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Abstract. One issue associated with the use of Large-Eddy Simulation (LES) to investigate
the dispersion of small inertial particles in turbulent flows is the accuracy with which particle
statistics and concentration can be reproduced. The motion of particles in LES fields may
differ significantly from that observed in experiments or direct numerical simulation (DNS)
because the force acting on the particles is not accurately estimated, due to the availability of
the only filtered fluid velocity, and because errors accumulate in time leading to a progressive
divergence of the trajectories. This may lead to different degrees of inaccuracy in the prediction
of statistics and concentration. We identify herein an ideal subgrid correction of the a-priori
LES fluid velocity seen by the particles in turbulent channel flow. This correction is computed
by imposing that the trajectories of individual particles moving in filtered DNS fields exactly
coincide with the particle trajectories in a DNS. In this way the errors introduced by filtering
into the particle motion equations can be singled out and analyzed separately from those due
to the progressive divergence of the trajectories. The subgrid correction term, and therefore the
filtering error, is characterized in the present paper in terms of statistical moments. The effects
of the particle inertia and of the filter type and width on the properties of the correction term
are investigated.

1. Introduction

Dispersion and entrainment of inertial heavy particles in turbulent flows are crucial in a number
of industrial applications and environmental phenomena. Examples are mixing, combustion,
depulveration, spray dynamics, pollutant dispersion or cloud dynamics. The dynamics of
inertial particles in turbulent flows is characterized by large-scale clustering and preferential
concentration, due to the tendency of inertial particles to distribute preferentially at the
periphery of strong vortical regions and to segregate into straining regions [1–5]. In turbulent
boundary layers clustering and preferential concentration also influence settling, deposition and
entrainment to and from the wall [2, 5, 6].

Direct numerical simulation (DNS) together with Lagrangian particle tracking (LPT) have
successfully been used to investigate and quantify the behavior of particles in wall-bounded
turbulent flow. DNS studies have shown, for instance, that particle segregation and subsequent

http://arxiv.org/abs/1104.1093v1


deposition phenomena are strictly related with the interaction between particles and the near-
wall coherent vortical structures [2, 6, 7]. More specifically, pairs of counter-rotating quasi-
streamwise vortices, which are the statistically most common near-wall structures, are able
to entrain particles from the core region towards the wall on their downwash side and away from
the wall on their upwash side. This transport mechanism, called turbophoresis [8], produces net
particle fluxes toward the wall leading to irreversible particle accumulation at the wall.

On the other hand, DNS is still nowadays limited to low Reynolds numbers, often very far from
those characterizing practical applications, and to academic flow configurations. Conversely,
thanks to the huge growth of available computational resources, large-eddy simulation (LES)
can tackle increasingly complex problems. In LES the basic idea is to directly simulate only the
turbulence scales larger than a given dimension, while the effects of the unresolved subgrid scales
(SGS) on the large-scale motion are modeled. From a formal viewpoint, the separation between
scales is provided through filtering, which can be explicitly applied to the flow equations or
implicitly introduced by the numerical discretization. Thus, the exact dynamics of the filtered
fluid velocity field can at best be obtained from LES (ideal LES ), this when SGS modeling
and numerical errors are negligible. Let us restrict ourselves to the context of an ideal LES,
which can be mimicked in the so-called a-priori tests, i.e. by assuming that the LES velocity
fields are represented by the filtered DNS ones. In LPT coupled with LES of the fluid phase,
the forces acting on particles can be estimated from the filtered fluid velocity fields, by simply
neglecting the effects of the SGS scales. A critical issue is, however, to evaluate the impact of this
approximation on the ability to capture the previously described phenomena characterizing the
particle dynamics, i.e. preferential concentration and turbophoresis, and to accurately predict
quantities of practical interest, such as particle concentration profiles.

In the last decades, several examples of LPT coupled with LES of wall-bounded turbulent
flows can be found in the literature [9–19]. In most of the earlier studies, the fluid SGS velocity
fluctuations were simply neglected in the particle motion equations [9–11, 14, 15]. This is based
on the assumption that, if the particle response time is large enough compared to the smallest
time scale resolved in the LES, the effects of the SGS fluid velocity fluctuations on the particle
velocity statistics are negligible [4, 11]. For well-resolved LES, this assumption holds to capture
satisfactorily the statistics of particle velocity. Nonetheless, more recent studies [12, 13, 16, 19]
have demonstrated that neglecting the effects of the fluid SGS velocity fluctuations on particle
motion leads to significant underestimation of preferential concentration and, consequently, to
weaker deposition fluxes and lower near-wall accumulation. The issue is therefore how to model
the SGS effects in the particle motion equations.

A few different ways have been explored in the literature. Filter inversion or approximate
deconvolution have been used in LPT in homogeneous isotropic turbulence [20, 21] and in
turbulent channel flow [12, 13, 22]. These techniques appeared to be successful in recovering the
correct fluid energy content for the resolved scales and improved the prediction of preferential
concentration and turbophoresis[12, 13, 22]. Nonetheless, these models still cannot recover the
effects of the unresolved SGS scales and previous studies [22] show that the reintroduction
of the correct amount of fluid velocity fluctuations does not warrant accurate quantitative
prediction of particle preferential concentration and near-wall accumulation and suggest that
additional information on the SGS flow field is required. Attempts of introducing information
on the unrepresented scales have been made through fractal interpolation [22] or kinematic
simulation[19]. Stochastic models have also been proposed for LPT coupled with LES of the
carrier phase, but, they have mainly been used for homogeneous isotropic turbulence [21, 23, 24].

In order to devise efficient SGS models for LPT, the quantification and the analysis of the
errors introduced by the lack of SGS scales on particle dynamics is clearly a necessary step. Even
if we restrict ourselves to ideal LES, i.e. we assume that the LES of the fluid phase provides the
exact dynamics of the resolved scales, this task is complicated by the fact that there are still



two sources of errors. The first one, is the inaccuracy in the estimation of the forces acting on
particles when they are computed only from the filtered fluid velocity, output of the LES of the
carrier phase. This can be considered as the pure filtering error. The second contribution to
the error comes from the fact that, due to the inaccurate estimation of forces, considering the
same initial distribution of particles, the trajectories obtained in LES progressively diverge from
the exact DNS ones and thus the forces are evaluated at different locations. When comparing
particle concentrations and statistics obtained in LES to the DNS reference data, the effects
of the two errors can not easily be singled out. In a recent work [25] the two contributions
have been computed separately for couples of tracer particles in a-priori LES of homogeneous
isotropic turbulence.

The main goal of the present paper is to compute a SGS correction term for the LES fluid
velocity seen by inertial particles, which accounts for the pure filtering error alone. This
correction is computed by assuming that the trajectories of particles having the same initial
position tracked in a-priori LES coincide with the ones obtained in DNS of turbulent channel
flow. This is clearly an idealized situation and is a stronger requirement with respect to what
is usually asked to LPT coupled to LES, i.e. to correctly reproduce the particle statistics and
concentration. Nevertheless, in this way, the effects of the pure filtering error can be singled out
and quantified, since the divergence of trajectories is a-priori prevented. This ideal correction
(IC) can be computed for each single particle and at each time step along its trajectory, and the
properties of IC can be characterized in terms of statistics and probability distribution function.
In the present paper, the correction term is characterized in terms of statistical moments, while
PDFs will be presented in forthcoming studies. The aim is to obtain indications of the key
features to be incorporated in SGS models for the particle motion equations. The IC term is
computed here for different filter widths and types, corresponding roughly to varying amounts
of resolved flow energy, and for different particle inertia. A point at issue is indeed whether SGS
models for LPT should explicitly take into account inertia effects or general conclusions may be
drawn. Finally, an additional question is whether the flow inhomogeneity has an impact on the
key features of IC and therefore whether a SGS model should have different characteristics in
the near-wall region than in the center of the channel.

2. Physical Problem and Methodology

2.1. Particle-laden turbulent channel flow and DNS methodology

The flow into which particles are introduced is a turbulent channel flow of gas. The reference
geometry consists of two infinite flat parallel walls: the origin of the coordinate system is
located at the center of the channel and the x−, y− and z− axes point in the streamwise,
spanwise and wall-normal directions respectively. Periodic boundary conditions are imposed on
the fluid velocity field in x and y, no-slip boundary conditions are imposed at the walls. In
the present study, we consider air (assumed to be incompressible and Newtonian) with density
ρ = 1.3 kg m−3 and kinematic viscosity ν = 15.7×10−6 m2 s−1. The flow is driven by a mean
dimensionless pressure gradient, such that the shear Reynolds number, Reτ = uτh/ν, based on
the shear (or friction) velocity, uτ , and on the half channel height, h, is equal to 150. The shear
velocity is defined as uτ = (τw/ρ)

1/2, where τw is the mean shear stress at the wall.
Particles with density ρp = 1000 kg m−3 are injected into the flow. The motion of particles

is described by a set of ordinary differential equations for particle velocity and position. For
particles much heavier than the fluid (ρp/ρ ≫ 1) the most significant forces are Stokes drag
and buoyancy and Basset force can be neglected being an order of magnitude smaller [26].
In the present simulations, the aim is to minimize the number of degrees of freedom by
keeping the simulation setting as simplified as possible; thus the effect of gravity has also been
neglected. Particles, which are assumed pointwise, rigid and spherical, are injected into the
flow at concentration low enough to neglect particle collisions. The effect of particles onto the



turbulent field is also neglected (one-way coupling assumption).
With the above assumptions, a simplified version of the Basset-Boussinesq-Oseen equation

[27] is obtained. In vector form it writes:

dxp

dt
= v , (1)

dv

dt
=

us − v

τp
(1 + 0.15Re0.687p ) , (2)

where xp is the particle position, v is the particle velocity, and us is the fluid velocity at the
particle position, u(xp(t), t). The righthand side of Eq. (2) represent the drag force per unit mass
acting of the particle, D, in which τp is the particle relaxation time, defined as τp = ρpd

2
p/18µ,

dp being the particle diameter, and Rep = dp|v−u|/ν is the particle Reynolds number, ν being
the fluid kinematic viscosity.

The fully-developed channel flow previously described has been simulated through DNS.
The fluid governing equations (omitted here for the sake of brevity) are discretized using a
pseudo-spectral method based on transforming the field variables into wavenumber space, using
Fourier representations for the periodic streamwise and spanwise directions and a Chebyshev
representation for the wall-normal (non-homogeneous) direction. A two level, explicit Adams-
Bashforth scheme for the non-linear terms, and an implicit Crank-Nicolson method for the
viscous terms are employed for time advancement. Further details of the method can be found
in previous articles, e.g. [28].

The calculations were performed on a computational domain of size 4πh × 2πh × 2h in x, y
and z respectively. The size of the computational domain in wall units is 1885×942×300. Wall
units are obtained combining uτ , ν and ρ. The computational domain is discretized in physical
space with 128 × 128 × 129 grid points (corresponding to 128 × 128 Fourier modes and to 129
Chebyshev coefficients in the wavenumber space). This is the minimum number of grid points
required in each direction to ensure that the grid spacing is always smaller than the smallest
flow scale and that the limitations imposed by the point-particle approach are satisfied [16].

To calculate particle trajectories in the DNS flow field, 6th-order Lagrangian polynomials are
used to interpolate fluid velocities at the particle position. With this velocity, Eqns. (1) and (2)
are advanced in time using a 4th-order Runge-Kutta scheme.

At the beginning of the simulation, particles are distributed homogeneously over the
computational domain and their initial velocity is set equal to that of the fluid at the
particle initial position. Periodic boundary conditions are imposed on particles moving outside
the computational domain in the homogeneous directions, and perfectly-elastic collisions are
assumed at the smooth walls when the particle center is at a distance lower than one particle
radius from the wall. For the simulations presented here, large samples of 105 particles,
characterized by different response times, are considered. When the particle response time
is made dimensionless using wall variables, the Stokes number for each particle set is obtained
as St = τ+p = τp/τf where τf = ν/u2τ is the viscous timescale of the flow. Table 1 shows all the
parameters of the particles injected into the flow field.

The non-dimensional timestep size used for particle tracking was chosen to be equal to the
non-dimensional timestep size used for the fluid, δt+ = 0.045; the total tracking time in DNS
was, for each particle set, t+ = 21150 (in wall units).

2.2. A-priori LES methodology and computation of the ideal correction

In the a-priori tests the Lagrangian tracking of particles is carried out starting from the filtered
fluid velocity field, ū, obtained through explicit filtering of the DNS velocity by means of either a



Table 1. Particle parameters; τp is the particle relaxation time, dp the particle diameter, Vs

the particle settling velocity and Rep the particle Reynolds number.

St τp (s) d+
p

dp (µm) V +
s

= g+ · St Re+
p
= V +

s
· d+

p
/ν+

1 1.133 · 10−3 0.153 20.4 0.0943 0.01443
5 5.660 · 10−3 0.342 45.6 0.4717 0.16132
25 28.32 · 10−3 0.765 102.0 2.3584 1.80418

cut-off or a top-hat filter. Both filters are applied in the homogeneous streamwise and spanwise
directions in the wave number space:

ūi(x, t) = FT−1

{

G(κ1) ·G(κ2) · ûi(κ1, κ2, z, t) if |κj | ≤ |κc| with j = 1, 2 ,
0 otherwise .

(3)

where FT is the 2D Fourier Transform, κc = π/∆ is the cutoff wave number (∆ being the filter
width in the physical space), ûi(κ1, κ2, z, t) is the Fourier transform of the ith component of the
fluid velocity, namely ûi(κ1, κ2, z, t) = FT [ui(x, t)] and G(κi) is the filter transfer function:

G(κj) =

{

1 for the cut-off filter ,
sin(κj∆/2)

κj∆/2 for the top-hat filter .
(4)

Three different filter widths have been considered, corresponding to a grid Coarsening Factor
(CF) in each homogeneous direction of 2, 4 and 8 with respect to DNS, i.e. to 64×64, 32×32 and
16×16 Fourier modes in the homogeneous directions respectively. Note that a coarsening factor
of 8 leads to a very coarse resolution and is considered as an extreme case of under-resolved LES,
while CF of 2 and 4 correspond to resolutions more currently used in LES. In the wall-normal
direction data are not filtered, since often in LES the wall-normal resolution is DNS-like. [29]

In a-priori tests, the filtered flow velocity ū is used in Eq. (2) for Lagrangian particle tracking,
instead of the DNS one. The SGS correction term is computed by imposing that the particle
trajectories tracked in a-priori LES coincide with those in DNS, at each time step, tn, and for
each particle, k, we impose:

xLES
k (tn) = xDNS

k (tn) ; vLES
k (tn) = vDNS

k (tn) (5)

in which the superscript LES denotes the particle position and velocity obtained in a-priori
LES, while the superscript DNS those obtained in DNS. The correction term computed for the
particle k at time tn can be expressed as follows:

δu(xk(t
n), tn) = u(xk(t

n), tn)− ū(xk(t
n), tn) (6)

in which xk(t
n) is the position of particle k at time tn and the superscripts LES and DNS have

been dropped since the particle positions are forced to be the same in DNS and a priori LES. It is
thus evident from Eq. (6) that in this way the correction term expresses the filtering error on the
fluid velocity seen by the particles, while the error accumulation due to the progressive divergence
of the trajectories computed in LES and DNS is eliminated by assuming the coincidence of the
trajectories. As previously discussed in the Introduction, this is obviously an idealized situation,
but it allows a contribution to the error in Lagrangian tracking of particles in LES, i.e. the one
due to filtering of the fluid velocity, to be singled out and characterized. Note also that Eq.



(6) gives the difference between the DNS and the filtered fluid velocities at the particle position,
i.e. computed by following the particle trajectories. As it will be shown also in the following,
this may be substantially different from the Eulerian measure of the filtering error, classically
computed in the literature, i.e. the difference between DNS and LES velocities at fixed points
in space.

Following Eq. (6), the SGS correction term to the fluid velocity seen by the particles has
been computed for each particle along the trajectories computed in the DNS fluid velocity fields,
i.e. at xDNS

k (tn). The computation has been carried out for the three considered particle sets
characterized by different inertia and for the different filter widths and types, for a total time
∆t+ ≃ 8285 and sampled every δt+ = 4.5. It has been checked that this leads to converged
statistics of δu.

3. Statistical moments of the SGS correction

The Eulerian statistical moments of the correction term (Eq. (6)) are presented and analyzed
in this section. They are computed by dividing the computational domain in slabs having
dimensions Lx, Ly and ∆z(i) (i = 1, Nz), ∆z(i) being the difference between two adjacent
Chebyshev collocation points and Nz the number of collocation points used in DNS. Averaging
is carried out over the particles laying at a given time instant inside each slab and in time over
the time interval specified in Sec. 2.2. All the quantities shown herein are non dimensional, in
wall units.

3.1. Effects of particle inertia

In order to analyze first the effects of particle inertia, let us fix the filter width and type. The
influence of the filter will be investigated in Sec. 3.2. We consider, in particular, the cut-off
filter with a coarsening factor of 4 with respect to DNS.

Figures 1-3 show the mean value of the components of the SGS velocity correction term
along the streamwise, spanwise and normal directions, computed for the considered filter and
for different particle inertia, as a function of the distance from the wall. While the mean values
of the spanwise component of the correction are very low along the whole channel, the spanwise
and the normal components show significant (negative or positive) mean values in the near wall
region, with peaks located approximately at z+ ≃ 15 − 20. A first observation is that, if the
correction term was computed at fixed grid points, instead of following the particle trajectories,
its mean value would have been rigorously equal to zero in all the directions, since the filter
does not affect the mean value of the velocity. Note that, in priori and a-posteriori tests in the
literature, it is usual to analyze the effects of filtering (or, more in general, of errors) on the LES
fluid velocity fields at fixed points (see e.g. [12, 16]). When dealing with Lagrangian tracking of
particles, conversely, it seems to be more appropriate to study the effects of filtering on the fluid
velocity seen by the particles. As it will be shown, the behavior of the mean streamwise and
normal components of δu is indeed related to the effects of filtering on the turbulent structures,
and in particular on near-wall structures, combined with the preferential sampling of particles.

Let us start by analyzing the streamwise component of δu. As well known, the near wall region
is dominated by the presence of low- and high-speed streaks and it has been shown [6, 30, 31]
that inertial particles tend to preferentially sample low-speed streaks. The effect of filtering is
to attenuate the velocity fluctuations and therefore to smooth the streaks. As a consequence,
the correction term in mean tends to reintroduce the effect of low-speed streaks smoothened
by filtering and, thus, in mean it tends to decrease the LES fluid velocity seen by the particles
near the wall (negative peaks of mean δu1 in the near wall region). As for the effects of inertia,
the behavior of the mean streamwise component of the correction term is qualitatively the one
previously described for all the considered particle sets. Quantitatively, the mean correction is
more important for the particles having larger inertia (St=5 and 25). This is consistent with



Figure 1. Mean values of the SGS velocity
correction component in the streamwise
direction as a function of z+. Cut-off filter
with CF=4.

Figure 2. Mean values of the SGS
velocity correction component in the spanwise
direction as a function of z+. Cut-off filter
with CF=4.

Figure 3. Mean values of the SGS velocity
correction component in the wall-normal
direction as a function of z+. Cut-off filter
with CF=4.

Figure 4. Effects of filtering on the fluid
mean normal velocity seen by the particles.
Cut-off filter with CF=4.

the previous explanation of the origin of the mean values; indeed, for the considered Reynolds
number, the particles characterized by St=5 and 25 have been found in previous DNS studies
[6, 30, 31] to preferentially concentrate more than particles of smaller inertia.

As for the mean wall normal component (Fig. 3), positive values of the SGS correction term
are found in the near wall region, corresponding to a correction oriented away from the wall,
while it becomes negative as z+ increases, to eventually vanish moving towards the center of
the channel. This behavior is again related to the effects of filtering on the normal fluid velocity
seen by the particles. It has been observed in DNS that the mean fluid velocity seen by the
particles is positive in the near wall region [30], due to the fact that in the near-wall region
inertial particles preferentially sample ejection-like environments, in spite they have a mean
drift directed towards the wall. Fig. 4 reports the mean normal velocity of the fluid seen by
the different considered sets of particles in DNS, confirming the previously described behavior.
Note how again the preferential sampling of the ejection-like environments is more pronounced
for particles having larger inertia. The same velocity profiles as for DNS obtained in a-priori



LES are also shown in Fig. 4. The effect of filtering is to reduce the mean fluid normal velocity
seen by the particles near the wall and to overestimate it moving towards the center of the
channel. This is due to a smoothing of the near-wall structures, which, as for the streamiwse
streaks, tends to attenuate the sweep events (see e.g. Fig. 6 in [32]). In practice, the mean
correction term is given by the difference between the mean wall-normal fluid velocities seen by
the particles in DNS and in LES. Thus, the correction term in mean tends to be positive near
the wall, with a peak at z+ = 15− 20, and eventually becomes negative by moving towards the
channel center. There is a significant effect of particle inertia on the values of z+ at which the
positive and negative peaks are located and at which the correction changes sign, being larger
for the particles having St = 25 than for the other two considered particle sets. Note, however,
that also the fluid velocity seen by the particles in DNS significantly varies with the particle
inertia, this indicating a different interplay between the near-wall vortical structures, sweep and
ejection events and particles, depending on particle inertia. Therefore, it is not surprising that
the effects of filtering in wall-normal direction are also different for different particle inertia. It
will be shown in Sec. 3.2 that the mean correction term in the wall-normal direction is also
significantly sensitive to the filter width.

Note that preferential concentration and the interaction with the near-wall turbulent
structures have been identified in previous DNS studies [6, 30, 31] as key ingredients to explain
turbophoresis, i.e. the tendency of inertial particles to accumulate at solid walls. On the
other hand, it has been observed [12, 13, 16] that LES underestimates the turbophoretic effect.
The previous analysis of the mean SGS velocity correction term seems to indicate that this
underestimation is related to the fact the near wall turbulent structures and their interactions
with particles are incorrectly captured in LES due to errors introduced by filtering.

The r.m.s. profiles of the three components of the correction term are reported in Figs. 5-7. In
all directions, the main effect is to compensate the underestimation of fluid velocity fluctuations
due to filtering. This reduction of the fluid velocity fluctuations in LES is well known since
it can also be found in classical error analysis carried out at fixed points, and the SGS models
previously used for LPT in LES fields, such as for instance approximate deconvolution or filtering
inversion, are mainly aimed at counteracting this effect, i.e. at reintroducing the correct amount
of fluid velocity fluctuations [13, 16]. The r.m.s. profiles obtained for the three different sets of
particles are very similar each other and thus no significant effects of particle inertia are present.

Figures 8-10 show the skewness profiles of the three components of the correction term. For
the spanwise component, the skewness values remain very low along the whole channel, roughly
oscillating around zero. Conversely, the streamwise component is characterized by significant
values of the skewness, positive very close to the wall and negative in the largest part of the
channel. Finally the skewness of the normal component of the correction is also characterized by
positive significant values close to the wall, which become negative as z+ increases, eventually
become slightly positive again to vanish at the center of the channel. This behavior indicates that
significant asymmetric deviations from Gaussianity are expected in the pdfs of the streamwise
and normal components of the correction term, and, thus, that significant contributions to the
streamwise and normal components of the correction term are given by isolated events of a given
sign. This is consistent with the previous analysis, in which it has been shown that the particles
mainly feel the effects of filtering on the low-speed streaks (negative velocity fluctuations) and
on ejection events. The effects of particle inertia on the skewness of the streamwise component
of the correction term appear to be more significant in the central part of the channel, while for
the normal component larger differences are observed in the near wall region.

Finally, the flatness profiles of the three components of the correction term are reported
in Figs. 11-13. In all cases large values are present very near the wall decreasing to an
almost constant value of about 4-5 moving towards the center of the channel (3 being the



Figure 5. R.m.s values of the SGS velocity
correction component in the streamwise
direction as a function of z+. Cut-off filter
with CF=4.

Figure 6. R.m.s values of the SGS
velocity correction component in the spanwise
direction as a function of z+. Cut-off filter
with CF=4.

Figure 7. R.m.s values of the SGS velocity
correction component in the wall-normal
direction as a function of z+. Cut-off filter
with CF=4.

value corresponding to a Gaussian pdf). The effects of particle inertia are negligible.

3.2. Influence of filtering

We investigate now the effect of filter type and width on the statistics of the SGS velocity
correction and we consider the particle set characterized by St=5.

As for the mean value of the streamwise component of the correction, shown in Fig. 14,
the behavior is qualitatively similar for all the considered filters but the absolute value of the
negative peak in the near wall region increases with the filter width. This could be expected,
since, as pointed out in Sec. 3.1, this negative peak of the correction is related to the need of
counteracting the attenuation of the low-speed streaks, preferentially sampled by particles, due
to filtering. As for filter type, at fixed width, the top-hat filter introduces a stronger smoothing
of the fluid velocity fluctuations than the cut-off one and thus the mean correction term is
more important for the top-hat filter, especially for CF=2 and CF=4. The mean spanwise
component of the correction term, for all the considered filters, always has very low values
roughly oscillating around zero (not shown here for the sake of brevity). Figure 15 shows the
mean normal component. Qualitatively, in all cases the behavior is the one described in Sec. 3.1,
i.e. the mean correction is positive in the near-wall region, then becomes negative to eventually
vanish at the center of the channel. However, the filter width not only affects the values of the



Figure 8. Skewness of the SGS velocity
correction component in the streamwise
direction as a function of z+. Cut-off filter
with CF=4.

Figure 9. Skewness of the SGS velocity cor-
rection component in the spanwise direction
as a function of z+. Cut-off filter with CF=4.

Figure 10. Skewness of the SGS velocity
correction component in the wall-normal
direction as a function of z+. Cut-off filter
with CF=4.

positive and negative peaks, but also their location, which both tend to move away from the
wall as the filter width increases.

As for the r.m.s. of all the components of the correction term, reported in Figures 16-18, their
values increase with the filter width, as expected since for larger filter widths a larger amount
of fluid velocity fluctuations is damped. There is no significant effect of the filter type.

The skewness of the different components of the SGS correction term is shown in Figs. 19-21.
As observed in Sec. 3.1, the values for the spanwise component are practically negligible for
all the considered filters. Significant effects of the filter width, and in a less extent of the filter
type, are conversely observed for both the streamwise and wall-normal components, although
the qualitative behaviors remain the same.

Finally, the SGS velocity correction flatness slightly tends to decrease when increasing the
filter width (Figs. 22-24), but the behavior remains qualitatively the same for all the considered
cases as described in Sec. 3.1.

3.3. Concluding Remarks

The pure effect of filtering on the fluid velocity seen by inertial heavy particles has been singled
out by imposing that the particle trajectories in a-priori LES of turbulent channel flow coincide
with those computed in DNS. An ideal SGS correction term has therefore been computed for



Figure 11. Flatness of the SGS velocity
correction component in the streamwise
direction as a function of z+. Cut-off filter
with CF=4.

Figure 12. Flatness of the SGS velocity cor-
rection component in the spanwise direction
as a function of z+. Cut-off filter with CF=4.

Figure 13. Flatness of the SGS velocity
correction component in the wall-normal
direction as a function of z+. Cut-off filter
with CF=4.

Figure 14. Mean values of the correction
term component in the streamwise direction
as a function of z+. St=5.

Figure 15. Mean values of the correction
term component in the wall-normal direction
as a function of z+. St=5.



Figure 16. R.m.s. values of the correction
term component in the streamwise direction
as a function of z+. St=5.

Figure 17. R.m.s. values of the correction
term component in the spanwise direction as
a function of z+. St=5.

Figure 18. R.m.s. values of the correction
term component in the wall-normal direction
as a function of z+. St=5.

different particle inertia and different filter types and widths. The statistical moments of this
correction term have been investigated.

The first surprising result is that the mean values of the correction term components in the
streamwise and wall-normal directions are not zero, as it would be expected from an Eulerian
analysis, i.e. by looking at filtering effects on the mean value of fluid velocity at fixed points.
Indeed, the ideal correction takes into account the effects of filtering on the fluid velocity seen
by the particles, i.e. computed along the particle trajectories and the non-zero mean values
depend on the effects of filtering on the near-wall turbulence structures combined with particle
preferential sampling. As for the streamwise component, the correction term in mean tends to
reintroduce the effects of low-speed streaks preferentially sampled by the particles and smoothed
by filtering; therefore, it is characterized by a negative peak in the near wall region. The
quantitative value of this near-wall peak depends on both particle inertia and filter width. As
for the mean wall-normal component, the behavior of the ideal correction term is more complex,
but again tends to compensate filtering effects on the near-wall structures, which in turn affect
ejection events, preferentially sampled by inertial particles. Particle inertia and filter width also
affect the qualitative behavior of this component of the mean SGS correction. In spite of this
different and complex behavior, as a general remark, the error introduced by filtering on inertial
particle motion is not only due to the reduction of fluid velocity fluctuations, which is a well
known effect pointed out in classical error analysis in LES carried out for fixed points. This



Figure 19. Skewness of the correction term
component in the streamwise direction as a
function of z+. St=5.

Figure 20. Skewness of the correction term
component in the spanwise direction as a
function of z+. St=5.

Figure 21. Skewness of the correction term
component in the wall-normal direction as a
function of z+. St=5.

supports the conclusion drawn in our previous [16, 22], i.e. that the reintroduction of the correct
amount of fluid velocity fluctuations by a SGS model seems not to be enough to have an accurate
prediction of particle preferential concentration and near-wall accumulation.

By analyzing the higher-order moments of the correction term, the pdf of the SGS correction
term is expected to significantly deviate from a Gaussian distribution. This deviation seems to
be more important near the wall and the shape of the pdf is expected to be different for the
different components of the ideal correction. Conversely, the effects on the pdf shape of the
filter width and type, and even more of particle inertia, are expected to be small. As previousl
mentioned, the Eulerian and Lagrangian pdfs of the ideal correction term will be presented and
analyzed in forthcoming studies.

It would be also interesting to compute the ideal SGS correction for different values of the
Reynolds number, in order to investigate whether Reynolds number effects should be taken into
account.
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Figure 22. Flatness of the correction term
component in the streamwise direction as a
function of z+. St=5.

Figure 23. Flatness of the correction term
component in the spanwise direction as a
function of z+. St=5.

Figure 24. Flatness of the correction term
component in the wall-normal direction as a
function of z+. St=5.
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