:
{

dfb

dρA
+ c4S

gAB

2 ∂xxρB = λA

dfb

dρB
+ c4S

gAB

2 ∂xxρA = λB .
(34)
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Upon multiplying the first equation by ∂ρA

∂x and the second by ∂ρB

∂x we can then integrate between the bulk region
(x = 0) and a generic interface location (x). In this way, we obtain

{

− c2SρA

∣

∣

x

0
− c2SgABρAρB

∣

∣

x

0
+ c2SgAB

∫ x

0
ρB∂yρAdy + c4S

gAB

2

∫ x

0
(∂yρA)(∂yyρB)dy − c4S

gAB

2 ρA∂xxρB = 0

− c2SρB

∣

∣

x

0
− c2SgABρAρB

∣

∣

x

0
+ c2SgAB

∫ x

0 ρA∂yρBdy + c4S
gAB

2

∫ x

0 (∂yρB)(∂yyρA)dy − c4S
gAB

2 ρB∂xxρA = 0
(35)

where ... |
x
0 represents the variation between 0 (bulk) and x (interface location) of the desired observable. The above

equations represent the conserved currents associated with the two Lagrange multipliers and they can be linked
directly into the constant pressure tensor and diffusion current at equilibrium. In fact, by summing both equations
in (35) we obtain

c2S(ρA + ρB) + c2SgABρAρB +
c4SgAB

2
(ρB∂xxρA + ρA∂xxρB − ∂xρA∂xρB) = const. (36)

that is reminiscent of (28) upon neglecting K
(τ)
xx . Similarly, upon applying the x derivative to both equations in (35)

and then multiplying the first equation by ρB and the second by ρA we can finally subtract the two contributions to
get

(ρB∂xρA − ρA∂xρB) − gABρBρA(∂xρA − ∂xρB) + O(∂3) = 0

that is delivering the condition of a zero diffusion current, as given in (27) with J0 = 0, in the limit τ ≫ 1
2 , i.e.

θ(τ) → 1. Thus, in the free-energy formalism, both conservations descend from the same single scalar. The free-
energy formalism permits to recast the continuity equations in terms of the gradients of the chemical potentials
µs = ∂L

∂ρs
. More specifically:

∂tρA + ∂a(ρAua) = ∂a(M(ρA, ρB)∂a(µA − µB)) (37)

∂tρB + ∂a(ρBua) = ∂a(M(ρA, ρB)∂a(µB − µA)) (38)

where the mobility M(ρA, ρB) is given by M(ρA, ρB) = τ ρAρB

ρ . The above form of the continuity equation explicitly

shows that mass diffusion is triggered by an unbalance of the local chemical potentials, so that equilibrium is attained
whenever µA = µB . So much for the continuum picture.
For a finite value of τ , an exact matching between momentum and continuity equations starting from continuum free-
energy functional (32) is not so straightforward and more elaborate arguments are necessary. It is however possible
to fix the bulk densities by introducing the following τ -dependent functional

L(τ)(ρA, ρB) = f
(τ)
b (ρA, ρB) − c4S

g
(τ)
AB

2
∇ρA · ∇ρB − λAρA − λBρB (39)

f
(τ)
b (ρA, ρB) = c2SρA log ρA + c2SρB log ρB + c2Sg

(τ)
ABρAρB (40)

where g
(τ)
AB = gAB

θ(τ) is the effective coupling renormalized by lattice discreteness effects (note that this is exactly the

inverse of the reference density ρ
(τ)
g introduced earlier on). We note that in the long-time limit τ ≫ 1/2 (θ(τ) → 1),

we have

g
(τ)
AB → gAB

thus reproducing the continuum value. This τ dependence of the effective coupling reflects into an analogue dependence
of the bulk densities. The bulk minimization with respect of ρA and ρB, along the same lines as for the continuum
case, leads to the following bulk equations (the same procedure leading to (34), with ∂xxρA,B = 0)







df
(τ)
b

dρA
+ c2Sg

(τ)
ABρB = λA

df
(τ)
b

dρB
+ c2Sg

(τ)
ABρA = λB .

(41)

The symmetry under the interchange ρA ↔ ρB imposes λA = λB. By subtracting the second from the first equation
in (41) we obtain again the relation (30), thus showing that the manifold of (ρA, ρB) minimizing the bulk free-energy
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FIG. 3: Equilibrium bulk densities in the multicomponent Shan-Chen model with simple density-density repulsion

(equation (2) with ~F r
s = 0, ~F a

s = 0). In this case we have chosen ρ
(τ)
g = 1.6 in (29) by setting gAB = 0.345,

ρ0 = 1 and τ = 1.116071. We have then simulated a 1d interface between two components at varying the total
averaged density 〈ρ〉 in different numerical simulations. The numerical results are successfully compared with the
prediction coming from the minimization of the free energy (42) and well approximated by equations (43). In the
right figures we also show the typical profiles of the bulk free energies arising in the theory behind the simulations.
For simplicity the bulk free energy has been normalized to minus a unit value at the two minima. All results are
given in lattice Boltzmann units (LBU).

is the same as the one obtained by imposing a zero diffusion current. Here again, in order to single out a point of
minimum, we have to specify the total mass in the system, as stated in (30). The procedure gains transparency by
replacing the densities with their their local sum (ρ = ρA + ρB) and difference (φ = ρA − ρB). The bulk-free energy
functional takes then the following form:

f
(τ)
b (ρ, φ) =

c2S
2

(ρ+ φ) log

(

ρ+ φ

2

)

+
c2S
2

(ρ− φ) log

(

ρ− φ

2

)

−
c2S
4
g
(τ)
AB(ρ2 − φ2) (42)

It can be checked that, at a given value of ρ, this expression presents a double well structure, as soon as ρ ≥ ρ
(τ)
g . The

two minima correspond to the two symmetric values of φ (±φ0) attained at equilibrium in the bulk phases. To be
noted that the presence of the two minima reminds of the ’double tangent description’ characterizing the minimization
of a free-energy functional. In this simple case, due to the symmetric structure of the problem, we are left with a
symmetric free energy and therefore the bulk densities can be directly extracted from those two minima. By Taylor
expanding the full set of equations (30) we obtain an analytical estimate of the solution for the two bulk densities
(ρl

A,B, ρ
h
A,B where l, h stands for low and high density), namely:















ρl
A,B =

〈ρ〉+

r

30(ρ
(τ)
g )2−6ρ

(τ)
g

q

45(ρ
(τ)
g )2−10ρ

(τ)
g 〈ρ〉

2

ρh
A,B =

〈ρ〉−

r

30(ρ
(τ)
g )2−6ρ

(τ)
g

q

45(ρ
(τ)
g )2−10ρ

(τ)
g 〈ρ〉

2

. (43)

This approach has been validated against numerical simulations. The results, referring to the case ρ
(τ)
g = 1.6,

gAB = 0.345, ρ0 = 1.0 and τ = 1.116071 in lattice Boltzmann units (LBU), are shown in figure 3. We have simulated
a 1d interface between two components at varying the total averaged density 〈ρ〉. The numerical results compare
satisfactorily with the theoretical predictions based on the minimization of the free energy (42). In the right panel of
the same figure, also shown are typical profiles of the bulk free energies arising in the numerical study.

C. Multicomponent Model with Self-Interactions

Having covered the case with purely repulsive inter-species interactions, we next consider the more general situation
in which intra-species (self) interactions are included (equation (2) with all interactions on). In this general case, the
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condition of no mass diffusion (J0 = 0) delivers:

∑

s=A,B

DAs(ρA, ρB)∂xρs =
∑

s=A,B

DBs(ρA, ρB)∂xρs = 0 (44)

with

DAA = c2Sτ

(

ρB

ρ
θ(τ) +

1

ρ
(GA1ρBΨAΨ′

A − gABρBρA)

)

(45)

DBB = c2Sτ

(

ρA

ρ
θ(τ) +

1

ρ
(GB1ρAΨBΨ′

B − gABρAρB)

)

(46)

with the usual symmetries: DAB = −DBB, DBA = −DAA. Also, a constant (P0) pressure tensor across the interface
is required:

Pxx =

(

c2SρA + c2SρB +
1

2
c2SGA1Ψ

2
A +

1

2
c2SGB1Ψ

2
B + c2SgABρAρB + c4SΠ

)

− Γxx +K(τ)
xx = P0 (47)

Π = Σs=A,BGs2

(

1

4
(∂xΨs)

2 +
1

2
Ψs∂xxΨs

)

+
gAB

2
(ρA∂xxρB + ρB∂xxρA + ∂xρA∂xρB) (48)

Γxx =
c2S
2

(G2A∂xΨA∂xΨA +G2B∂xΨB∂xΨB + gAB(∂xρA∂xρB + ∂xρB∂xρA)) (49)

with the various effective couplings already defined in (17) and K
(τ)
xx defined in (13). These two ’conserved’ currents

must be matched with the total mass in the system. In the most general case, we expect two characteristic values of
the sum of the two densities in the two bulks, corresponding to the four unknowns ρl

A, ρ
h
A and ρl

B, ρ
h
B. One can resort

again to a minimization procedure based on the following free-energy density

L(ρA, ρB) = fb(ρA, ρB) + c4S
GA2

2
|∇ΨA|

2 + c4S
GB2

2
|∇ΨB|2 − c4S

gAB

2
∇ρA · ∇ρB − λAρA − λBρB (50)

with the bulk contribution written as

fb(ρA, ρB) = c2SρA log ρA + c2SρB log ρB + c2SgABρAρB + c2S
GA1

2
ρA

∫ ρA

0

Ψ2
A(ξ)

ξ2
dξ + c2S

GB1

2
ρB

∫ ρB

0

Ψ2
B(ξ)

ξ2
dξ.

Note that, like in the purely repulsive case, this matches the equilibrium properties of our system in the limit τ ≫ 1/2,
where lattice time discreteness can be ignored. Moreover, due to the presence of the pseudo-potentials Ψ, in order
to make the Shan-Chen model compliant with such a kind of free energy, an extra-gradient term has to be added,
as described in a recent paper [65]. Such extra-term is connected with variations of the pseudo-potentials across the
interface and, at least for the case of a single-component fluid, it can be shown to be negligible to practical purposes.
It is also worth noting that in the symmetric case GA1 = GB1 (the one analyzed later in the paper) with the same
pseudo-potential for both components ΨA = ΨB, we can use similar arguments as described in the previous subsection.
In particular, we define the following τ -dependent bulk free energy

f
(τ)
b (ρA, ρB) = c2SρA log ρA + c2SρB log ρB + c2Sg

(τ)
ABρAρB + c2S

G
(τ)
A1

2
ρA

∫ ρA

0

Ψ2
A(ξ)

ξ2
dξ + c2S

G
(τ)
B1

2
ρB

∫ ρB

0

Ψ2
B(ξ)

ξ2
dξ (51)

with G
(τ)
A1 = GA1

θ(τ) , G
(τ)
A2 = GA2

θ(τ) and look for its (symmetric) minima. In figure 4, we show the comparison between the

results of minimization of this free energy and those by direct numerical simulations with the usual pseudo-potential
Ψ = ρ0(1 − e−ρ/ρ0). The main parameters are ρ0 = 1.0, 〈ρ〉 = 1.75, gAB = 0.345 and τ = 0.69 LBU, and different
values of the self coupling parameters GA1 = GA2. Overall, satisfactory agreement is observed.
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FIG. 4: Bulk densities in the numerical simulations with repusion plus pseudo-potentials (i.e. equation (2)

with ~F r
s = 0). Both pseudo-potentials are chosen in the same way, ΨA,B = ρ0(1 − e−ρA,B/ρ0) fixing ρ0 = 1.0,

〈ρ〉 = 1.75, τ = 1.0, gAB = 0.5785. By changing the self-coupling parameters in such a way that GA1 = GA2 we
have computed the equilibrium bulk densities and also compared with the results coming from the minimization
of the bulk (symmetric) free energy (51). In the inset figure we also show the typical profile of the bulk free
energy arising in the theory behind the simulations at G1A = −0.63. For simplicity the bulk free energy has been
normalized to minus a unit value at the two minima. All results are reported in LBU.

V. TRANSPORT PROPERTIES

In this section we focus on the theoretical prediction of the surface tension of the two-component model. As
previously discussed, this requires the correct identification of the off-diagonal component of the momentum-flux
tensor Pab . For the sake of concreteness, we shall consider the simplest case of a one-dimensional stationary interface
between the two fluids A and B. In view of equation (14), the surface tension is given by

σAB = −

∫

flat

Γxxdx (52)

where
∫

flat is a short hand notation for integration across a flat interface separating the two fluids and developing

across x. However, as pointed out by Shan & Chen [43], the time discretization induces an extra term on the r.h.s. of
(52) and, given its importance for the actual computation of the surface tension, in the following we shall generalize
their treatment to the case of a two-component fluid. We start by writing the lattice kinetic equation for the total
distribution function gi ≡ fiA + fiB :

gi(~r + ~ci, t+ 1) − gi(~r, t) = −
1

τ
[gi(~r, t) − g

(eq)
i (ρA, ρB, ~u, ~FA, ~FB)]

where the total equilibrium is simply the sum of the two single-component equilibria

g
(eq)
i = f

(eq)
iA (ρA, ~u+ τ ~FA/ρA) + f

(eq)
iB (ρs, ~u+ τ ~FB/ρB).

By unrolling the full expressions of f
(eq)
iA and f

(eq)
iB , we obtain:

g
(eq)
i = w

(eq)
i

(

ρ+ ρ
u

(eq)
a cia
c2S

+
(ciacib − c2Sδab)

2c4S

(

ρu(eq)
a u

(eq)
b + τ2FAaFAb

ρA
+ τ2FBaFBb

ρB
− τ2FaFb

ρ

)

)

(53)

where Fa = FAa + FBa is the a-th component of the total force and

~u(eq) = ~u+ τ ~F/ρ (54)

is the total fluid velocity, including the shift due to the total force. To be noted that the term τ2(FAaFAb

ρA
+ FBaFBb

ρB
−

FaFb

ρ ) is missing in the original paper by Shan & Chen [43], because these authors deal with a single-species fluid.
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Next, following [43], we estimate ~u(eq) by general considerations holding at steady state. For stationary solutions, we
can assume no net mass transfer along any link connecting two lattice sites, which implies gi(~r+ ~ci) = gj(~r), where j
is the mirror partner defined by the condition ~cj = −~ci. Under this constraint, one derives the relation [43]:

− 2ρ~u = −
1

τ
(ρ~u− ρ~u(eq)) (55)

which, combined with (54), delivers:

ρ~u(eq) =

(

τ −
1

2

)

~F = τθ(τ)~F .

This expression can then be used to evaluate the kinetic component of the pressure tensor (10),

P kin
ab =

∑

i

giciacib.

By assuming gi ≈ g
(eq)
i , the term

∑

i giciacib delivers the following contribution:

∑

i

g
(eq)
i ciacib = c2Sρδab + τ2θ2(τ)

FaFb

ρ
+ τ2

(

FAaFAb

ρA
+
FBaFBb

ρB
−
FaFb

ρ

)

(56)

where, as anticipated in the previous sections, we recognize the ideal gas equation of state, plus extra τ -dependent
contributions stemming from the forcing terms. This shows that discrete effects (both in time and space) introduce
a correction to the surface tension, which must be taken into account in order to compute the value of σAB . We can
now make use of the identity

τ2

(

FAaFAb

ρA
+
FBaFBb

ρB
−
FaFb

ρ

)

= τ2 ρAρB

ρ

(

FAa

ρA
−
FBa

ρB

)(

FAb

ρA
−
FBb

ρB

)

. (57)

Also, the condition of no mass-diffusion current (18), gives:
(

FAa

ρA
−
FBa

ρB

)

= c2Sθ(τ)

(

∂aρA

ρA
−
∂aρB

ρB

)

. (58)

Inserting (57) together with (58) into the rhs of (56), finally delivers

∑

i

g
(eq)
i ciacib = c2Sρδab + τ2θ2(τ)

[

FaFb

ρ
+ c4S

ρAρB

ρ

(

∂aρA

ρA
−
∂aρB

ρB

)(

∂bρA

ρA
−
∂bρB

ρB

)]

(59)

which is precisely the result reported in (13).
In conclusion, the expression for the overall surface tension must take into account the contribution of both the

potential energy and the (τ -dependent) kinetic energy components of the pressure tensor:

σAB = −

∫

flat

Γxxdx+

∫

flat

K(τ)
xx dx (60)

with Γxx and K
(τ)
xx stemming from the interaction pressure tensor (equation (16)) and the τ -dependent part of the

kinetic pressure tensor (equation (13)), respectively.
The presence of the extra τ dependent terms has been checked against numerical simulations with pure repulsion

(equation (2) with ~F r
s = 0, ~F a

s = 0 ), as shown in figure 5. We have fixed ρ
(τ)
g = 0.91 in LBU and varied τ in

the simulations. The numerical results in figure 5 show the bare surface tension computed with and without the τ
corrections given in (56), as well as through the usual Laplace test, i.e.. by evaluating the difference between inner Pin

and outer Pout equilibrium bulk pressure of two-dimensional droplets of radius R, and extracting the surface tension
from the Laplace’s relation:

Pin − Pout =
σAB

R
.

The results clearly indicate that the correction terms are essential to achieve quantitative agreement with the Laplace’s
values. To be noted that the τ -dependence of the equilibrium component of the kinetic pressure tensor, rhs of equation
(59), which stems from the shifted velocity in the local equilibrium, disappears in the limit τ → 1/2.



14

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.6  0.7  0.8  0.9  1

σ A
B

τ

Theory with τ
LB Laplace

Theory without τ
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have fixed ρ
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g = 0.91 in LBU as defined in equation (29) and then varied τ in the lattice Boltzmann simulations

(all the numerical values reported are in LBU). Results show the bare surface tension computed with the simple
interaction pressure tensor and also with the τ corrections as described in (56).

A. Achieving vanishingly-low surface tension for finite relaxation times

Going back to the general expression of the forcing terms (2) it is interesting to observe that, once the values of the
G-couplings in the full model are fixed, we can still tune the surface tension by suitably changing ρ0 in the model.
For a fixed relaxation time τ (say τ = 1 LBU) this turns out to be a practical computational strategy to access the
vanishing low surface-tension regime of interest for the simulation of micro-emulsions. Using the theory developed so
far, we can now estimate the surface tension σAB as a function of the free parameter ρ0 appearing in equation (2).
Collecting the different terms coming from (60), we obtain the following

σAB = c4S

∫

flat

dx

[

−
GA2

2
(∂xΨA)2 −

GB2

2
(∂xΨB)2 −

GAB

ρ2
0

∂xρA∂xρB + τ2θ2(τ)
ρAρB

ρ

(

∂xρA

ρA
−
∂xρB

ρB

)2
]

. (61)

The exact computation of the integral in equation (61) requires the knowledge of the functions ρA(x) and ρB(x).
However, useful insight can be gained by assuming that the sum of the two densities, ρA + ρB = 〈ρ〉 is constant and
that the leading contribution to the integral comes from the interface region, where ρA ≈ ρB. We can then expand
about the point φ = ρA − ρB = 0 that we consider located at the central point xc. With these assumptions, we write

ρA ≈ ρB =
〈ρ〉

2
∂xρA = −∂xρB ≈ ∂xφ|xc

,

∂xψA ≈ e−〈ρ〉/2ρ0 ∂xρA|xc
∂xψB ≈ e−〈ρ〉/2ρ0 ∂xρB|xc

.

In this way, for τ = 1 (LBU), equation (61) finally delivers

σAB ≈
δw
2

ΣAB(ρ0)(∂yφ|xc
)2 (62)

with ΣAB(ρ0) depending on the couplings and the parameter ρ0 as follows:

ΣAB(ρ0) =

(

2GAB

ρ2
0

+
2

〈ρ〉
− (GA2 +GB2)e

−〈ρ〉/ρ0

)

. (63)

and where δw is the characteristic thickness of the interface. Equation (63) shows that by increasing ρ0 the surface
tension can be made negative, so that the condition ΣAB(ρ0) = 0 stipulates a vanishing surface tension. Indeed,
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eye-guiding purposes. All results are given in LBU.

upon increasing ρ0, the positive contribution of repulsive interactions is weakened, whereas the negative contribution
of self-interactions is enhanced, provided that GA2 and GB2 are both positive. In figure 6 we show the analytical
computation of ΣAB as a function of ρ0 for the set of parameters 〈ρ〉 = 1.23, Ga

A = −15, Gr
A = 14.1, Ga

B = −14,
Gr

B = 13.1, GAB = 0.405, corresponding to GA2 = 9.17 and GB2 = 8.46, all in LBU. The theory predicts a crossover
of the surface tension to negative values at ρ0 ∼ 0.72, quite close to the numerically observed result ρ0 ∼ 0.717 (see
figure 7). This shows that the interplay between inter-species repulsion and intra-species repulsion/attraction is key
to attain vanishing small values of the surface tension, which are in turn crucial to reproduce the physical properties
described in the second part of this paper.
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FIG. 8: Contours of the density field ρA(x, y) obtained with a numerical simulation on a Nx × Ny = 512 × 512 grid. The
parameters are those of the standard set at ρ0 = 0.83, as given in equations (65).

VI. NUMERICAL RESULTS

Having discussed the major theoretical aspects of this model, we next proceed to present the results of numerical
simulations. The baseline simulations are performed on a 2 dimensional grid Nx ×Ny = 128 × 128, with occasional
enlargements to Nx ×Ny = 256 × 256 and Nx ×Ny = 512 × 512. The two fluids are initialized with zero speed and
random initial conditions for the two densities ρA and ρB. More specifically, we choose 〈ρA〉 = 〈ρB〉 = 0.612, with a
standard deviation ±0.01 from the background density value. The couplings have been set to the following values in
LBU:











Ga
A = −15.0, Gr

A = 14.1

Ga
B = −14.0, Gr

B = 13.1

GAB = 0.405

(64)

defined as standard set at ρ0 = 0.7 and










Ga
A = −9.0, Gr

A = 8.1

Ga
B = −8.0, Gr

B = 7.1

GAB = 0.405

(65)

defined as standard set at ρ0 = 0.83. The relaxation time is fixed to τ = 1 (LBU), corresponding to a kinematic
viscosity ν = 1/6 (LBU). The corresponding value of the surface tension is approximately σAB ∼ 0.01 in both standard
sets. The main difference between the two sets of parameter is that the standard set at ρ0 = 0.83 displays a more
refined (in terms of computational grid points) interface. Moreover, the standard sets of parameters have been chosen
in such a way that both components A and B are in the dense (liquid) phase.

VII. FREE DYNAMICS OF THE DENSITY CONFIGURATION

We begin by investigating the free configurational dynamics of the density field under the sole effect of internal
interactions (no-forcing). The first observation is that, even after a very long time-span (hundreds of thousands
time-steps) the fluid densities ρA(x, y) and ρB(x, y) do not exhibit any macroscopic separation between the two fluids
A and B. Instead, a multitude of metastable domains (”droplets”) of fluid A in fluid B and viceversa is observed,
as a result of the complex interplay between repulsive (short-range inter-species and mid-range intra-species) and
attractive (short-range intra-species) interactions. This is in line with other studies in solid state physics and soft
matter [66, 67, 68, 69]. The final result is a rich configurational structure of the density field, as shown in figure 8.
The most salient feature of the density configurations is the formation of ’belts’ of fluid A (B), entrapping bubbles of
both fluids B and A inside. As we shall see shortly, these belts exert a major influence on the rheology of the fluid,
and in particular, their formation/rupture is responsible for a number of features, such as dynamical heterogeneity
and arrest, long-time relaxation, ageing effects and intermittency.

The occurrence of belts of fluid A (B) entrapping fluid B (A), is well visible in figure 9, where also shown (bottom
panel) are the density cuts of species A, across the midline y/Ny = 0.5 for the two different standard sets of parameters
at ρ0 = 0.7 (see equations set (64)) and ρ0 = 0.83 (see equations set (65)) . Although the details of the density contours
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FIG. 9: Contours (top) and centerline cuts (bottom) of the density of the specie A, for the standard set of parameters at
ρ0 = 0.7 (see equations set (64)) and at ρ0 = 0.83 (see equations set (65)). All results are reported in LBU.

and profiles are clearly different in the two cases, the main qualitative feature, namely the presence of a multitude of
metastable ”droplets” of both fluids A and B, is well visible in both cases. Therefore, these ”droplets” are naturally
interpreted as the metastable structures which permit the two-fluid system to escape the fully-separated minimum-
interface configuration.

VIII. DYNAMIC RESPONSE UNDER APPLIED SHEAR

In view of the rich morphology of the density field discussed in the previous section, it is natural to inspect the
behavior of the two-fluid system under the effect of an external drive. To this purpose, we analyze the dynamic
response to an externally applied shear flow of the form Ux(x, y) = U0 sin(ky), Uy = 0, with k = 1. This is realized
by imposing a volumetric body force in the LB equation. The rheological properties of the fluid are measured by
monitoring the following response function:

R(t) =
ˆ̄U(k = 1; t)

U0
≡

ν0
ν̄(t)

(66)

where ˆ̄U(k; t) is the Fourier transform of the line-averaged speed along the x direction, Ū(y; t) =
∑

x U(x, y; t)/Nx,
ν0 is the nominal kinematic viscosity of both fluids and ν̄ defines the effective viscosity of the two-fluid system. By
construction, under undisturbed flow conditions, R > 0, so that R ≪ 1 provides a direct measure of slowing-down
through enhanced effective viscosity and eventually, structural arrest (R = 0). Baseline simulations are performed on
a Nx ×Ny = 128 × 128 grid, for up to 5 × 106 LBU time steps.

A. Cage formation and rupture

A typical response function is shown in figure 10 (lower panel), together with two snapshots of the density contours
at t = 105 and t = 3 105 (upper panel). In the same figure, also shown is an indicator of the interface area (length in
2d) between the two fluids, defined as follows:

IAB(t) = −
∑

x,y

∇ρA(x, y; t) · ∇ρB(x, y; t). (67)
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FIG. 10: Response function R(t) (squares) given in equation (66) and surface indicator IAB(t) (circles) given in equation (67)
for the standard set of parameters at ρ0 = 0.7 (see equations set (64)). The upper panels show two snapshots of the density
field in a blocked and flowing state, respectively. Note that the flowing state is nonetheless characterized by a small fraction (a
few percent) of the undisturbed flow speed, corresponding to values or R larger than 0. The dotted line at zero is reported for
visual guidance. All results are given in LBU.
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FIG. 11: The response function R(t) at three-different instants, t = 103, 104, 5 105 LBU, as a function of the applied forcing
U0. Simulations are carried out for the standard set of parameters at ρ0 = 0.7 (see equations set (64)). The inset reports the
effective viscosity, i.e. the system average velocity versus the forcing amplitude. All results are reported in LBU.

This figure provides a neat example of dynamical arrest (between t = 5 104 LBU and t ∼ 1.5 105 LBU, followed by
a progressive recovery of the flow (from t ∼ 1.5 105 LBU to t ∼ 3 105 LBU, until the system starts to flow again,
although with a 25-fold higher viscosity than the nominal one, i.e. R ∼ 0.04 versus R = 1.

The two snapshots refer to a blocked configuration (t = 105 LBU) and to a flowing one (t = 3 105 LBU),
respectively. In the former, belts caging one fluid into another are well visible, which subsequently break down and
disappear, thereby allowing the system to flow again. Consistently with this picture of cage rupture and annihilation,
the interface length, as measured by IAB, is seen to decrease in going from the arrested to the cage-free flowing
configuration. This picture clearly illustrates the vital role played by the cage structures on the global rheology of
the two-fluid system. It is worth emphasizing that, due to the mesoscopic nature of the present model, the rupture
of a single cage, corresponds to a large collection of atomistic events, and consequently it leads to observable effects
on the overall rheology of the system.

Next, we investigate the time dependence of the response function for different values of the shear forcing U0.
In figure 11, we show a typical example for the response function R(t) at three-different instants, t = 103, 104, 5 105
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LBU, and for different values of the forcing U0. At short times the response is linear with U0 for all investigated
values of U0, (Newtonian behavior). At longer times, however, a typical yield-stress threshold appears, i.e. the fluid
starts to flow only beyond a critical value of the forcing, U0 ∼ 0.03 LBU. Above this threshold, the fluid starts to
flow at a higher rate (see also inset, reporting the effective viscosity) as compared to the short-time response, thereby
providing evidence of non-newtonian, shear-thinning, behavior.

B. Dynamics of correlations: ageing effects
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FIG. 12: Ageing of the system. Correlation function as defined in (68) computed for different waiting times tw (tw = 5 104,
red squares, tw = 2 105, green circles and tw = 3 105, blue triangles ) with shear stress U0 = 0.02 LBU. The waiting time ∆tw

is reported on a log scale. Simulations are carried out for the standard set of parameters at ρ0 = 0.7 (see equations set (64)).
The inset reports the correlation function for tw = 3 105 and U0 = 0.03: with increasing shear stress the structural arrest
disappears, as witnessed by a vanishing value of the correlation function in the limit ∆tw → ∞. All results are reported in
LBU.
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FIG. 13: Ageing of the system at increasing shear stress. This configuration of the system represents a threshold-yield fluid.
The system does not flow and shows ageing until a certain threshold of the applied forcing, above which the system decorrelates
completely. In the figure S is the externally imposed shear and the waiting time ∆tw is reported on a log scale. All results are
reported in LBU and the parameters are those of the standard set at ρ0 = 0.7 (see equations set (64)).

We next inspect another typical phenomenon of soft-glassy matter, namely ageing. To this purpose, following upon
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parameters with ρ0 = 0.7 as given in equations set (64) and results are all expressed in LBU.

the spin-glass literature [70], we define the order parameter φ ≡ ρA − ρB and compute its overlap, defined through
the autocorrelation function:

C(tw,∆tw) =
〈
∑

x,y φ(x, y; tw)φ(x, y; tw + ∆tw)〉

〈
∑

x,y φ(x, y; tw)φ(x, y; tw)〉
(68)

where tw is the waiting time, ∆tw is the time lapse between the two density configurations and brackets stand for
averaging over an ensemble of realizations. In figure 12, we show the correlation function corresponding to three
different waiting times, tw (tw = 5 104 LBU , red squares, tw = 2 105 LBU, green circles and tw = 3 105 LBU, blue
triangles), for a forcing amplitude U0 = 0.02 LBU. Ageing effects are clearly visible, in the form of a dependence
of the time-decay of the correlation function on the waiting time tw, and, more specifically, with an increasingly
slower decay as the waiting time is increased. Moreover, the correlation function saturates to a non-zero value in
the long-time limit (broken ergodicity), which is another typical signature of structural arrest (the system does not
succeed to fully decorrelate). This behavior shows qualitative changes upon increasing the forcing term. In the inset
of the same figure, we show the correlation function for tw = 3 105 LBU and a slightly larger forcing, U0 = 0.03 LBU.
With increasing shear stress, cages are broken, and the structural arrest disappears, thereby allowing the correlation
function to decay to zero (see figure 13). The disappearance of structural arrest under sufficiently strong shear is
again a distinctive feature of flowing soft-glassy materials [71] and these results are in qualitative agreement with
molecular dynamics simulations [72].

C. Intermittency and Barkhausen noise

Barkhausen noise is a well-known phenomenon displayed by disordered ferromagnetic samples under the effect of a
slowly-changing magnetic field [73]. A small ramp-up in the magnetic field triggers one domain and the perturbation
spreads to neighboring domains, producing an avalanche which results in a series of jumps in the magnetization, as
the systems transits from one metastable state to another. Several experiments show that the distribution of size,
duration and energy of the Barkhausen jumps exhibit a power-law decay. The present two-fluid model also shows
evidence of Barkhausen-like intermittency in the time-derivative of the response function. In figure 14, we show the
probability distribution of the time-lapse ∆te between subsequent bursts (also called ’events’) of the response function
(see inset). Interestingly, such distribution follows a power-law distribution ∼ ∆t−α

e , with α ∼ 2. This invites a further
analogy between the fluid cages discussed previously and the magnetic domains responsible for Barkhausen effects
in disordered ferromagnets. The systematic exploration of the dependence of these Barkhausen-like effects on the
various parameters of our system, is left as an interesting topic for future research.
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IX. SENSITIVITY TO INITIAL CONDITIONS

In the previous sections we have illustrated several phenomena typical of soft-glassy materials. A natural question
arises as to the degree of robustness of these phenomena towards changes in the initial conditions and size of the
system. Although a systematic exploration of these effects requires a study of its own, in the following we provide
some preliminary information. As expected, the detailed dynamics of the response function shows a strong sensitivity
to the noise realization, with some configurations reaching a plateau in the early stage of the evolution (see figure
15), while others never attaining any plateau within the entire simulation span. In order to probe the robustness of
the response function R(t) towards changes in the random realization of the initial conditions, we have performed a
series of 100 simulations by changing the noise realization at a fixed variance of the initial density. Notwithstanding
the qualitative differences in the detailed response function, the main picture portrayed in the previous sections,
namely arrested flow due to formation of fluid cages, and restored flow upon cage rupture, is found to apply to all
simulations. To better appreciate the statistical dynamics of the present system, in figure 16, top panel, we show the

time evolution of the Kurtosis K(t) = 〈R(t)4〉
〈R(t)2〉2 of the response R(t), as computed from the set of 100 realizations. This

figure shows clear evidence of large fluctuations in the first half of the evolution, followed by a more quiescent stage
in the second half. To be noted that, even in the quiescent stage, the Kurtosis is still around K(t) ∼ 5, hence well
above the Gaussian value K(t) = 3, thereby confirming the strongly fluctuating nature of the phenomenon. A similar
message is conveyed by the bottom panel of the same figure, which reports the average value 〈R(t)〉, along with the
variance, as a function of time. From this figure, we see that the variance is generally comparable to the mean value,
sometimes even larger. The intermittent nature of the response R(t) is further highlighted in figure 17, which shows
the probability distribution function of R(t), sampled over three close-by time-slices. This pdf exhibits intermittent
tails on both negative and positive sides, with a slight prevalence of the latter, consistently with the positive sign of
〈R(t)〉.

X. SUMMARY AND OUTLOOK

Summarizing, we have provided a theoretical analysis of a two-component lattice Boltzmann model with mid-
range intra-molecular repulsion and short-range inter-molecular repulsion. In particular, equilibrium densities and
the surface tension as a function of the main parameters of the model, have been computed and shown to exhibit
satisfactory agreement with numerical tests. We have also presented a series of numerical simulations proving the
capability of this system of reproducing many distinctive features of soft material behavior, such as slow-relaxation,
anomalous enhanced viscosity, caging effects, aging under shear and Barkhausen intermittency. The present lattice
kinetic model caters for this very rich physical picture at a computational cost only marginally exceeding the one for
a simple fluid. As a result, it should be possible to use it for future investigations of the non-equilibrium rheology.
In particular, it may be useful to get new insights in the coexistence of liquid and solid regions (shear localization,
shear banding, cracks) as observed with emulsions [71, 74], foams [75, 76, 77], worm-like micelles [78, 79] and granular
materials [80, 81]. Still, such a hydro-kinetic method might be interesting to treat the issue of dilatancy in foams
observed in recent experiments [82]. In order to analyze those systems, on going research is devoted to a systematic
investigation of the system behavior at different concentrations of the two species, its sensitivity to initial conditions
and finite-size effects, as well as its response to time-dependent loads. Also of current interest are extensions to
three-component fluids, in order to account for the explicit presence of surfactants [83].

Appendix: heuristic mapping to physical units

One of main advantages of the present mesoscopic approach is to provide access to hydrodynamic scales at an
affordable computational cost. In order to appreciate this point, it is of interest to discuss the conversion between
LB and physical units. The spatial units, namely the LB spacing ∆x, can be estimated by fixing the surface tension
according to the following relation (subscript phys denotes physical units):

σphys ≈ σLB
kT

(∆x)2
(69)

where the subscript LB denotes the value in LBU. For micro-emulsions, we may estimate σphys ∼ 10−4 N/m, so that

at standard conditions (T = 300◦), a LB surface tension σLB ∼ 0.01 corresponds to ∆x =
√

kT σLB

σphys
∼ 10−9 m.

This means that a Nx ×Ny = 128× 128 simulation covers a squarelet of about 0.1 micron in side. Similarly, the time
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FIG. 15: Response function R(t) (squares) given in equation (66) and surface indicator IAB(t) (circles) given in equation (67)
for two different realizations of the initial conditions, obtained by changing the seed of the random number generator. The
runs are performed with the standard set of parameters at ρ0 = 0.7 as given in equations set (64). The dotted line at zero is
reported as a visual guidance. All results are reported in LBU.

units (the LB time step ∆t) can be estimated by fixing the kinematic viscosity according to the relation:

νphys ≈ νLB
(∆x)2

∆t
(70)

By taking νphys ∼ 10−6 m2/s and νLB ∼ 0.1, a lattice spacing ∆x ∼ 10−9 m, would yield ∆t ∼ 10−13 s. As a result,
a 106 time-step simulation covers about 0.1 µs. These values are only marginally higher than those typically used in
Molecular Dynamics simulations. However, the point is that the present model lends itself to substantial upscaling
both in space and time, while still presenting an affordable computational cost. For instance, preliminary simulations
on a Nx ×Ny = 1024× 1024 grid, span 106 lattice time steps in about one-day elapsed time on Graphical Processing
Units architecture [84]. Such simulations cover a square domain about some microns in side, over a time span of some
microseconds, a way beyond the capabilities of standard Molecular Dynamics or Monte Carlo simulations.
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For the numerical simulations, we have used the standard set of parameters at ρ0 = 0.7 as given in equations set (64), with a
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