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Abstract

We study the impact of wall corrugations in microchannels onthe process of capillary

filling by means of three broadly used methods - Computational Fluid Dynamics (CFD),

Lattice-Boltzmann Equations (LBE) and Molecular Dynamics(MD). The numerical results

of these approaches are compared and tested against the Concus-Finn (CF) criterion, which
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predicts pinning of the contact line at rectangular ridges perpendicular to flow for contact an-

glesθ > 45◦. While for θ = 30◦, θ = 40◦ (no flow) andθ = 60◦ (flow) all methods are found

to produce data consistent with the CF criterion, atθ = 50◦ the numerical experiments provide

different results. Whilst pinning of the liquid front is observed both in the LB and CFD simu-

lations, MD simulations show that molecular fluctuations allow front propagation even above

the critical value predicted by the deterministic CF criterion, thereby introducing a sensitivity

to the obstacle height.

Introduction

In the recent years, with the rapid technological progress in the production of micro- and nano-

channels, the understanding of fluid flow on the nanoscale1,2 has become crucial for modern nan-

otechnology (such as the “lab on a chip” and related microfluidic devices) as well as for various

applications of porous materials, flow in biomembranes, etc. A key problem is the description

of fluid flow in narrow channels with wettable walls. Such channels are ubiquitous in cells and

living matter but have been also successfully produced fromsynthetic materials in recent years.3

Thus, planar nanochannels, fabricated by silicon-based technology, can provide an attractive con-

figuration for fundamental studies like filling kinetics,4 hydrodynamics in confinement, and for

molecular separation processes in biology.5 Indeed, besides practical applications, microfluidics

also raises a challenge to basic research since the continuum description of fluid flow goes under

question whenever discreteness of matter comes into play, that is, at length scales comparable to

the molecular size.

To gain insight into the transport mechanisms involved in fluid flows, many researchers have

studied the problem using a variety of computer simulation methods, and most notably Compu-

tational Fluid Dynamics (CFD), Lattice-Boltzmann Equations (LBE), and Molecular Dynamics

(MD) methods. The classical continuum theory based on Navier-Stokes (NS) equations assumes

that state variables do not vary appreciably on a length scale comparable to the molecular free

path. This conjecture has been challenged by both experiment6 and the earliest MD computer
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simulations7 which indicate the existence of significant density fluctuations of the liquid normal

to the solid wall. Against expectations, however, some MD studies8,9 on Poiseulle flow demon-

strated that the classical NS description may be used for modeling capillary flow in channels with

diameter of several molecular sizes and greater, while thishas been challenged by another study.10

To these controversial results one should add data, produced by the LBE method11 which has

gained increased prominence in recent years due to its efficiency and proximity to the basic as-

sumptions of the NS constitutive equations. Results from the LBE approach indicate that there

are several microfluidic situations, in which molecular details, although non-negligible, can still

be given a meso-scopic, rather than fully atomistic, representation, without affecting the basic

physics.12,13,14,15,16,17,18On general grounds, this can be expected to be the case whenever molecu-

lar fluctuations do not play any major role. However, as the physics of micro/nanoflows progresses

towards increasingly demanding standards, qualitative expectations need to be complemented and

possibly tested against quantitative assessments.

In view of the diversity of methods and the plethora of controversial results from the computa-

tional modeling of flow in the sub-micrometer range, a test ofthe adequacy and reliability of the

principal approaches is highly warranted. In the present investigation we perform such a test by

comparing the results from three of the most broadly used methods - CFD, LBE, and MD - focus-

ing on a generic case, the capillary filling of a wettable narrow channel by spontaneous imbibition

of a simple fluid.

The aim of this comparative study is as follows: (i) we test the reliability of the three simulation

methods with respect to the capillary filling of a wettable nanochannel, by comparing the results

against the Lucas - Washburn (LW) theoretical prediction; (ii) we analyse the effect of the presence

of an isolated corrugation on the flow dynamics and test the numerical results against the theoretical

Concus-Finn criterion; (iii) the direct comparison between fluctuating (MD) and non-fluctuating

(CFD and LB) approaches, permits to highlight the role of thermal fluctuations on the universality

of the CF criterion.
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Theoretical background

In a horizontal capillary under steady state conditions (i.e., in the absence of gravity and transient

inertial effects), the capillary imbibition pressure is balanced by the viscous drag of the liquid.

Simple analysis of this process leads to the Lucas - Washburnequation (LW)19,20which relates the

distance of penetrationz(t) of the fluid front at timet to the capillary sizeH, the viscosityη and

surface tensionγ of the liquid, and the static contact angleθ between the liquid and the capillary

wall. If slip velocity and deviations from Poiseille flow areneglected, in the late asymptotic regime

the distancez(t) travelled by the moving interface in the channel (havingz0 as initial coordinate)

is given by

z(t)2−z2
0 =

γH cos(θ)

η
ct, (1)

whereH denotes the height of the channel and the constantc = 1/3 for a slit-like capillary. Equa-

tion 1 can be recast in dimensionless form as ˜z= z/H andt̃ = t/tcap, wheretcap= Hη/γ, becoming:

z̃(t̃)2− z̃2
0 = cos(θ)ct̃. (2)

It is apparent that in these dimensionless units, time-penetration depends only on the value of the

contact angleθ , regardless of other fluid parameters and geometrical details. This facilitates the

comparison between different simulation methods.

Figure 1: Scheme of the microchannel geometry

In this comparative study we explore capillary filling in thepresence of topological obstacles

(rectangular ridges) on the channel wall (Figure 1). Since capillary filling is mainly determined by

the three-phase boundary (“contact line”) between liquid,wall and vapor, the motion of the contact
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line offers a much more stringent test of the various simulation methods and offers a possibility to

assess their shortcomings and advantages. A key problem in this regard is the pinning of the contact

line, due to a geometric singularity in the meniscus stability, like the presence of obstacles whose

sides make an angle 2α with respect to the wall, broadly known as Concus-Finn condition.21,22,23

According to the Concus-Finn criterion, there is no filling due to meniscus instability, provided the

contact angle fulfills the following condition:

θ >
π
2
−α. (3)

For a rectangular obstacle, this means that a contact line will be pinned at its trailing edge, onceθ >

450, regardless of the obstacle height. While this condition follows from the detailed mathematical

analysis21 of the liquid surface stability, in fact it goes back to the thermodynamic foundations of

wetting, as established in the early works of Gibbs.24 The possibility for capillary driven flow is of

major importance for numerous applications, e.g., modern fuel cells,25 therefore it is not surprising

that this criterion has been tested even in space experiments on the Shuttle-Mir complex.

Modelling microfluids: from continuum mechanics to molecular

dynamics

Currently, intensive efforts to get deeper insight and understanding of flow in microchannels are

carried out by researchers using a variety of computer modeling approaches. In principle, con-

tinuum fluid mechanics provides the most economical description of microflows. However, this

approach fails to describe a series of phenomena, such as near-wall slip-flow, in which the contin-

uum assumption goes under question due to the onset of molecular effects, especially near solid

walls. Molecular Dynamics provides a high degree of physical fidelity, at the price, however, of

a very susbtantial computational burden. The lattice kinetic approach is well positioned to offer a

good compromise between the physical realism of molecular dynamics and the computational effi-
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ciency of continuum mechanics.26,27The lattice kinetic approach is finding increasing applications

to microfluidic problems, as it permits to handle fluid-wall interactions at a more microscopic level

than the Navier-Stokes equations, while simultaneously reaching up to much larger scales than

Molecular-Dynamics.12,28,29,30However, the LB approach is subject to a number of limitations,

such as the existence of spurious currents near curved interfaces, as well as enhanced evapora-

tion/condensation effects due to the finite-width of the interface.31 Ideally, one would combine the

three methods within a synergistic multiscale procedure, using each of them wherever/whenever

appropriate, in different regions of the microflow. Varioustwo-level (continuum-MD, LB-MD and

continuum-LB), are already available in the literature,32 while, to the best of our knowledge, three-

level coupling are just beginning to appear.33 A detailed and comparative assessment of merits and

downsides of the three levels of description, is therefore of great importance to the ultimate goal

of developing efficient and robust multiscale coupling methods for complex microfluidic flows. In

this work, we shall present a comparative study of capillaryfilling in the presence of wall corru-

gations, using all of the three methods mentioned above, namely a finite-volume CFD software

package, a LB model with non-ideal fluid interactions, and a MD computer program. Since all of

these methods are by now standard, in the following we shall provide just a cursory description,

leaving the details to the vaste literature on the subject.

Computational Fluid Dynamics

Our CFD approach is based on the CFD-ACE+ software package (release 2008), as a multiphysics

commercial tool including geometry modeling, grid generation and results visualization.34 The

spontaneous capillary filling in micro/nano channels is reproduced by means of the VOF (Volume

of Fluid) scheme, based on the hypotheses of incompressibility, no-interpenetration and negligible

localized relative slip of the two fluids in contact. In orderto describe the transport of the volume

fraction φ of one of the two fluids in each cell (φ thus ranging from 0 to 1), the Navier-Stokes

equations for the fluid velocity are augmented with a scalar transport equation for the volume
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fraction:
∂φ
∂ t

+~∇ · (uuuφ) = 0 (4)

wheret is time,~∇ is the standard spatial gradient operator, anduuu is the velocity vector of the

fluid. The composition of the two fluids in the mixture determines for each computational cell the

averaged value of physical properties such as density and viscosity. Any volume-specific quantity

is evaluated in accordance with the following expression:

ω̄ = φωl +(1−φ)ωg (5)

whereω̄ is the volume-averaged quantity,ωl (resp.ωg) is the value of the property for one liquid

(resp. gas). However, beingφ the averaged volume fraction of fluid in each cell, the definition of

the interface between the two fluids in that cell is not uniqueand must be dynamically reconstructed

throughout the simulation. In CFD-ACE+, this is accomplished through an upwind scheme with

PLIC (Piecewise Linear Interface Construction method35,36), taking into account surface tension

to determine accurately the interface curvature. As to boundary conditions, a zero static pressure

is imposed at both inlet (liquid only) and outlet (gas only).At the initial time both fluids are at rest,

with a short portion of the channel at the inlet filled with liquid. This specific configuration allows

the liquid-vapour interface to assume the curvature corresponding to the hydrophilic partial wetting

condition imposed at walls through the contact angleθ , thus generating the capillary pressure that

drives the fluid motion. The CFD simulation set-up consists of a 2D straight channel with a height

H = 800 nm and overall lengthL = 80µm. At the bottom wall, a squared post, of side and height

h = 400 nm, is located. The computational domain has been discretized with a squared structured

non-uniform grid consisting of 185000 cells and 190000 nodes.

Lattice Boltzmann method for multiphase flows

The Lattice Boltzmann (LB) method is based on a minimal form of the Boltzmann kinetic equation

describing the time evolution of discrete particle distribution function fi(xxx, t), denoting the proba-
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bility of finding a particle at lattice sitexxx and timet moving along the lattice vectorccci ( Figure 2),

where the indexi labels the discrete directions of motion.

Figure 2: The two-dimensional, nine-speed LB scheme.

In mathematical terms,27 the LB equation reads as follows:37

fi(xxx+ccci∆t, t +∆t)− fi(xxx, t) = −∆t
τ

(

fi(xxx, t)− f (eq)
i (ρ,ρuuu)

)

+Fi ∆t (6)

whereρ is the fluid density,uuu is the fluid velocity andi = 0−8 labels the the nine-speed, two-

dimensional 2DQ9 model.27 The second term on the right hand side is a model collision operator

Ωi, describing the relaxation towards a local equilibrium on atime scaleτ. Finally, Fi describes

the effect of external/internal forces on the discrete particle distribution. The macroscopic density

and momentum are obtained as weighted averages of discrete distributions:27

ρ(xxx, t) = ∑
i

fi(xxx, t); ρuuu(xxx, t) = ∑
i

ccci fi(xxx, t). (7)

For the case of a two-phase fluid, the interparticle force reads as follows:

FFF = −G c2
s ∑

i
wiψ(xxx, t)ψ(xxx+ccci∆t, t)ccci i = 0−8. (8)

Hereψ(xxx, t) = ψ(ρ(xxx, t)) = (1−exp(−ρ(xxx, t))) is the pseudo-potential functional, describing

the fluid-fluid interactions triggered by inhomogeneities of the density profile, andG is the strength

of the coupling (see11,38 for details). Finally,Fi = wi FFF · ccci/c2
s, wherewi = 0,1/9,1/36 are the

standard weights of the nine-speed two-dimensional lattice 2DQ927 andcs = 1/
√

3 is the sound
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speed in lattice units. Besides introducing a non-ideal excess pressurep⋆ = 1
2G c2

sψ2, the model

also provides a surface tensionγ ∼ G c4
s

(δψ)2

δw
, whereδψ is the drop of the pseudo-potential across

the interface of widthδw. By tuning the value of the pseudo-potential at the wallψ(ρw), this

approach allows to define a static contact angle, spanning the full range of valuesθ ∈ [0o : 180o].39

As to the boundary conditions, the standard bounce-back rule is imposed: any flux of particles

that hits a boundary simply reverses its velocity so that theaverage velocity at the boundary is

automatically zero. This rule can be shown to yield no-slip boundary conditions up to second

order in the Knudsen number in the hydrodynamic limit of single phase flows.

Figure 3: Geometrical set-up of the LB simulations.

In this work we consider a 2D channel composed of two parallel plates separated by a distance

H = 40∆, where∆ is the space discretization unit. This two-dimensional geometry, with length

2L = 3000∆, is divided in two regions, as shown in Figure 3. The left parthas top and bottom

periodic boundary conditions, so as to support a perfectly flat gas-liquid interface, mimicking a

“infinite reservoir”. The actual capillary channel resideson the right half, of lengthL. The top

and bottom boundary conditions are those of a solid wall, with a given contact angleθ . Periodic

boundary conditions are also imposed at the west and east sides. The squared obstacle, of side

h = H/2 = 20∆, is placed on the lower wall.

Molecular Dynamics

During the last few decades Molecular Dynamics has proved tobe one of the most broadly used

simulation techniques, capable of reproducing many details of macroscopic fluid dynamics. It has
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been extensively used to study dynamic wetting problems andto shed more light on the molecular

processes close to the contact line region.40,41 An appealing feature of MD (e.g., compared with

Monte Carlo or molecular statics) is that it follows the actual dynamical evolution of the system.

We perform MD simulation of a simple generic model on a coarse-grained level. In our MD

simulation, see Fig. 4, the fluid particles interact with each other through a Lennard-Jones (LJ)

potential,

ULJ(r) = 4ε[(σ/r)12− (σ/r)6] (9)

whereε = 1.4 andσ = 1.0. The capillary walls are represented by particles forminga triangular

lattice with spacing 1.0 in units of the liquid atom diameterσ . The wall atoms may fluctuate around

their equilibrium positions, subject to a finitely extensible non-linear elastic (FENE) potential

UFENE(r) = −15εwR2
0 ln(1− r2/R2

0) (10)

with R0 = 1.5 andεw = 1.0kBT wherekB denotes the Boltzmann constant andT is the temperature

of the system;r is the distance between the particle and the virtual point which represents its

equilibrium position in the wall structure. The FENE-potential acts like an elastic string between

the wall-particles and their equilibrium positions in the lattice and keeps the structure of the wall

densely-packed hexagonal. In addition, the wall particlesinteract with each other via a LJ potential

with εww = 1.0 andσww = 0.8. This choice of interactions guarantees no penetration ofliquid

through the wall, and at the same time the mobility of the wallparticles corresponds to the system

temperature.

Molecules are advanced in time via the velocity-Verlet algorithm with integration time step

δ t = 0.01t0 wheret0 = (σ2m/48εLJ)
1/2 = 1/

√
48 is the basic time-unit and we have taken parti-

cle massm= 1 andkBT = 1. The temperature is maintained by a Dissipative-Particle-Dynamics

(DPD) thermostat, with friction parameterξ = 0.5, thermostat cutoffrc = 2.5σ and step-function-

like weight functions.42,43 Fluid properties and flow boundary conditions arise then as aconse-

quence of the collision dynamics and the local friction controlled by the DPD thermostat. An
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advantage of the DPD method in comparison with other MD schemes is that the local momentum

is conserved, so that the hydrodynamic behavior of the liquid at large scales is correctly repro-

duced.

It is worth emphasizing that all contact anglesθ , used in the simulations, have been determined

by measuring the mean static contact angleθ of a sessile meniscus in a slit, formed by two parallel

atomistic walls for a few given liquid -wall interactionsε. Specific contact angles are then chosen

by interpolation between the relevant values ofε. Therefore, the actual value of the contact angle

when the fluid front is located at an obstacle edge, for instance, may incidentally deviate from

the nominal value ofθ . A recent MD study44 has shown that the LW-law (Eq.(1)), holds almost

quantitatively down to nanoscale tube diameters. In this study we use an obstacle shaped as a

rectangular ridge which runs perpendicular to the flow direction in the slit and has the same atomic

composition as that of the slit walls. The height and width ofthe ridge are chosen as 10σ so that

the obstacle height takes half of the slit thickness.

Numerical results

We have performed simulations of spontaneous capillary filling in presence of a squared obstacle,

for each of the three computational methods described above. The test case is the same: the filling

of a channel of heightH with a squared post of sideh = H/2. In LB and MD, the post is placed at

the central position on the bottom wall(Figure 1), at a distancel = 25H andl = 5H from the inlet,

respectively, due to computational costs. Since the LW equation does not depend on the channel

length, this is not a limiting factor for the present study (see below). Since the inertial transient

with the CFD method is much longer than the estimated inertial time, as shown also in Figure 5,

in this case the channel length has been takenl ≈ 100H, so as to guarantee that the front meets the

post when the asymptotic regime is attained.

We have performed a series of four simulations (for each method), varying the contact angle

θ from 30◦ to 64◦. The specific values of the physical parameters for each simulation method are
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reported in Table 1.

Table 1: Physical quantities for the three different cases.Units have been chosen as follows:
LB) ∆x = H/NY, ∆t = νLB ∆x2/ν, ∆m= ρl ∆x3/ρLB); MD) σ = H/20, τ = νMD σ2/ν, δm =
ρl σ3/ρMD. The different values of the gas density and surface tensionreflect the computational
constraints of the different methods.

Parameter CFD value LB value MD value
Channel heightH (m) 8 ·10−7 8 ·10−7 8 ·10−7

Water densityρl (kg/m3) 103 103 103

Water kinematic viscosityν (m2/s) 10−6 10−6 10−6

Water dynamic viscosityη (kg/(m s)) 10−3 10−3 10−3

Liquid/gas surface tensionγ (N/m) 7.2 ·10−2 9.6 ·10−2 3.4 ·10−4

Vapour densityρg (kg/m3) 1.167 28.12 10.6

Some comments are in order. By construction, the CFD approach is able to reproduce exactly

all the physical properties of the flow. On the other hand, both LB and MD show some discrep-

ancies in the value of the surface tension and vapour density. However, these discrepancies have

been found to be irrelevant to the purpose of investigating the macroscopic features of capillary

imbibition44,45

As is well known, depending on the value of the contact angleθ , two scenarios may appear

according to the Gibbs, or Concus Finn criterion:21,22,23a) for small contact angles the front is able

to climb the obstacle, walk on it, and eventually pass it; b) for large contact angles the front climbs

the obstacle, but pins at its back edge, thus stopping the fluid motion. We wish to emphasize that

the Concus-Finn, or Gibbs, criterion is based upon thermodynamic arguments and, consequently,

it has been rigourously proven only at a macroscopic level.

Recovering the Lucas-Washburn regime

As is well known, the Lucas-Washburn asymptotic regime setsin once inertial effects die out and

steady propagation results from the sole balance between capillary drive and dissipation. During

the transient regime, the dynamic contact angle, which depends on the front speed itself, changes

in time until its static value is attained.46,47
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Figure 4: Log-Log plot of the dimensionless front coordinate z(t)/H vs the dimensionless time
t/tcap. Herez denotes the centerline position (y = H/2) of the front,y being the cross-flow coor-
dinate. All simulations show superposition with the LW-prediction before reaching the obstacle,
at all inspected contact angles. The arrows indicate the pinning points for the case of 50◦ and 60◦,
not visible on the scale of this figure. See also Figure 5, Figure 6 and Figure 7 for a close-up of the
dynamics around the obstacle region only.

In Figure 4, the time evolution of the centerline (y = H/2) front position is reported as a func-

tion of time, and compared with the dimensionless LW-law Eq.(2). As one can see, all three

methods exhibit satisfactory agreement with the theoretical LW prediction, although on a different

range of time-scales. This is due to the different values of the parameters used in each method, and

particularly, to the fact that the MD capillary speedVcap= γ/η is 20÷30) times higher than in the

other methods. Indeed, it should be noted that the LW asymptotic solution sets in after a typical

transient time of the order ofτ ∼ H2/12νl , or in units of capillary times,τ/tcap = ργH
12µ2 . Based on

the data in Table I, one can readily check thatτ/tcap∼ 1 for LB and CFD, andτ/tcap∼ 10−2 for

MD. It is therefore possible to appreciate the anomalous transient in the CFD case, see Figure 4,
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which is of the orderτ/tcap∼ 100. However, since CFD and LB simulations last over 103 cap-

illary times, and MD simulations last about 10 capillary times, before reaching the obstacle, the

superposition with the LW regime is free from transient phenomena.

Front morphology while crossing the obstacle

In Figure 5, Figure 6 and Figure 7, snapshots of the fluid frontduring the surmounting of the

obstacle are reported for the three simulation methods (thefigures report density contours). As one

can see, the front dynamics and morphology are strongly affected by the presence of the obstacle:

the liquid impinging on the obstacle must adjust to a 90◦ degrees discontinuity of the contact angle,

which is clearly causing a significant deformation of the front, before the static value is recovered

again on the flat-top surface of the obstacle. These changes of shape are well visible in figures

Figure 5 and Figure 6, for both CFD and LB. The case of MD is lessclear-cut, due to the absence

of a well-defined interface and to molecular fluctuations. Indeed, although the fluid meniscus

is clearly visible, its surface appears rough and strongly fluctuating in time. From Figure 7 one

can see that some atoms evaporate from the liquid and overcome the slit. Moreover, long before

the fluid meniscus has passed the obstacle, vapor condensation and partial filling of the wedge,

formed by the rear wall of the ridge and the slit wall, take place (see also Figure 7a). Since fluid

imbibition in a capillary is accompanied by the faster motion of a precursor film far ahead of the

meniscus,48,49,50 it is also conceivable that the wedge is filled by this atomically thin precursor.

Since the meniscus position at timet is difficult to locate precisely, we rather measure the volume

of the fluid in the capillary which is readily obtained by the total number of fluid atoms, residing

at timet in the slit during the filling process. For an incompressiblefluid, this volume is directly

proportional to the distancez(t), travelled by the fluid front at timet. The curve givingz(t) is

shown in Figure 7b for several values of the contact angle, 30◦ ≤ θ ≤ 64◦. The shape changes

also entail a substantial change of the front speed, as well documented in Figure 5b, Figure 6b and

Figure 7b , from which the front speed can be read off simply asthe slope of the curves reporting

the front position as a function of time. These figures show evidence of a significant acceleration
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of the front (centerline positiony = H/2) in the climbing stage, followed by a deceleration in the

stage where the front is approaching the rear corner, where the chance/risk of pinning is highest.

Here the fate of the front becomes critical. According to theCF analysis, if the contact angle is

below 45◦, there is enough drive from the upper wall to pull the front away from the rear edge of

the obstacle. Otherwise, the front stops moving.

The CFD and LB simulations confirm this picture, showing evidence of pinning only for the

two angles above 45◦. More precisely, they show a significant front accelerationin the climbing

stage, followed by a coasting period, once the rear edge is reached. Forθ = 30◦ andθ = 40◦, the

coasting period exhibits a finite lifetime, after which the front regains its motion. Forθ = 50◦ and

θ = 60◦, the coasting period does not seem to come to an end (within the simulation time), and the

front is pinned. After the obstacle, the (unpinned) front isslowed down, as one can appreciate from

the slightly reduced slope of the front dynamics, see Figure5b (only forθ = 40) and Figure 6b.

The MD simulations, on the other hand, tell a different story, in that even atθ = 50◦, the

front proves capable of overcoming the obstacle, although with a drastically reduced speed. Note

that, while both CFD and LB show evidence of a strong front acceleration as they approach the

obstacle, MD simply shows a monotonic deceleration. This isdue to the fact that while in CFD

and LB simulations we measure the distance travelled by the interface midpoint, as already pointed

out, MD measures the total volume of the fluid in the capillary.

Given the qualitatively different outcome of CFD(LB) versus MD simulations atθ > 45◦, we

next discuss the dependence of the filling dynamics on the different contact angles, case by case.

• Contact angles 30◦ and 40◦

As already mentioned, in these cases, all three methods givethe same qualitative outcome:

in proximity of the ridge, the front deforms in response to the geometrical discontinuity,

climbs up the obstacle and walks over its top. Once the rear-edge is reached, the bottom

end of the front pins at the corner, and keeps moving on the topwall. Then, according to

the CF criterion, the front overcomes the obstacle and completely fills up the entire channel.

Manifestly, the standardz versust relationship, described by the LW-law (1) is strongly
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Figure 5: a) Snapshots of the front dynamics at different stages of a post surmounting CFD simu-
lation. The various columns from left to right correspond tocontact anglesθ = 30◦, 40◦, 50◦, 60◦,
as indicated. b) Time evolution of the interface midpoint while crossing the obstacle in CFD sim-
ulations. The inset shows the instantaneous propagation speed of the front for the caseθ = 30◦.

violated in the vicinity of the obstacle. After overcoming the obstacle, the usual LW regime

is recovered, although after a transitional period of time,which depends on the wettability

θ ,17 and with a reduced velocity. In particular, in all cases, thefront is slowed down right

after passing the obstacle, see Figure 5b, Figure 6b and Figure 7b. However, atθ = 30,

the asymptotic behaviour is quite different for the three methods: (i) In CFD simulations,

Figure 5b, after a short transient time, the velocity basically regains the initial value before

passing the obstacle. (ii) LB shows a similar behaviour, with only a slight reduction of

16



S. Chibbaro et al. Capillary filling with wall corrugations

0 250 500 750 1000
t/t

cap

0

1

2

3

4

5

z/H

 θ = 30
 θ = 40
 θ = 50
 θ = 60

0 500 1000
0

0.01

0.02

0.03

0.04

U
z

θ=30

Figure 6: a) Snapshots of the front dynamics at different stages of a post surmounting LB simula-
tion. From left to right, the columns correspond to contact anglesθ = 30◦, 40◦, 50◦, 60◦. b) Time
evolution of the interface midpoint while crossing the obstacle in LB simulations. The inset shows
the instantaneous propagation speed of the front for the case θ = 30◦.

the front velocity after passing the obstacle. (iii) in MD, however, the front undergoes a

substantial velocity decrease.

This might be due to the details of the fluid-solid interaction during the obstacle surmounting

(in which the contact angle is bound to undergo drastic changes), as well as to the different

time-scales. A detailed analysis of this effect shall be deferred to a future study.

• Contact angle 50◦

In this case, while results from CFD and LB confirm the CF criterion, MD simulations show
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Figure 7: a) Variation of the number of fluid particlesN in the capillary with timet for contact
anglesθ = 32◦, 40◦, 50◦, 64◦. Symbols represent MD results, whereas lines denote the predicted
behavior according to the LW-equation. The vertical grey-shaded column indicates an extension in
the time axis. b) Time evolution of the interface, computed through the fluid volume measurement,
while crossing the obstacle in MD simulations. The inset shows the instantaneous propagation
speed of the front for the casesθ = 32◦.

a different behaviour for the front motion: interestingly,the Concus-Finn (Gibbs) criterion

for contact line pinning at the edge of the ridge is found to break down. Indeed, forθ = 50◦,

the fluid front overcomes the obstacle in manifest violationof the Concus-Finn criterion. In

order to vividly explain this feature, we show in Figure 8 thesnapshots and in video 1 and 2

the movie of the front dynamics, respectively for the casesθ = 40◦, 50◦. These observations

suggest that, on the nanoscale, the overcoming of topological obstacles is strongly affected

by interface fluctuations, thus undermining the deterministic nature of the imbibition pro-

cess. Indeed, both the CFD and LB method work in absence of fluctuations, and this would

explain the difference with MD simulations. The problem of contact line pinning during

18



S. Chibbaro et al. Capillary filling with wall corrugations

capillary imbibition acquires thus a stochastic characterand is most probably governed by

the size of the obstacles around the CF critical point. In fact, depending on the height of

the ridge obstacle, a coalescence of the pinned meniscus with the molecules ahead of the

obstacle, in the vicinity of the edge, may occur at later times.

• Contact angle 60◦

Again, in this case all the three methods give the same result: the front deforms, climbs the

obstacle, walks on its top, but pins at the back edge and definitely stops moving.

Figure 8: Snapshots from MD simulations withθ = 40◦ (on the left) and forθ = 50◦ (on
the right). It is clearly seen that for both values of the contact angle the front overcomes the
obstacle, although at different times. This shows that the Concus-Finn criterion is violated
in the case withθ = 50◦.

Further discussion

In order to gain a better understanding of the previous results, and particularly of the viola-

tion of the CF criterion for mildly super-critical angles inMD simulations, additional runs

have been performed. More precisely, we have run MD simulations atθ = 50◦ with a taller

obstacle,h = 15σ , in order to inspect whether the front is still capable of surmounting the

obstacle in violation of the CF criterion (in this case, the total slit height was correspond-
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ingly increased, so as to leave the same clearance above the obstacle as in the previous

simulations). Moreover, we have also run additional CFD andMD simulations atθ = 50◦

with shorter obstacles,h = H/4, in order to inspect whether even CFD(LB) would show

violations of the CF criterion upon reducing the obstacle size. The main outcome is as fol-

lows: MD simulations withh = 15σ doshow front pinning, indicating that violations of the

CF criterion disappear once the obstacle is made sufficiently tall (see Fig. Figure 9). This

corroborates our previous conjecture of a (Arrehnius-like?) dependence of the CF criterion

on the obstacle height, in the presence of molecular fluctuations. At the same time, CFD and

LB simulations withh= H/4 atθ = 50◦ keep showing evidence of pinning, thereby lending

further support to the idea that the CF criterion remains insensitive to obstacle size, so long

as molecular fluctuations can be neglected.

Figure 9: Snapshots (a) and centerline front coordinate (b), from MD simulations with
θ = 50◦ and h = 15σ . Unlike the same case withh = 10σ , the front is now pinned in
accordance with the CF criterion.

Before concluding, a few words of caution should be spent on the fact that, being diffuse-

interface methods, both CFD and LB propagate a finite-width interface. As a result, one may

wonder whether and to what extent finite-width effects couldinterfere with the physics of

post surmounting. Indeed, as shown in previous studies by these and other authors (13,45),

finite interface width eventually leads to mild deviations from the LW law. However, they

do not affect the qualitative outcome of a pinning/no-pinning test, unless the interface width
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becomes comparable to the characteristic obstacle width. Both CFD and LB simulations are

visibly far from this critical limit, which is why we are confident that the qualitative con-

clusions of the present work are not significantly affected by finite-width effects. One may

wonder whether such deviations might be paralleled to the effect of molecular fluctuations.

To this regard, it is worth underlining that such a parallel has to be taken very cautiously,

since molecular fluctuations stem from the microscopic physics of the problem, while finite-

width effects are due to a lack of numerical resolution. Sometimes a mapping between the

two can be established, but this can by no means be taken as a general rule. Finally, another

potential source of discrepancy between CFD(LB) and MD is the fact that the latter allows

slip motion while CFD and LB (in this set up) do not. Although any solid statement on the

effect of slip flow on the dynamics of post surmounting must necessarily be deferred to a

detailed quantitative analysis, we observe that due to the weakness of inertial effects, hy-

drodynamic boundary conditions have little or no effect, onthe dynamics/energetics of the

obstacle surmounting.

This is confirmed by the fact that slip flow effects should manifest through visible deviations

from the LW regime, of which we have no evidence, at least in the parameter regime investi-

gated in this work. This situation can drastically change inthe presence of superhydrophobic

effects, although we shall not be concerned with these problems in the present work.

Conclusions

Summarizing, we have studied the effect of geometrical obstacles in microchannels on the process

of capillary filling, by means of three distinct simulation methods - Computational Fluid Dynam-

ics (CFD), Lattice-Boltzmann Equations (LBE) and Molecular Dynamics (MD). The numerical

results of these approaches have been compared and tested against the Concus-Finn (CF) criterion,

which predicts pinning of the contact line at rectangular ridges perpendicular to flow for contact

anglesθ > 45◦. While for θ = 30◦ (flow), θ = 40◦ andθ = 60◦ (no flow) all methods are found
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to produce data consistent with the CF criterion, atθ = 50◦ the numerical experiments provide

different outcomes. While pinning of the liquid front is observed in both LB and CFD simulations,

the MD simulations show that the moving meniscus overcomes the obstacle and the filling goes

on, for a sufficiently small obstacle. This result indicatesthat the macroscopic picture underlying

the CF criterion and hydrodynamic approach needs to be amended near the critical angle. Further-

more, while in CFD and LB simulations the front re-emerges from the obstace surmounting with a

nearly unchanged velocity, in the MD case the post-surmounting velocity appears considerably re-

duced. These results suggest that, away from the critical valueθ = 45o, the issue of front-pinning

in a corrugated channel can be quantitatively described by akinetic Boltzmann approach or by the

macroscopic CFD method.

While the CFD software used in this work is well-suited to handle complex geometries, it also

shows some physical and computational limitations, namelyanomalous-long transients and the

need of a large computational grid to assure the required accuracy, which entails a correspondingly

long computational time, much closer to the MD requirementsthan to the LB ones. In the vicinity

of the critical angle, the motion of the front exhibits a strong sensitivity to molecular fluctuations

which cannot be accounted for by standard (non-fluctuating)LB methods, let alone continuum

methods. In particular, the MD simulations show that molecular fluctuations allow front propaga-

tion slightly above the critical value predicted by the deterministic CF criterion, thereby introduc-

ing a sensitivity to the obstacle height (the CF criterion isrestored for sufficiently tall obstacles).

On the basis of the present results, it would be indeed of interest to explore whether fluctuating

hydrodynamic methods, either in the form of stochastic hydrodynamics or fluctuating LB, would

prove capable of reproducing the results of MD simulations.51 Whether the probability of "tun-

nelling" to the deterministically forbidden regionθ > 45o shows an Arrehnius-like dependence on

the obstacle height, stands as an interesting topic for future research.
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