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Abstract. An extension of the standard Shan-Chen model for non ideal-fluids, catering
for mid-range, soft-core and hard-core repulsion, is investigated. It is shown that the
inclusion of such mid-range interactions does not yield any visible enhancement of the
density jump across the dense and light phases. Such an enhancement can however be
obtained by tuning the exponents of the effective interaction. The results also indicate
that the inclusion of soft-core repulsion can prevent the coalescence of neighborhood
bubbles, thereby opening the possibility of tayloring the size of multi-droplet configu-
rations, such as sprays and related phase-separating fluids.
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1 Introduction

The Lattice-Boltzmann (LB) approach has proven to represent a powerful mesoscopic al-
ternative to classical macroscopic methods for computational hydrodynamics [1, 2]. The
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pseudopotential method put forward a decade ago by Shan-Chen to endow Lattice Boltz-
mann (LB) models with potential energy interactions, is one of the most successfull out-
growth of basic LB theory [3, 4]. The Shan-Chen (SC) model is based on the idea of
representing intermolecular interactions at the mesoscopic scale via a density-dependent
nearest-neighbor pseudopotential ψ(ρ). Despite its highly simplified character, the SC
model provides the essential ingredients of non-ideal (dense) fluid behaviour, that is i) a
non-ideal equation of state, ii) surface tension effects at phase interfaces. Because of its
remarkable computational simplicity, the SC method is being used for a wide and growing
body of complex flows applications, such as multiphase flows in chemical, manufacturing
and geophysical problems. In spite of its undeniable success, the SC method has made
the object of intense criticism. In particular, i) Lack of thermodynamic consistency, ii)
Spurious currents at interfaces and iii) Surface tension tied-down to the equation of state.
Problem i) refers to the fact that there is only one functional form, namely ψ(ρ) ∝ ρ,
securing compatibility between mechanical stability of the interface and equilibrium ther-
modynamics, i.e. Maxwell’s area law in the Van der Walls loop of the non-ideal equation of
state. However, recent studies [6] have clearly shown that use of suitable pseudopotentials
such that ψ(ρ) → ρ in the limit of zero density, makes this problem largely irrelevant to
any practical purposes. Problem ii) is general held responsible for setting a sharp limit
on the density jumps across the dense/rarefied fluid interface to values around ten or
less. This is a rather severe limitation for many practical applications, in which two-three
orders of magnitude density jumps are often encountered (typically 1:1000 for air-water
interfaces). Recent studies indicate that the density ratio can be drastically enhanced by
resorting to different types of equations of state (EOS) other than the original one derived
by Shan-Chen [7]. These new EOS are parametric variants of Van der Walls (VdW) equa-
tion of state, hence they include both hard-core short-range repulsion (absent in the SC
model) and soft-core long-range attraction. Short-range repulsion is known to represent a
potential danger for numerical stability, since it implies intense and localized interactions
which may disrupt the numerical time-marching scheme. Hence, it is reasonable to wonder
whether higher density ratios may be achieved by augmenting the original SC pseudopo-
tentials with additional soft-core interactions and, more in general, which are the effects
of such inclusion. This is precisley the route explored in this work.

2 Shan-Chen model with mid-range interactions

We consider the standard lattice Boltzmann (LB) equation with pseudopotentials

fi(~r + ~ci, t+ 1)− fi(~r, t) = −ω(fi − feq
i ) + Fi (2.1)
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In the above, all symbols are standard, except for the pseudo-force Fi, as discussed below.
We consider generalized pseudoforces of the following form

~F (~r) =
2∑

j=1

c2sGjψ
n(j)
j (ρ(~r))

bj∑

i=1

pij~cijψ
n(j)
j (ρ(~r + ~cij)) (2.2)

In the above, the index j labels the Seitz-Wigner cell (belt for simplicity) defined by the
condition |~r′ − ~r|2 ≤ 2j2, whereas ~cij denotes the set of discrete speeds belonging to the
j − th belt. The exponents n(j) are chosen to be: n(1) = 1 and n(2) varying between 1
and 1/8. Note that lattice units ∆x = ∆t = 1 have been assumed here. In this work we
shall confine our attention to the 24-neighbors, 2-belt lattice depicted in Figure 1.

Figure 1: Two-belt lattice for force evaluation. Each node is labelled by the corresponding energy |cij |2.
Belt 1 contains eight speeds and two energy levels (1, 2). Belt 2 contains sixteen speeds, distributed
over three energy levels (4, 5, 8)

As is well-known, the standard 1-belt, 8-speed lattice provides 4th-order isotropy, whereas
the 2-belts, 24-speed lattice upgrades isotropy to 8th order, provided the weights are
properly chosen. A suitable choice is reported in Table 1.

To forestall any confusion, we wish emphasize that the 2-belt lattice is used only for
the (pseudo)-force evaluation, whereas tha standard lattice Boltzmann dynamics still takes
place in the original D2Q9 lattice. This is also the reason why we keep a separate notation
for the weights wi used for the lattice Boltzmann populations and the weights pij used for
the force evaluation.

In the case mostly used of n(2) = 1, from equation (2.2) it is possible to find the
equation of state of our system, which reads:

p(ρ) = ρc2s +
1
2
G1C1c

2
sψ

2 +
1
2
G2C2c

2
sψ

2 (2.3)
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E(8)
pi1 = p(1) = 4/21 , i = 1, 4
pi1 = p(2) = 4/45 , i = 5, 8
pi2 = p(4) = 1/60 , i = 1, 4
pi2 = p(5) = 2/315 , i = 5, 12
pi2 = p(8) = 1/5040 , i = 13, 16

Table 1: Links and weights of the two-belt, 24-speed lattice [8].

This can be recast as follows:

p(ρ) = ρc2s +
1
2
Geffψ

2c2s (2.4)

where

Geff = G1C1 +G2C2 (2.5)

is an effective coupling and c2s =
∑8

i=0wic
2
i1,x = 1/3, C1 =

∑8
i=1 pi1c

2
i1,x = 737/1000, and

C2 =
∑16

i=1 pi2c
2
i2,x = 33/125.

At the level of the EOS, this is the same as the Shan-Chen model, just with a rescaled
coupling. However, since repulsive forces act on the second belt of neighbors, they are
distributed differently in space, and consequently their effect cannot be captured by a
mere rescaling of the attractive interactions, possibly allowing density ratios to depend on
G1 and G2 separately. From a qualitative point of view, this can be seen through a Taylor
development of the coupling force. Indeed, the force given by the equation (2.2) can be
written in the continuum as:

~F (~r) = Geffc
2
s
~∇ψ + g(G1, G2)c2s ~∇∇2ψ +O(∇4) (2.6)

where g(G1, G2) = G1
∑8

i=1 pi1c
4
ix +G2

∑16
i=1 pi2c

4
ix. This expression differs from standard

Shan-Chen, since in standard Shan-Chen both coefficients would be Geff .
The two-parameter equation of state (2.3) offers an additional degree of freedom, G2,

as compared with the standard Shan-Chen. As recently shown [6], this degree of freedom
can be used to tune the surface tension independently of the equation of state. In this
work, the zone of attraction-repulsion (AR) and of repulsion-attraction (RA) potential
have been considered. On one hand, the (RA) region corresponding to positive G1 and
negative G2, may seem the most physical, since the hard-core repulsion could be associated
to the first belt and the soft-core attraction with the successive belt.

On the other hand, the hard-core repulsion is felt only at distances of the order of
molecular size, while the first neighbors in LB are well beyond these distances [5]. Thus,
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at least with present standard resolutions, the value of G1 can be kept negative without
losing physical sound. Moreover, mid-range repulsion is physically realized in (charged)
colloid systems [9], although we shall not pursue this analogy any further in this paper.
Next, we compute the critical value of the coupling strength Gcrit, defined by the condition
∂P/∂ρ = 0. Treating G2 as a free parameter, it is possible to find the value of G1 such

Figure 2: Sketch of the potentials associated with the four quadrants of (G1, G2) parameter space.

that the condition ∂P/∂ρ = 0 is fulfilled, as a function of ψ, producing phase separation
in accordance with positive pressures from the Equation of State. This condition reads:

G1 = − c2s
(1− ψ)ψC1

−G2
C2

C1
(2.7)

We remind that in the standard Shan-Chen model, phase-separation is triggered by
attractive interactions (G1 < 0) between neighbors in the first belt. Attractive interactions
enhance density gradients and consequently they promote a progressive steepening of the
interface, eventually taking the system to a density collapse. In dense fluids and liquids
such density collapse is prevented by short-range, hard-core repulsive forces, which stop
the undefinite growth of density gradients, thereby stabilizing the fluid interface. In the
Shan-Chen model, such a stabilizing effect is surrogated by imposing a saturation of the
intermolecular attraction for densities above a reference value, ρ0. This is a form of
’asymptotic freedom’, for it implies that the interactions vanish at short-distance (high
density). This mechanism is encoded into the functional form of the Shan-Chen potential

ψ(ρ) = ρ0(1− e−ρ/ρ0) (2.8)
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from which it is apparent that for densities above ρ0, ψ tends to a constant, so that the
corresponding force goes to zero. The inclusion of mid-range (second belt of neighbors)
repulsion (G2 > 0) provides a further stabilization mechanism, which, at variance with
high-density saturation, acts preferentially on the low-density phase. This is easily seen
by recognizing that, since dψ/dρ = (1− ψ), the pseudo-potential force reads as:

F = −∇ψ = −(1− ψ)∇ρ

This expression shows that the pseudo-potential force is stronger on the low-density phase
(ψ → 0) than on the high-density one (ψ → 1). In fact, the latter is basically left unaffected
by the mid-range potential. The result is that the depletion of the low-density region
caused by the destabilizing effect of the attractive forces is countered by the stabilizing
action of the mid-range repulsive ones.

It is worth noting that the combination of short-range attraction and long-range repul-
sion, albeit potentially unstable (see the maximum of the AR potential in Figure 2), is by
no means devoid of physical meaning. Indeed, this type of interaction is widely studied in
flows of (charged) colloids, coated with small polymer-coating molecules [9]. In such flows,
the competition between short-range attraction due to the polymer coating, and long-
range repulsion (typically a Yukawa potential) due to screened electrostatic interactions,
gives rise to a very rich variety of structural behaviours, such as cluster formation, dy-
namically arrested gelation and many others. In this work, the motivation for long-range
attraction is quite different, and namely to provide a stabilization mechanism of the inter-
face growth. Yet, as it will be shown in the sequel, the competition between short range
attraction and long-range repulsion may lead to interesting effects on the phase-separtion
properties of the LB fluid as well. It remains to be investigated whether attractive forces
can be made stronger than in the SC case, due to the presence of a repulsive interaction.
This allows larger density contrasts, without incurring the numerical instabilities triggered
by depletion of the low density phase (negative densities are the typical cause of Shan-
Chen breakdown). As we shall see, the presence of such stabilization mechanism is indeed
borne out by actual numerical simulations.

It is important to note that the choice of a Geff too negative causes the pressure to
become negative in the equation (2.4). Although only pressure gradients come at play
in general LB purposes, this range remains unphysical. In this concern, the standard
Shan-Chen EOS starts to present negative pressures with a ρl/ρg ∼ 10. The use of two
parameters gives the opportunity, at least, to gauge the proprotion between the attractive
and repulsive contributions, while keeping the same Geff .

The standard case of Shan-Chen is retrieved for G2 = 0. The maximum given by the
condition ∂G1/∂ψ = 0 defines the critical point, where the condition ∂2P/∂ρ2 = 0 is also
fulfilled. Therefore, for this value of G1 there is only one value of ρ for which the state
is critical. For values of G1 below this critical value, there are two values of ρ for which
∂P/∂ρ = 0; that is the equation of state shows a maximum and a minumum of P in
correspondence to these density values.
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3 Results and discussion

We have performed a series of simulations of liquid droplet formation in a bulk gas phase.
The simulations are performed on a 64 × 64 periodic box. The main parameters are
ρ0 = 1, ω = 1, initial density ρinit = ln2, with a localized random perturbation to excite
the demixing transition.

First of all, we consider the standard Shan-Chen separation case, Figure 3.
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Figure 3: Droplet density distribution (left) and local Mach number (right) with standard Shan-Chen model
with G1 = −4.5, correponding to a density ratio of 5.6.

It is important to note that the density ratio achieved with the constraint of positive
pressure is of order 10, with the value of the coefficient G1 = −4.9. The surface tension
corresponding to this case is σ = 0.019.

Figure 4: Density profile and local Mach number with G1 = −7 and G2 = 2.5 corresponding to Geff = −4.5
and ρl/ρg = 5.6

Next we analyse the results obtained adding the mid/range repulsion, thus the AR
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potential with linear interaction (n(1) = 1). Choosing G1 and G2 such that the Geff

remains constant Geff = −4.5, we have seen that the results are not influenced by the
particular choice of the two parameters, concerning the macroscopic quantities. In Figure
4, the results obtained with G1 = −7 and G2 = 2.5 are shown as the representative
case. The density jump is not quantitatively different from that achieved by standard SC
method. Also the spurioius currents are in line with the standard approach. The surface
tension has the value of σ = 0.018 and it is slightly lowered by means of the stabilising
mechanism provided by repulsion and described in the previous section.

Figure 5: Droplet density (left) and local Mach number (right) distribution with the 2-belt model and n(2) =
1/8: G1 = −11.5 and G2 = 9.0. Density ratio 1 : 35

In order to reach a higher density jump still with the constraint of a positive pressure,
it is necessary to choose a different form of the repulsive interaction. Notably, it can be
shown that the optimal form is given by the choice n(2) = 1/8. In the case with density
ratio ρl/ρg ∼ 40, the spurious velocity Ms are everywhere lower than 0.3, where Ms = u/cs
is the local mach number, see Figure 5. Moreover, it is possible to see from Figure 6 that
the density ratio of 1 : 35 is coherent with the equation of state, since pressure remains
over zero. These results are obtained since the presence of a sub-linear repulsive force
allows the existence of a broader pressure curve and, thus, the coexistence of two states
with increased density ratio. Notwithstanding the significant improvement, it is worth
reminding that the adopted form of interaction looks rather “exotic” and its applicability
in actual experiments remains to be ascertained.

Next, we have studied the RA zone of the potential, considering different possibilities
to reach the same Geff . In Figure 7, the density and the velocity obtained are shown.
Even in this configuration, the macroscopic quantities (density jump, spurious currents)
result in line with the standard ones. A little enhancement in the value of the surface
tension is verified, σ = 0.028. Moreover, the same results are obtained whatever the vaues
of G1 and G2, provided that the same Geff is used.

Some remarks are in order. All the presented simulations, excepted the sub-linear
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Figure 6: Equation of state corresponding to G1 = −11.5 and G2 = 9.0 leading to ρl/ρg = 35. The
corresponding SC curve, with G1 = −4.9 is shown for comparison.

Figure 7: Density profile and local Mach number with G1 = 2.5 and G2 = −24.02 corresponding to Geff =
−4.5 and ρl/ρg = 5.6

ones with n(2) = 1/8, have been carried out with the same value of Geff and, thus, with
the same profile of the pressure, see eq. (2.4). We have seen that the corresponding
macroscopic results are not sensitive to the different values of G1 and G2, being almost
identical. Therefore, the only relevant factor for the control of density jump is the first-
order term in the Taylor development of the force. The little changes in the surface tension
values can be attributed to the effect of the higher-order terms.

To better understand the effects of G2, it is possible to plot the forces due to G1 and
G2 in the case of n(2) = 1:

~F1 =
1
2
G1ψ(~r)

b1∑

i=1

wiψ(~r + ~ci)~ci (3.1)
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~F2 =
1
2
G2ψ(~r)

b2∑

i=1

wiψ(~r + ~ci)~ci (3.2)

Figure 8 shows the trend of the x components of the force inside the calculation domain.
The two members due to the two types of interaction are displayed and the presence of the
density profile allows to locate their peaks. The density ratio in the two cases is the same,
corrisponding to Geff = −4.5, but it is reached by means of an attractive or a repulsive
G1: the two pictures highlight the differences in the force field.

Figure 8: Density profile and total force x components inside the domain, with G1 = −7 (left) and G1 = 2.5
(right) corresponding to Geff = −4.5 and ρl/ρg = 5.6

The second observation, related to the previous one is that F2x is shifted away from
the interface as compared to F1x. This is in line with the expectation that a different
spatial distribution implies that the effect of F2 does not reduce to a mere rescaling of the
attractive interactions, as it would indeed be the case had we placed repulsive interactions
on the first belt, like the attractive ones. The attractive force has its maximum in the
center of the interface, for the effect of density variation. In general, the net effect of the
short-range attractive force is to push particles from the interface to the liquid phase (that
is, from gas to liquid), improving the phase-transition and keeping the surface-tension. On
the other hand, the repulsive force has its maximum at the end of the interface on the
liquid side and its global effect is to counter the depletion of gas particles. Moreover,
being non-local, the repulsive force is also responsible for the effect of accumulation of
liquid particles at the interface. Indeed, while the short-range attractive force is zero far
from the interface, the mid-range repulsive force persists one site farther from the interface
because of the non-locality. Thus, in this region the repulsive force prevails. This means
that there is a (tiny) region where the net non-ideal force is repulsive, an effect which goes
beyond the equation of state where the net non-ideal contribution is always attractive.
However, this effect is so small that it is not perceived at macroscopic level.

At the same time, this non-local effect can play an important role in other problems.
In particular, with the repulsive force acting on the two belts and the attractive one only
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in the first, it is possible to see an ’anti-coalescence’ effect of the repulsive interaction, as
shown in Figure 9.

Figure 9: Density profiles in a randomly perturbated field after 10000 time steps: the standard Shan-Chen case
coalesces (left) while the complete E(8) lattice (right) presents different droplets; Gsc = −4.9 and G1 = −11,
G2 = 6.1 corresponding to Geff = −4.9 and ρl/ρg = 10.6

Although this phenomenon is still under investigation, the possibility of using small
mid-range repulsive force to simulate some “impurity effects” that change drastically the
evolution of the system after the phase transition, looks quite intriguing.

Finally, the non-equilibrium behaviour of the present model is tested against the stan-
dard Laplace’s law:

Pl − Pg =
σ

R

where σ is the surface tension and R the droplet radius. As shown in Figure 10, Laplace’s
law holds to a good accuracy. It is also noted that by making G1 more negative, with a
fixed Geff , the value of the surface tension is of the same order magnitude as with standard
SC scheme. In practice, adding a repulsive force with G2 > 0 results in a more stable
method and allows to keep | G1 |À 1. Nevertheless, it also tends to weaken the surface
tension, by continuously pushing particles towards the interface, so that the combined
effect of the two is rather negligible.

4 Conclusions

In conclusion, we have analysed the effects of the inclusion of a mid-range potential on
top of the standard Shan-Chen pseudo-potential model. The present simulations provide
clear indications that this mechanism permits a significant enhancement of the short-
range attractive force with a strong stabilising effect, yet without important changes in
the macroscopic behaviour. Nevertheless, the presence of a mid-range repulsive force
changes the surface tension and seems to be able to mimick the presence of impurities
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Figure 10: Laplace test: SC with G1 = −4.5, and ρl/ρg = 5.6; 2-belts with G1 = −7, G2 = 2.5 and 2-belts
with G1 = 2.5, G2 = −24.02, corresponding to the same ρl/ρg as the standard Shan-Chen case.

which prevent the coalescence of the droplets. Therefore, the mid-range interactions may
have a significant effect on the microscopic behaviour of the phase-separating system.

Future work including further neighbours and multiple species [10] is currently in
progress.

Finally, we wish to emphasize that in this work, we have chosen to work within the
constraint of positive fluid pressure, p ≥ 0: that is repulsive interactions (ideal plus mid-
range non-ideal) always prevail over (non-ideal) attractive ones. However, it is empirically
observed that both standard SC and the present model keep providing sensible results
in the unphysical p < 0 region, actually with enhanced density jumps. This raises the
question of whether recent studies reporting density ratioes as high as 1:1000 are indeed
compliant with the p ≥ 0 constraint. Another intriguing question, to be left for future
studies, is whether it makes sense to operate LB in the unphysical region p < 0: the pos-
sibility of negative pressure has been speculated for exotic states of matter, characterized
by dominant attractive interactions, such as Bose-Einstein condensates, or quintessence
and dark matter in cosmological flows [11].
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