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Abstract

The purpose of this paper is to give an overview in the realm of numerical computations of polydispersed turbulent two-phase

flows, using a mean-field/PDF approach. In this approach, the numerical solution is obtained by resorting to a hybrid method,

where the mean fluid properties are computed by solving mean-field (RANS) equations with a classical finite volume procedure

whereas the local instantaneous properties of the particles are determined by solving stochastic differential equations (SDEs). The

fundamentals of the general formalism are recalled and particular attention is focused on a specific theoretical issue: the treatment

of the multiscale character of the dynamics of the discrete particles, i.e. the consistency of the system of SDEs in asymptotic cases.

Then, the main lines of the particle/mesh algorithm are given and some specific problems, related to the integration of the SDEs,

are discussed, for example, issues related to the specificity of the treatment of the averaging and projection operators, the time

integration of the SDEs (weak numerical schemes consistent with all asymptotic cases), and the computation of the source terms.

Practical simulations, for three different flows, are performed in order to demonstrate the ability of both the models and the

numericals to cope with the stringent specificities of polydispersed turbulent two-phase flows.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-phase flows are relatively easy to observe: to

get a first inkling, one can think of throwing small light

particles (which then play the role of tracer particles)

into a turbulent flow such as a rapid river or a plume

coming out of a chimney. The small solid particles

reveal the intricate and complex features of turbulent

flows: understanding and modelling these features, i.e.
single-phase turbulent flow modelling, is the subject of

extensive research [1]. If one introduces larger and

larger particles in the flow, more complex phenomena

take place: the behaviour of the particles will reflect the

interplay between the main physical mechanisms, such

as particle inertia and turbulence of the carrying flow.

Then, eventually, when particles become large enough,

the effect of the fluid may become negligible with

respect to particle inertia. Thus, turbulent fluid–particle



Nomenclature

Ai drift vector

Ap/f acceleration in Langevin equation for the

fluid (m/s2)

Ap/s acceleration in Langevin equation for the

particles (m/s2)

Af,i drift vector defined by Eq. (23) (m/s2)

As,i drift vector defined by Eq. (24) (m/s2)

Ai acceleration defined by Eq. (40) (m/s2)

An
i approximated value of Ai at tn (m/s2)

AnC1
i predicted value of Ai at tnC1 (m/s2)

Ai drift vector defined by Eqs. (79) and (120)

An
i approximated value of Ai at tn
~A

nC1
i predicted value of Ai at tnC1

A1 coefficient defined in Table 4 (s)

A2 function defined in Table 5

A2c function defined in Table 5

bi coefficient for ~k, biZTL=T
*
L;i

B diffusion coefficient in Eq. (31) (m/s3/2)

B.(N) bias for variable.

Bij diffusion matrix (m/s3/2)
�Bi diagonal elements of Bij, i.e. �BiZBii

(m/s3/2)
�B

n
i approximated value of �Bi at tn (m/s3/2)
~�B

nC1

i predicted value of �Bi at tnC1 (m/s3/2)

B*
i approximated value defined by Eq. (88)

(m/s3/2)

Bij diffusion matrix defined by Eqs. (79) and

(120)

Bn
ij approximated value of Bij at tn

~B
nC1
ij predicted value of Bij at tnC1

Bf,ij diffusion matrix defined by Eq. (23) (m/s3/2)

Bs,ij diffusion matrix defined by Eq. (24) (m/s3/2)

B1 coefficient defined in Table 4 (s)

B2 function defined in Table 5

B2c function defined in Table 5

C proportionality constant, cf. Eq. (51)

C(T) proportionality constant, cf. Eq. (67)

CD drag coefficient

Ci acceleration defined by Eq. (40) (m/s2)

Cn
i approximated value of Ci at tn (m/s2)

CnC1
i predicted value of Ci at tnC1 (m/s2)

Cb coefficient for T *
L;i, cf. Eq. (25)

C0 Kolmogorov constant, cf. Eq. (22)

C1 coefficient defined in Table 4 (s)

C2c function defined in Table 5

dp particle diameter (m)

dt time increment or

observation timescale (s)

D diffusion coefficient or cyclone diameter

(m2/ s or m)

Dij positive-definite matrix, DZBBT

D1 coefficient defined in Table 4

E1 coefficient defined in Table 4

f function

fF pdf of F

FE
f fluid Eulerian mass density function

g function

g gravitational acceleration (m/s2)

Gij return-to-equilibrium matrix, cf. Eq. (23)

(sK1)

Ga
ij anisotropy matrix, cf. Eq. (23) (sK1)

Gp;i standard Gaussian random variable,

Eq. (72)

G0
p;i standard Gaussian random variable,

Eq. (96)

Gx;i standard Gaussian random variable,

Eq. (73)

G1;i standard Gaussian random variable,

cf. Table 4

G2;i standard Gaussian random variable,

cf. Table 4

G3;i standard Gaussian random variable,

cf. Table 4

H(t) stochastic process, cf. Eq. (68)

HðVfÞ function of Vf

Ix(t) stochastic integral in model problem,

cf. Eq. (36) (m)

IU(t) stochastic integral in model problem,

cf. Eq. (36) (m/s)

k turbulent kinetic energy (m2/s2)
~k modified turbulent kinetic energy (m2/s2)

kp deposition velocity (m/s)

m(x) deterministic function, cf. Section 5.2.1

N total number of discrete particles or samples

Nk number of discrete particles in cell k

Npc number of discrete particles per cell

or per class

Ni
pc number of discrete particles in cell i

p probability density function (pdf) for Z(t)

pE
f Eulerian fluid distribution function

pr probability density function (pdf) for Zr(t)

P(t,x) local instantaneous pressure field (Pa)

hPni approximated value of P(t,x) at ðtn; x
n
pÞ (Pa)

hPnC1i predicted value of P(t,x) at ðtnC1; x
nC1
p Þ (Pa)

Pij coefficients defined in Table 4,

(i,j)2(1,2,3)2 (m or m/s)

E. Peirano et al. / Progress in Energy and Combustion Science 32 (2006) 315–371 317



Rep Reynolds number (discrete particles)

Rij Reynolds stress tensor (m2/s2)

s(x) deterministic function, cf. Section 5.2.1

SU source term in Eq. (125) (m/s2)

Sk trace of source term tensor in Eq. (126)

(m2/s3)

SRij
source term in Eq. (126) (m2/s3)

t time (s)

tC dimensionless time, tCZ tðu*Þ2=nf
T characteristic timescale (s)

TE fluid Eulerian integral timescale (s)

Ti fluid seen integral timescale (in Section 5) (s)

Tn
i approximated value of Ti at tn (s)
~T

nC1
i predicted value of Ti at tnC1 (s)

TL fluid Lagrangian integral timescale (s)

T *
L;i fluid seen integral timescale (s)

u(t, x) fluctuating fluid velocity field (m/s)

u* friction velocity (m/s)

U(t) velocity in model problem, cf. Eq. (31) (m/s)

U(t, x) local instantaneous fluid velocity field (m/s)

hUii mean fluid velocity field at (t, x) or (t, xp(t))

(m/s)

hUn
i i approximated value of hUii at ðtn; x

n
pÞ (m/s)

hUnC1
i i approximated value of hUii at ðtnC1; x

nC1
p Þ

(m/s)

Uf(t) velocity of fluid particles (m/s)

Un
f;i approximated value of Uf(t) at tn (m/s)

~U
nC1
f;i predicted value of Uf(t) at tnC1 (m/s)

UnC1
f;i approximated value of Uf(t) at tnC1 (m/s)

UpðtÞ velocity of the discrete particles (m/s)

Un
p;i approximated value of Up(t) at tn (m/s)

~U
nC1
p;i predicted value of Up(t) at tnC1 (m/s)

UnC1
p;i approximated value of Up(t) at tnC1 (m/s)

Ur(t) particle relative velocity (m/s)

Us(t) fluid velocity seen (m/s)

Un
s;i approximated value of Us(t) at tn (m/s)
~U

nC1
s;i predicted value of Us(t) at tnC1 (m/s)

UnC1
s;i approximated value of Us(t) at tnC1 (m/s)

Vf sample space value for Uf(t) (m/s)

V½k�
f volume of fluid in cell [k] (m3)

w(x) weighting function (continuous form)

~wðxÞ weighting function (discrete form)

Wi(t) Wiener process (s1/2)

x(t) position in model problem, cf. Eq. (31) (m)

xf(t) position of the fluid particles (m)

xp(t) position of the discrete particles (m)

xn
p;i approximated value of xp(t) at tn (m)

xnC1
p;i approximated value of xp(t) at tnC1 (m)

X(t) stochastic process or deterministic variable,X

yC dimensionless distance from wall

Y sample space value of Y(t)

Y(t) stochastic process or deterministic variable,Y

Y(t) set of external variables

z sample space value of Z(t)

zi
f sample space value of Zi

fðtÞ

zi
p sample space value of Zi

pðtÞ

Z(t) state vector

Zi
f;j variable j for fluid particle i

Zi
p;j variable j for discrete particle i

Zr(t) reduced state vector

Greek letters

af(t, x) volume fraction of fluid

ap(t, x) volume fraction of particles

bi, b constants defined in Eq. (25)

gi(t) stochastic process defined by Eq. (133) (m/s)

gn
i approximated value of gi(t) at tn (m/s)

~gnC1
i predicted value of gi(t) at tnC1 (m/s)

Gi(t) stochastic process defined by Eq. (134) (m/s)

Gn
i approximated value of Gi(t) at tn (m/s)
~G

i
nC1 predicted value of Gi(t) at tnC1 (m/s)

d($) Dirac delta function

dij Kronecker’s symbol

Dt time step (s)

Dx characteristic cell size (m)

e(t, x) dissipation rate of k (m2/s3)

3(t) energy dissipation for fluid particles (m2/s3)

h(t) Gaussian white noise

qi ratio, qiZTi=ðTiKtpÞ

qn
i approximated value of qi at tn
mf dynamic viscosity of fluid (Pa s)

nf kinematic viscosity of fluid (m2/s)

x standard Gaussian random variable,

cf. Eq. (51)

xx standard Gaussian random variable,

cf. Eq. (37)

xU standard Gaussian random variable,

cf. Eq. (37)

Pp(t) random acceleration defined by Eq. (A2)

(m/s2)

rf density of fluid (kg/m3)

rp density of discrete particles (kg/m3)

s diffusion matrix in Eq. (45)

s[$] standard deviation of $
s2F variance of F

t characteristic timescale (s)

tp particle relaxation time (s)

tCp dimensionless particle relaxation time

~tn
p approximated value of tp at tn (s)
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~tnC1
p predicted value of tp at tnC1 (s)

th Kolmogorov timescale (s)

F random variable or deterministic function

c ratio, cZafrf =aprp
J sample space value of F

Ui(t) stochastic process defined by Eq. (135)

(m)

Un
i approximated value of Ui(t) at tn (m)

Subscripts

f continuous phase (fluid)

p discrete phase (particles)

s fluid properties sampled along particle

trajectories (fluid seen)

Superscripts

[i] variable calculated at cell centre i

[k] variable calculated in cell k

n approximated values at tZtn
nC1 approximated values at tZtnCDt

(n), (N) variables calculated at particle locations

r reduced information

T transpose of a matrix

[x] variables calculated on the mesh/at cell

centres

C dimensionless quantitiese predicted quantities (numerical schemes)

Special notation

{$} set of variables

h$i mathematical expectation

h$iN mean value, i.e. ð1=NÞ
PN

iZ1 ,
h$iD spatial average

h$iN,D approximation of h$i, spatial average

on N samples

h$iN Zh,iN with N/N, i.e. h$i
h,j,i conditional expectation

j$j norm of a vector

v partial derivative

U bold style for vector notation

D$/Dt v,=vtC hUiiv,=vxi

d$(t) time increment, e.g.

dUfðtÞZUfðtCdtÞKUfðtÞ

Abbreviations

CIC cloud in cell

CPU central processing unit

cst a given constant

CTE crossing trajectory effect

DNS direct numerical simulation

DSMC direct simulation Monte Carlo

LES large eddy simulation

NGP nearest grid point

ODE ordinary differential equation

PDE partial differential equation

pdf/

PDF probability density function

PIC particle in cell

RANS Reynolds-averaged Navier–Stokes

RHS right-hand side

r.m.s. root-mean square

RSM Reynolds stress models

SDE stochastic differential equation

SPH smoothed particle hydrodynamics

VRT variance reduction technique
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flow modelling appears as a link between subjects such

as turbulence and granular flows [2]. In general, two-

phase flows are even more complex since, in the case of

air and water, for example, different configurations of

the interface between the two phases may be present.

Yet, in the present study, attention will be focused on

the motion of particles embedded in a turbulent fluid,

i.e. polydispersed turbulent two-phase flows, where the

geometrical configuration does not change.

Polydispersed turbulent two-phase flows are found

in numerous environmental and industrial processes,

very often in contexts that involve additional issues, for

example chemical and combustion ones. Therefore,

modelling these flows raises very difficult theoretical

questions and, at the same time, one has to provide

answers to what we can refer to as engineering

concerns. As a consequence, a theoretical and

numerical model represents an attempt to find a
satisfactory compromise between these sometimes

conflicting expectations. Before trying to outline what

is meant by satisfactory, let us describe the character-

istics of the polydispersed turbulent two-phase flows we

consider here.

In the present study, only non-reacting incompres-

sible fluid–particle flows, with no collisions between

particles, are investigated (particle dispersion and

turbulence modulation induced by the presence of the

particles are the physical mechanisms under consider-

ation). This is not a strict limitation of the approach that

will be adopted since, as mentioned below, the

probability density function (PDF) formalism that

shall be followed is precisely well-suited for the

extension to more complex physics, such as combus-

tion. However, for the sake of simplicity, we limit

ourselves to the core physics embodied by particle

dynamics. In addition, only the case of solid heavy
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particles is treated, i.e. density of the particles is much

greater than that of the fluid, rp[rf. This hypothesis

simplifies the equation of motion of discrete particles in

a turbulent flow which, retaining only drag and gravity

forces, can be written as:

dxpðtÞ

dt
ZUpðtÞ;

dUpðtÞ

dt
Z

1

tp
ðUsðtÞKUpðtÞÞCg:

8>>>><>>>>: (1)

In these equations, Us(t)ZU(t,xp(t)) is the fluid

velocity ‘seen’, i.e. the fluid velocity sampled along the

particle trajectory xp(t), where U(t,x) is the local

instantaneous (Eulerian) fluid velocity field. The

particle relaxation time, tp, is defined as

tp Z
rp

rf

4dp

3CDjUrj
; (2)

where the local instantaneous relative velocity is

Ur(t)ZUp(t)KUs(t). The drag coefficient, CD, is a

non-linear function of the particle-based Reynolds

number, RepZdpjUrj/nf, which means that CD is a

non-linear function of the particle diameter, dp [3]. This

last point represents a major theoretical difficulty for a

statistical treatment since we do not consider mono-

dispersed two-phase flows (where dp is constant), but

polydispersed two-phase flows, where dp covers a range

of possible values (from very light particles acting as

fluid tracers to high-inertia particles in the ballistic

regime, where the effect of the fluid on the particle

dynamics can be neglected). In the particle dynamical

equations, it is important to note that we are dealing

with the instantaneous fluid velocities, U(t,xp(t)). Yet,

for high-Reynolds turbulent flows, which are the most

common ones, such an information is not available due

to the very large number of degrees of freedom of

turbulent flows [4]. A modelling step is necessary and

most models adopt a statistical approach where only

some limited information is sought for the fluid fields

whereas particles are tracked individually. In practical

models, this information consists of, for the fluid, the

first two velocity moments, as in Rij–e models [5], or

even filtered velocity fields as in LES calculations, e.g.

[6,7]. In the present work, Rij–e models (RANS

equations) will be used in practical computations, but

the PDF approach (for the particles) to come is fully

compatible with other approaches for the fluid, for

example LES.

As indicated above, in order to track the particles, a

satisfactory model must be built for the evaluation of
particle properties, cf. Eqs. (1). By satisfactory, we

mean a model, which has the following properties:

(i) the model treats the important phenomena, such

as convection and the polydispersed nature of

the particles, without approximation;

(ii) the approach is naturally set into a general

formalism, which allows additional variables,

for more complex physics such as combustion

issues, to be directly introduced;

(iii) the complete theoretical model must be tract-

able in complex geometries and applicable for

engineering problems.

The first two issues have been addressed in a

previous review work [8], where a PDF approach has

been developed. In practice, the PDF approach has the

form of a particle stochastic method where the velocity

of the fluid seen, Us(t), is modelled as a stochastic

diffusion process, i.e. the dynamics of the particles are

calculated from stochastic differential equations

(SDEs), the so-called Langevin equations [8]. In

polydispersed two-phase flows, a particle point of

view seems rather natural, given the physics con-

sidered. Yet, the particles, which are to be simulated,

represent samples of the pdf and should not be confused

with real particles. Within the PDF formalism, this

particle point of view is helpful to build the theoretical

model and, at the same time, represents directly a

discrete formulation of the model. However, in order to

devise a consistent framework, it is important to

separate the two steps by formulating the model in

continuous time before addressing the questions of

numerical methods for practical computations.

The purpose of the present review is to address point

(iii) above, and to discuss the general numerical

methodology used for particle stochastic or PDF

models for polydispersed turbulent two-phase flows.

More specifically, it is aimed at providing answers to

several interrogations:

(a) what do the stochastic particles represent?

(b) how do we compute the stochastic differential

equations?

(c) what are the various difficulties and sources of

numerical errors in the complete numerical

method?

More than trying to present definitive answers to the

questions of what numerical scheme should be used, the

objective is to propose a general numerical approach

and to show how PDF models, Langevin stochastic
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equations, particle/mesh and dynamical Monte Carlo

methods are closely connected and actually represent

different translations of the same idea. Within that

context, a major goal is to emphasise that although

numerical schemes are separated from the construction

of the theoretical model, they cannot be addressed only

from a mathematical point of view. Indeed, it is

important that they reflect the physical properties of the

continuous stochastic model, namely the multiscale

character of the Langevin equations presented in

Section 3.

The paper is organised as follows. The mathematical

background on PDF equations and stochastic diffusion

processes is recalled in Section 2. General and state-of-

the-art Langevin models for polydispersed turbulent

two-phase flow modelling are briefly presented in

Section 3. A central point is the analysis of the

multiscale properties of the Langevin equations, and

the expression of various physical limits when

characteristic timescales become negligible with

respect to the observation timescale, cf. Section 4.

This analysis serves as a guideline for the development

of the numerical model in Section 5 that contains both

particle/mesh and time-integration issues. Then, a

discussion is given on specific issues related to two-

way coupling, Section 6. Several numerical appli-

cations representative of practical concerns are

presented in Section 7.
2. General formalism

The general formalism, on which the derivation of

the system of equations (RANS equations for the fluid

and SDEs for the discrete particles) relies, is based on

the Lagrangian point of view: the system (the fluid–

particle mixture) is treated as an ensemble of fluid and

discrete particles. The discretisation of a continuous

medium (the fluid) with particles is not a natural step,

but it is a practical way, in the frame of the probabilistic

formalism briefly outlined here, to treat important

physical phenomena without approximation [8]. In the

present formalism, a fluid particle is an independent

sample of the flow, with a given pdf. Physically, a fluid

particle can be seen as a small element of fluid whose

characteristic length scale is much larger than the

molecular mean free path and much smaller than the

Kolmogorov length scale. The fluid particles have a

mass mf, a volume Vf and a velocity that equals the fluid

velocity field at the location of the particle,

UfðtÞZUðt; xfðtÞÞ.
2.1. Statistical approach

Let us consider an ensemble composed by Nf fluid

particles and Np discrete particles interacting through

forces that can be expressed as functions, or func-

tionals, of the variables attached to each particle, e.g. l

variables for the fluid particles and q variables for the

discrete particles (these variables can be, for example,

position, velocity, etc.). All available information is

then contained in the following state vector

ZðtÞZ fZ1
f;1ðtÞ;.;Z1

f;lðtÞ;.;ZNf

f;1ðtÞ;.;Z
Nf

f;l ðtÞ;

Z1
p;1ðtÞ;.;Z1

p;qðtÞ;.;Z
Np

p;1ðtÞ;.;Z
Np

p;qðtÞg;
(3)

where Zi
f;jðtÞ represents the variable j attached to the

fluid particle labelled i and Zi
p;jðtÞ represents the

variable j attached to the discrete particle labelled i.

The dimension of the state vector is then lNfCqNp. Let

us suppose that the dynamical behaviour of the closed

system can be described in terms of ordinary

differential equations (the Navier–Stokes equations, in

Lagrangian form, for fluid particles and for discrete

particles, the equation of motion of a single particle in a

turbulent fluid–particle mixture), i.e.

dZðtÞ

dt
ZAðt;ZðtÞÞ: (4)

Here, it is assumed that in the Navier–Stokes

equations, the local instantaneous pressure gradient,

the viscous forces and the source term (due to the force

exerted by the discrete particles on the fluid) can be

expressed as functionals of the state vector Z(t). In

sample space, this system of ordinary differential

equations (ODEs) corresponds to the Liouville equation

[9]

vpðt;zÞ

vt
C

v

vz
ðAðt;zÞpðt;zÞÞZ0; (5)

where p(t;z), the associated pdf, represents the

probability to observe at time t the system in state z.

In the present paper, we distinguish between physical

space, Z, and sample space, z. A distinction is also

made, for the pdf, between parameters and variables by

separating them with a semi-colon, i.e. (t;z).
In practice, the number of degrees of freedom of

such a system is huge (turbulent flow with a large

number of particles) and one has to resort to a

contracted description in order to come up with a

model that can be simulated with modern computer

technology. For single-phase turbulent reactive flows, a

one-point pdf, pðt; zi
fÞ, is often retained [10,11]. For the

description of the dynamics of discrete particles in
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turbulent dispersed two-phase flows, a one-point pdf,

pðt; zj
pÞ, is also encountered [5,8,12]. In this work, as we

shall see in Section 3.2, both approaches are gathered in

the form of a two-point pdf, pðt; zi
f ; z

j
pÞ and the

associated reduced state vector (henceforth denoted

by superscript r) is

ZrðtÞZ fZf;1ðtÞ;.;Zf;lðtÞ;Zp;1ðtÞ;.;Zp;qðtÞg: (6)

The time evolution equations, in physical space, for

this sub-system have the form

dZrðtÞ

dt
ZAðt;ZrðtÞ;YðtÞÞ; (7)

where there is a dependence on the external variable

Y(t) (related to the particles not contained in Zr(t) as

only pairs of particles, a fluid one and a discrete one, are

under consideration). In sample space, the marginal pdf

pr(t;zr) verifies

vprðt; zrÞ

vt
C

v

vzr
½hAjzriprðt; zrÞ�Z 0; (8)

where the conditional expectation is given by

hAjzriZ

ð
Aðt; zr; yÞpðt; yjzrÞdy

Z
1

prðt; zrÞ

ð
Aðt; zr; yÞpðt; zr; yÞdy: (9)

Eq. (8) is now unclosed showing that a reduced

description of a system implies a loss of information

and thus the necessity to introduce a model.

A practical way to close the system is to resort to

stochastic differential equations (SDEs), as it shall be

briefly explained in Section 3.1. Further detailed

explanations for this move can be found in Refs.

[8,13]. The stochastic differential equations treated in

this work have the following form (Zr(t) is called a

diffusion process)

dZr
i ðtÞZAiðt;Z

rðtÞÞdtCBijðt;Z
rðtÞÞdWjðtÞ; (10)

where W(t)Z(W1(t),.,Wd(t)) is a set of independent

Wiener processes [14] and dZlCq is the dimension of

the reduced state vector. These equations are often

referred to as Langevin equations in the physical

literature [9]. In Eq. (10), AZ(Ai) is called the drift

vector and BZ(Bij) is the diffusion matrix. SDEs

require a strict mathematical definition of the stochastic

integral as it shall be explained in Section 2.2. If one

adopts the Itô definition of the stochastic integral (see

Section 2.2) in Eq. (10), it can be shown, see [9] for

example, that the corresponding equation in sample

space for pr(t;zr) is the Fokker–Planck equation
vprðt; zrÞ

vt
ZK

v

vzri
½Aiðt; z

rÞprðt; zrÞ�C
1

2

v2

vzrivzrj

!½Dijðt; z
rÞprðt; zrÞ�; (11)

where DijZBilBjlZ(BBT)ij is a positive-definite matrix.

In a weak sense (when one is only interested in statistics

of the process), one can speak of an equivalence

between SDEs and Fokker–Planck equations. As we

shall see below, this correspondence is the cornerstone

of the proposed numerical approach: the pdf can be

obtained by simulating the motion of stochastic

particles, i.e. Eq. (10). In other words, real particles

are replaced by stochastic particles, which, if the model

is suitable, reproduce the same statistics as the real

ones. Indeed, in many problems of practical concern,

the dimension of the reduced state vector is large and

properties of the coefficients A and B make the direct

solution of the above partial differential equation

(PDE), i.e. the Fokker–Planck equation, numerically

difficult. Instead, it is more appropriate to calculate

pr(t;zr) (or any moment extracted from it) from Eq. (10).

Practically, this is done by resorting to a dynamical

Monte Carlo method, i.e. by simulating a large number

N of independent realisations of Zr(t). Then, at each

time step, the discrete pdf, pr
Nðt; z

rÞ, can be computed

from the set of N independent samples {Zr,n(t)} as

pr
Nðt; zÞZ

1

N

XN

nZ1

dðzr1KZr;n
1 ðtÞÞdðzr2KZr;n

2 ðtÞÞ

/dðzrdKZr;n
d ðtÞÞ; (12)

where d is the dimension of the reduced state vector and

n stands for the sample index. The question to be

answered is: in what sense does the ensemble {Zr,n(t)},

from which the discrete pdf pr
Nðt; z

rÞ is extracted,

represent the underlying pdf pr(t;zr)? The answer to this

question can be given in a weak sense, i.e. when

convergence in distribution is ensured, i.e. pr
Nðt; z

rÞ/
prðt; zrÞ when N/N.

A sequence of random variables {Xn} converges in

distribution to X if and only if, for any bounded

continuous function g on R, one has hg(Xn)i/hg(X)i

when n/N. In calculations, the mathematical expec-

tation h$i is estimated by the ensemble average h$iN over

N independent samples. The law of large numbers tells

us that hg(X)iN is an unbiased estimation of hg(X)i, i.e.

hg(X)iN/hg(X)i when N/N. Then, according to the

central limit theorem, the error eNZ hgðXÞiNKhgðXÞi,

which is a random variable, converges in distribution to

a Gaussian random variable of zero mean and standard
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deviation s½gðXÞ�=
ffiffiffiffi
N

p
provided that the variance of

g(X), s2[g(X)], is finite.

In the following, the PDF approach shall always be

understood as the numerical solution of the set of SDEs

equivalent, in a weak sense as explained above, to the

corresponding Fokker–Planck equation.
1 Here, the different modes of convergence of the random

variable—the stochastic integral—are not dealt with. For further

information, see [14,16] for example.
2.2. Stochastic integrals and calculus

Stochastic differential equations require a strict

mathematical treatment. The mathematical specificities

of SDEs have far-reaching consequences for the

derivation of accurate numerical schemes, cf. Section

5.3. Some basic explanations are now given to highlight

the important points that are needed for practical

purposes. As a matter of fact, Eq. (10) is just a

shorthand notation for

Zr
i ðtÞZ Zr

i ðt0ÞC

ðt
t0

Aiðs;Z
rðsÞÞdsC

ðt
t0

Bijðs;Z
rðsÞÞdWjðsÞ;

(13)

where the first integral on the right-hand side (RHS) is a

classical Riemann–Stieltjes one. In the second integral,

integration is performed with a measure, dW(t), that has

non-conventional properties. The Wiener process can

be defined [14] as the only stochastic process with

independent Gaussian increments and continuous

trajectories (an increment, over a time step dt, is

defined as dWjðtÞZWjðtCdtÞKWjðtÞ). The Wiener

process has the following properties [14,15]:

(i) the trajectories of Wj(t) are continuous, yet

nowhere differentiable (even on small time

intervals, Wj(t) fluctuates enormously),

(ii) each increment is a Gaussian random variable:

hdWj(t)
2pC1iZ0 for the oddmoments, hdWj(t)

2iZ
dt and hdWj(t)

2piZo(dt), cpO1, for the even

moments. Increments over small time steps are

stationary and independent, hdWj(t)iZ0, ct, and

hdWj(t) dWj(t
0)iZ0 with tst0,

(iii) the trajectories are of unbounded variation in

every finite interval.

The last property is the reason why the treatment of

stochastic integrals differs from that of classical

(Riemann–Stieltjes) ones (the Wiener process is not

of finite variation [15]). Without going too deep into

mathematical details, property (iii) simply implies that

speaking of a stochastic integral without specifying in
what sense it is considered lacks rigour (in this work, all

stochastic integrals will be considered in the Itô sense).

In classical integration, the limit of the following sum

(tk2[tk,tkC1])

ðt
t0

Bijðs;Z
rðsÞÞdWjðsÞ

Z lim
N/CN

XN

kZ0

Bijðtk;Z
rðtkÞÞðWjðtkC1ÞKWjðtkÞÞ; (14)

should be independent of the choice of tk. This is not

true in the above integral because of property (iii).1 As a

consequence, a choice has to be made for the sake of

consistency. Two main choices (there exist others) are

encountered in the literature, the Itô and the Stratono-

vich definitions. In the Itô definition, tkZtk and the

following limit is under consideration

lim
N/CN

XN

kZ1

Bijðtk;Z
rðtkÞÞðWjðtkC1ÞKWjðtkÞÞ: (15)

This choice has a major drawback, i.e. the rules of

ordinary differential calculus are no longer valid.

However, this drawback is balanced by the zero mean

and isometry properties, which are of great help when

deriving weak numerical schemes, see Section 5.3.1

ðt1
t0

XðsÞ dWðsÞ

* +
Z 0;

ðt2
t0

XðsÞ dWðsÞ

ðt3
t1

YðsÞ dWðsÞ

* +
Z

ðt2
t1

hXðsÞYðsÞi ds:

(16)

where h$i is the mathematical expectation

(t0%t1%t2%t3, X(t) and Y(t) are two stochastic

processes). These properties no longer hold in the

case of the Stratonovich interpretation but the rules of

ordinary differential calculus remain valid. In the

Stratonovich interpretation of the stochastic integral,

the basic idea is to choose tk as the middle point of the

intervals, i.e. 2tkZ tkC tkC1. There are, as a matter of

fact, several possible choices, the most commonly
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encountered in the mathematical literature beingðt
t0

Bijðs;Z
rðsÞÞ+dWjðsÞZ lim

N/CN

XN

kZ0

1

2
½Bijðtk;Z

rðtkÞÞ

CBijðtkC1;Z
rðtkC1ÞÞ�

!ðWjðtkC1ÞKWjðtkÞÞ; ð17Þ

where o indicates that the stochastic integral is treated

in the Stratonovich sense.

The distinction between the Itô and the Stratonovich

interpretations is critical, especially when ensuring

consistency in the derivation of weak numerical

schemes. There is actually an equivalence between

the two interpretations. It can be shown [14,16] that

Eq. (10) written in the Stratonovich sense

dZr
i ðtÞZAiðt;Z

rðtÞÞdtCBijðt;Z
rðtÞÞ+dWjðtÞ; (18)

is equivalent to the following SDE, written in the Itô

sense

dZr
i ðtÞZAiðt;Z

rðtÞÞdtCBkjðt;Z
rðtÞÞ

!
vBijðt;Z

rðtÞÞ

vzk

dt CBijðt;Z
rðtÞÞdWjðtÞ: (19)

This result can explain why, in some works,

computations performed with identical models can

lead to contradictory results (the difference between the

results is a drift term which is, most of the time, not

negligible). Let us stress, once again, that even though

the purpose of the present paper is not to present

mathematical subtleties, a good understanding of

stochastic calculus is needed when deriving weak

numerical schemes for SDEs encountered in fluid

mechanics.

As in the present work the Itô interpretation is

retained, let us briefly present the basics of

stochastic calculus. It has been mentioned that in

the frame of the Itô interpretation, the rules of

ordinary differential calculus are no longer valid. As

a matter of fact, this non-trivial consequence can be

understood by going back to the properties of the

Wiener process. For the second-order moment of the

increments of W(t), one has hdW(t)2iZdt. This non-

trivial result (in classical calculus one would expect

a second-order term) is inherent to the nature of the

Wiener process (it is a non-differentiable process).

As a consequence, the rules of classical calculus

must be modified when considering terms of at least

order 2. This is the well-known Itô formula. For any

stochastic process X(t) which verifies the following
SDE

dXiðtÞZAiðt;XðtÞÞdtCBijðt;XðtÞÞdWjðtÞ; (20)

the SDE verified by any smooth function f(t,X(t)) is

df ðt;XðtÞÞZ
vf

vt
ðt;XðtÞÞdtCdXiðtÞ

vf

vxi

ðt;XðtÞÞ

C
1

2
ðBBTÞijðt;XðtÞÞ

v2f

vxivxj

ðt;XðtÞÞdt;

(21)

where the last term on the RHS is a new term with

respect to classical differential calculus.

Themain tools of the general formalism and the basics

of stochastic calculus have now been introduced. This

short presentation is a brief summary and a reader willing

to derive weak numerical schemes for SDEs may refer to

Refs. [14,16] for the mathematical background, Ref. [9]

for the physical background and more importantly Ref.

[17] for the derivation of numerical schemes.A key point,

which is not developed here (the main point being that

stochastic integrals require a careful treatment), is the

derivation of stochastic Taylor series, a tool which is

needed when attempting to develop weak numerical

schemes for SDEs. There exists a comprehensive book on

these techniques, see Ref. [17].

3. PDF models

The purpose of this section is to put forward the system

of equations, which is solved in the present mean-

field/PDF approach, and to reveal the existing link

between the physics of the problem and the tools that

were presented in Section 2. Once this is done, attention

shall be focused on a central specific theoretical issue: the

treatment of the multiscale character of the dynamics of

discrete particles, cf. Section 4.

3.1. Derivation of a PDF model

If the trajectories of a pair of particles (a fluid

particle and a discrete particle) can be modelled by

writing a system of equations given by Eq. (10), two

issues must be solved:

(i) what is the dimension of the reduced state vector

(what variables should be retained)?

(ii) and what is the form of coefficients (the drift

vector and the diffusion matrix)?

A physical answer can be given to issue (i) when

there is a separation of (time) scales. Let dt be the
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reference timescale at which the physical phenomena

are observed. The separation of scales is defined in

terms of slow and fast variables. A slow variable is a

variable whose integral timescale, T, is much larger

than dt and vice-versa for a fast variable whose integral

timescale is t, i.e. t/dt/T. The answer comes from

the application of ideas known in synergetics, the so-

called slaving principle [18]. In this equilibrium

hypothesis, the fast variables are assumed to relax

‘very rapidly’ to their equilibrium values which can be

expressed as a function of the values taken by the slow

modes. A practical application of this principle is the

fast-variable elimination technique, where the fast

variables are replaced by models which represent

their equilibrium values and usually involve white-

noise terms [9]. The fast-variable elimination technique

can be used in the derivation of one-point PDF models

for single-phase turbulent flows.

In this work, answers to issues (i) and (ii) are given

separately for the fluid and the particles in the form of

one-point PDF models. In the one-point PDF approach

for the fluid (see Section 3.1.1), single-phase turbulence

is under consideration whereas in one-point PDF

models for the discrete particles, the fluid–particle

mixture is under investigation with known properties

for the fluid (see Section 3.1.2). The two-point

description briefly introduced in Section 2 will be

addressed in Section 3.2.
3.1.1. One-point PDF models for single-phase

turbulent flows

When the Reynolds number is sufficiently large, for a

reference timescale dt in the inertial range (th/dt/TL,

whereTL is the integralLagrangian timescale andth is the

Kolmogorov timescale), the Kolmogorov theory [4] tells

us that for Lagrangian statistics, the covariance matrix of

velocity increments has the form

hdUf ;iðtÞdUf ;jðtCdtÞiZC0heidt dij; (22)

where e(t,x) is the local instantaneous energy

dissipation rate and C0 is a constant. Eq. (22) implies

that one has for the autocorrelation coefficients RUZ
1K½ðC0 dtÞ=ð2TLÞ�x1 (velocity) and RAZth=TL/1

(acceleration) [8]. This shows that for dt in the

inertial range, the velocity of a fluid particle, Uf(t), is

a slow variable whereas the acceleration, Af(t), is a

fast variable. This suggests, according to the slaving

principle, that Af(t) should be eliminated and replaced

by a function of the slow modes, position and

velocity, i.e. Zr(t)Z{xf(t),Uf(t)}. The Kolmogorov

theory gives answers to issues (i) and (ii): the
dimension of the reduced state vector is 2 and the

diffusion matrix should be given by BijZ
ffiffiffiffiffiffiffiffiffiffi
C0hei

p
dij.

The use of a SDE is not enforced by Eq. (22) but the

linear dependence in time of the covariance matrix is

a strong indication. For further justifications concern-

ing the use of SDEs for modelling purposes, see Ref.

[8].

Using different arguments, several researchers

[13,19] have shown that a Langevin equation model

for single-phase turbulence is

dUf;iðtÞZK
1

rf

vhPi

vxi

dtCGijðUf;jKhUjiÞdt

C
ffiffiffiffiffiffiffiffiffiffi
C0hei

p
dWiðtÞ; (23)

where P(t,x) is the local instantaneous pressure field.

All mean fields, i.e. hPi, hUi and hei are evaluated at time

t for xZxf(t). The return-to-equilibrium matrix, Gij,

depends on mean fields and is usually written GijZ
Kdij=TLCGa

ij where TL is a timescale given by 1=TLZ
ð1=2C3C0=4Þhei=k (k is the turbulent kinetic energy).

The anisotropy matrix, Ga
ij, also depends on mean fields

only and can take different forms [13].

Eq. (23) has two noteworthy properties:

– the coefficients of this SDE depend not only on time

and Zr(t) (as in Eq. (10)) but also on the expected

values of functionals of the state vector. This

dependence of the coefficients has important

consequences, not only for the mathematical

formalism, but also for the numerical algorithm,

see Section 5.1. These equations are often called

Mac-Kean SDEs in the mathematical literature.

– the model is not self-contained since external fields

are needed to compute the drift vector and the

diffusion matrix, i.e. the state vector should rather be

written Zr(t)Z{xf(t),Uf(t),3(t)}. In complete models,

a specific SDE is written for 3(t)Ze(t,xf(t)) and the

mean pressure field is given by a Poisson equation,

see Ref. [13] for example.
3.1.2. One-point PDF models for the discrete particles

Let us suppose that the discrete particles are moving

in a turbulent flow whose mean fields are known (only

one-way coupling is considered for the moment, i.e. the

presence of particles does not modulate the turbulence).

These mean fields are most commonly the two first

velocity moments, hU(t,x)i and hU(t,x)5U(t,x)i, and

hP(t,x)i and he(t,x)i.

In the case of discrete particles, the choice of a

suitable state vector is more difficult than in the fluid
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case since there are no general results indicating a clear

separation of scales. However, an extension of

Kolmogorov theory [8,20] shows that a linear depen-

dence for the covariance matrix of the increments of the

fluid velocity seen, i.e. hdUs,i(t)dUs,j(tCdt)i, can be

obtained under some specific hypotheses, for dt in the

inertial range. Without being a formal proof, this result

suggests to include the fluid velocity seen in the state

vector, Zr(t)Z{xp(t),Up(t),Us(t)}, and to model the

increments of Us(t) with a Langevin equation. This

choice differs from the one inherent to kinetic models,

where Zr(t)Z{xp(t),Up(t)} [12,21]. The existing corre-

spondence between these two approaches has been

discussed elsewhere [8]: it can be shown that including

the fluid velocity seen in the state vector presents

several advantages from the modelling point of view.

Furthermore, kinetic models can be retrieved from the

Langevin models for Us(t) [8]. Issue (i) has now been

addressed; the dimension of the state vector is 3. Let us

move to issue (ii), i.e. to write an SDE for the

increments of Us(t).

From a physical point of view, the problem of

modelling particle dispersion (i.e. deriving a model for

Us(t), see Eq. (1)) is more complicated than the diffusion

one (fluid particles, cf. Section 3.1.1) since two

additional physical mechanisms have to be accounted

for: particle inertia characterised by the timescale tp and

external force fields (gravity in our case), Eq. (1). Two

main approaches can be found in the literature:

– Approaches based on paths (trajectories). A two-

step construction is considered: a Lagrangian step

and an Eulerian step. The Lagrangian step corre-

sponds to the trajectory, over a time interval dt, of a

fluid particle located at time t in the vicinity of the

discrete particle (this step is directly given by Eq.

(23)). The Eulerian step corresponds to a spatial

correction, which gives, from the location of the fluid

particle at tCdt, the fluid velocity seen by the

discrete particle at time tCdt. This modelling point

of view has two major drawbacks: it leads to an

artificial decrease of the integral timescale of Us(t)

(denoted T�
L;i in the present paper) and there is no

clear separation between the effects of tp and g [8].

– Approaches based on the physical effects [22]. A

two-step construction is also considered by decou-

pling the two physical mechanisms: the first step

corresponds to the effects of tp in the absence of

external forces (in that case T�
L;i varies between two

limit values, TE—the integral Eulerian timescale—

when tp/CN and TL when tp/0). The second

step corresponds to the effects of gravity alone which
induces a mean drift and result in a decorrelation of

Us(t) with respect to Uf(t). This effect is called the

crossing trajectory effect (CTE) and is related to the

mean relative velocity hUriZ hUpKUsi.

In the present work, the derivation of a model for

Us(t) is carried out by resorting to an approach based on

the physical effects where the influence of the first step

is neglected. This assumption allows us to extend

Kolmogorov theory since the increments of the fluid

velocity seen are only governed by mean quantities [8].

Assuming, for the sake of simplicity, that the mean

drift (the mean relative velocity hUri) is aligned with

one of the coordinate axes (the general case is discussed

in Ref. [8]), it can be shown [8,20] that a possible model

for the increments of the fluid velocity seen is (the

summation convention by repeated indices does not

apply to the third and fourth term on the RHS)

dUs;iðtÞZK
1

rf

vhPi

vxi

dtC ðhUp;jiKhUjiÞ
vhUii

vxj

dt

K
1

T�
L;i

ðUs;iKhUiiÞdt

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hei C0bi

~k=kC
2

3
ðbi

~k=kK1Þ

� �s
dWiðtÞ:

(24)

The CTE has been modelled by changing the

timescale, compared to the fluid case, in the drift term

(third term on the RHS) and by adding a mean drift term

(second term on the RHS). The timescale is modified

according to Csanady’s analysis [23]

T�
L;i Z TL 1Cb2i

jhUrij
2

2k=3

� �K1=2

; (25)

where b1Zb, if axis 1 is aligned with the mean drift,

with bZTL/TE, and in the transversal directions (axes

labelled 2 and 3) biZ2b. In the diffusion matrix, a new

kinetic energy has been introduced

~k Z
3

2

P3
iZ1

bihu
2
i iP3

iZ1

bi

; (26)

where uðt; xÞZUðt; xÞKhUi and biZTL=T
�
L;i.

Eq. (24) has two noteworthy properties:

– it is consistent, by construction, with Eq. (23) when
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tp/0, i.e. when the discrete particles behave like

fluid particles,

– it is a Mac-Kean SDE even though the mean fields of

the fluid are known (they are given by solving RANS

equations). Indeed, it is necessary to compute the

mean velocity of the particles hUpi to calculate not

only the mean drift term (second term on the RHS)

but also the integral timescale of Us(t), T�
L (hUsi is

also needed for the computation of this timescale).

Moreover, it must be emphasised that Eq. (24) is a

possible choice among others and that the exact form

of a Langevin equation for Us(t) still remains an open

issue, see for example Refs. [24,25] for models suited

for homogeneous turbulence. There exists an alterna-

tive to Eq. (24) in the literature [26] where the

coefficients are slightly different (the drift vector and

the diffusion matrix), the main difference being the

form of the mean drift term which is written in terms

of instantaneous velocities rather that mean velocities,

i.e. (Up,jKUs,j)(vhUii/vxj). This difference has been

discussed elsewhere [8]. This form of the mean drift

term does not change the methodology which is

presented in the rest of the paper, but it modifies the

structure of the system of SDEs, i.e. Us(t) depends

explicitly on the particle velocity, Up(t). This matter

will be discussed in Section 6.

When two-way coupling occurs, i.e. when the mass

of particles per unit volume of fluid is sufficient to

influence the characteristics of turbulence, Eq. (24) can

be supplemented by an acceleration term Ap/s which

accounts for the influence of the discrete particles on

the statistics of the fluid velocity sampled along the

trajectory of a discrete particle, i.e.

dUs;iðtÞZAs;i dtCAp/s;i dtCBs;ij dWjðtÞ; (27)

where the drift vector As and the diffusion matrix Bs are

directly given by Eq. (24).

For Ap/s, the underlying force corresponds to

the exchange of momentum between the fluid and the

particles (drag force). The acceleration acting on

the fluid element surrounding a discrete particle can

be obtained as the sum of all elementary accelerations

(due to the neighbouring particles) [8]

Ap/s ZK
aprp

afrf

UsKUp

tp
; (28)

i.e. at the discrete particle location xp, the elementary

acceleration (UpKUs)/tp is multiplied by the probable

mass of particles divided by the probable mass of

fluid (since the total force is distributed only on the
fluid phase). In Eq. (28), it is implicitly assumed

that all particles under consideration have the same

acceleration. Moreover, af(t,x) and ap(t,x) represent the

probability of presence of fluid and the particles,

respectively (afCapZ1).

The complete set of SDEs, which describes the one-

point dynamical behaviour of the discrete particles is

dxp;iðtÞZUp;i dt;

dUp;iðtÞZ
Us;iKUp;i

tp
dtCgi dt;

dUs;iðtÞZAs;i dt CAp/s;i dtCBs;ij dWjðtÞ;

8>>>>><>>>>>:
(29)

where As and Bs are calculated by resorting to Eqs.

(24)–(26). This set of SDEs is under investigation in the

present paper and the numerical methods needed to

solve it will be discussed in Section 5.

3.2. Mean-field/PDF approach

As specified in Section 1, a mean-field/PDF

approach is adopted here for the computation of

polydispersed turbulent two-phase flows, i.e. the fluid

is described by solving RANS equations whereas the

dynamics of the discrete particles are simulated with

SDEs. The general formalism presented in Section 2

and the models presented in Sections 3.1.1 and 3.1.2

are sufficient to derive the mean-field/PDF model,

which is used in the present work. As a matter of fact,

the set of SDEs, from which the pdf of the discrete

phase can be extracted, has already been presented, cf.

Eqs. (29). Only the derivation of the set of mean-field

(RANS) equations for the continuous phase has to be

put forward. This derivation can be done using

different techniques [27–29]. An interesting technique,

which is in line with the tools introduced in Section 2,

is to resort to a two-point description. This new

approach hardly provides further physical information

but it allows both the fluid and the particles to be

described under the same formalism. This description

is briefly outlined here, supplementary information is

given in Appendix A.

3.2.1. PDF models for polydispersed turbulent

two-phase flows

The path which is adopted is to gather the preceding

results that have just been presented for the time

increments of the fluid velocity seen along discrete

particle trajectories, Eq. (29), and for the time

increments of the fluid velocity along fluid particle

trajectories, Eq. (23). The system of SDEs is, however,



Table 1

Complete mean-field (RANS)/PDF model

Mean-field (RANS) equations for the fluid

Continuity equation:
D

Dt
ðafrfÞZKafrf

vhUii

vxi

(124)

Momentum equation:
D

Dt
hUiiZK

1

rf

vhPi

vxi

K
1

afrf

v

vxj

ðafrf huiujiÞCchðUp;iKUs;iÞ=tpi

(125)

Reynolds stress equation:
D

Dt
huiujiZK

1

afrf

v

vxk

ðafrf huiujukiÞKhuiuki
vhUji

vxk

Khujuki

!
vhUii

vxk

CGjkhuiukiCGikhujukiCC0heidij

Cc
1

tp
½ðUp;iKUs;iÞUs;j C ðUp;jKUs;jÞUs;i�

� �
(126)
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supplemented by one term (an acceleration) Ap/f,

which reflects the influence of discrete particles on the

fluid. The time rate of change of ZrðtÞZ fxfðtÞ;UfðtÞ;

xpðtÞ;UpðtÞ;UsðtÞg is given by

dxf;iðtÞZUf;i dt;

dUf;iðtÞZAf;i dtCAp/f;i dtCBf;ij dWjðtÞ;

dxp;iðtÞZUp;i dt;

dUp;iðtÞZ ððUs;iKUp;iÞ=tpÞdtCgi dt;

dUs;iðtÞZAs;i dt CAp/s;i dtCBs;ij dW 0
j ðtÞ;

8>>>>>>><>>>>>>>:
(30)

where the drift vector Af and the diffusion matrix Bf are

given by Eq. (23). The form of Ap/f is discussed in

Appendix A. By assuming that the trajectories of a pair

of particles can be obtained in such a way, i.e. Eqs. (30),

one should be aware that several assumptions have been

made. Further explanations on these assumptions are

given in Refs. [8,29].
with
D

Dt
Z

v

vt
C hUki

v

vxk

and cZ
aprp

af rf

SDEs for the discrete particles:
dxp;iðtÞZUp;i dt;

dUp;iðtÞZ
Us;iKUp;i

tp
dtCgi dt;

dUs;iðtÞZAs;i dt CAp/s;i dtCBs;ij dWjðtÞ;

8>>>>><>>>>>:
As;i ZK

1

rf

vhPi

vxi

C ðhUp;jiKhUjiÞ
vhUii

vxj

K
1

T *
L;i

ðUs;iKhUiiÞ

B2
s;i Z hei C0bi

~k=kC
2

3
ðbi

~k=kK1Þ

� �

Ap/s;i ZKcðUs;iKUp;iÞ=tp

T *
L;i ZTL=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Cb2i

jhUrij
2

2k=3

s
; bi ZTL=T

*
L;i;

~k Z
3

2

P3
iZ1

bihu
2
i iP3

iZ1

bi
3.2.2. Mean-field/PDF model

It can be shown that the mean-field (RANS)

equations for the fluid can be extracted from Eqs.

(30), see Appendix A. A complete set of equations is

given in Table 1. Depending on the closures chosen for

the return-to-equilibrium matrix, Gij, different RSM

equations can be obtained. In practical computations,

these mean-field equations are supplemented with a

PDE for hei obtained by the same path (as mentioned in

Section 3.1.1, an SDE can be written for 3(t)).

The mean-field/PDF model has now been presented,

i.e. the mean field equations for the fluid and the set of

SDEs for the discrete particles. In practical compu-

tations, the mean fluid properties are computed with

classical finite volume techniques whereas the

dynamics of the stochastic particles are calculated by

resorting to stochastic calculus, i.e. by integrating in

time a set of SDEs (weak numerical schemes). The

finite volume algorithms are well known and no

discussion on these methods is given here. However,

some specific issues related to the computation of the

source terms in Eqs. (125) and (126) will be addressed

in Section 6.1. These source terms are computed from

the stochastic particles (the numerical solution of the

SDEs) and, as we shall see in Section 5.1, information

has to be exchanged between the stochastic particles

and the mesh on which the mean-fluid properties are

calculated. Before carrying on with the derivation of

weak numerical schemes for the set of SDEs, a very

important issue has to be put forward: the multiscale

character of the model for the discrete phase.
The discussions to come on the multiscale character

of the set of SDEs, Section 4, and on the derivation

of weak numerical schemes for these equations,

Section 5.3, are presented in the case of one-way

coupling. This is not due to the limitation of the method

but it simply reflects the current status of the present

work. Indeed, the methodology, which is presented in

Sections 4 and 5, remains valid in the case of two-way



E. Peirano et al. / Progress in Energy and Combustion Science 32 (2006) 315–371 329
coupling. The presentation of the general algorithm,

Section 5.1, and the discussion on issues related to

projection and averaging in particle-mesh method,

Section 5.2, are put forward in the case of two-way

coupling. Specific issues related to two-way coupling

will be discussed in Section 6, namely the computations

of the source terms in the set of PDEs (RANS

equations) and the extension of the material presented

in Sections 4 and 5.3 to two-way coupling.
4. Multiscale properties of the SDEs

There are three different timescales describing

the dynamics of the discrete particles, cf. Eq. (29): dt,

the timescale at which the process is observed, T�
L;i the

integral timescale of the fluid velocity seen, Us(t), and

tp the particle relaxation time. Once again, it must be

recalled that these SDEs have a physical meaning only

in the case where dt/T�
L;i and dt/tp. What happens

if one of these conditions or both are not verified? It is

in fact possible to show that the system of SDEs

converges towards several limit cases, which are

consistent with the physics. The mathematical details

are not given here, see Ref. [30] for further

explanations. Nevertheless, the fast-variable elimin-

ation technique is now presented in a simple case in

order to help the reader understand the form of two of

the limit cases of system (29).

4.1. Fast-variable elimination technique

Let us consider a model problem to illustrate this

technique. A good historical example is the treatment of

Brownian motion. There exist two points of view to

address this problem: Einstein’s point of view where

only position is retained in the state vector,Z(t)Z{x(t)},

and Langevin’s approach, where the state vector is

composed of position and velocity, ZðtÞZ fxðtÞ;UðtÞg.

Let us consider one-dimensional Brownian motion for

the sake of simplicity. Langevin’s model reads

dxðtÞZUðtÞdt;

dUðtÞZKðUðtÞ=TÞdtCB dWðtÞ;

(
(31)

this system being valid when dt/T (T is the integral

timescale of U(t), B is the diffusion coefficient).

What happens if this condition is not verified, i.e.

when T/0? The velocity, U(t), becomes a fast variable

and, according to the slaving principle, it should be

eliminated and its influence should be expressed as a

function of the slow modes (here position, x(t)). This

new description should then be consistent with
Einstein’s model, dxðtÞZ
ffiffiffiffiffiffi
2D

p
dWðtÞ, where D is the

diffusion coefficient.

By applying the rules of stochastic calculus (see

Section 2.2), one can show that

UðtÞxBThðtÞ

with hðtÞZ
1

T
expðKt=TÞ

ðt
KN

expðs=TÞdWðsÞ;
(32)

where the influence of initial conditions has been

neglected (one integrates from KN). Here, h(t) is a

Gaussian random variable [15] (it is a stochastic

integral of a deterministic function) with hh(t)iZ0

(zero mean property) and (isometry property)

hhðtÞhðt 0ÞiZ
1

2T
expðKjtKt 0j=TÞ $$%

T/0
dðtKt 0Þ: (33)

Therefore, h(t) is a Gaussian white noise and

consequently dW(t)Zh(t)dt. The limit system for

Langevin’s model, Eqs. (31), when T/0 and BT

remains finite, is then given by

dxðtÞZ
ffiffiffiffiffiffi
2D

p
dWðtÞ; (34)

where DZ(BT)2/2. The velocity, whose integral time-

scale becomes zero and whose variance becomes infinite

(Gaussian white noise), has been eliminated, i.e. the

process is observed at a timescale dt large in comparison

to the velocity fluctuations (characteristic timescale, T).

Its influence is, however, left in the diffusion coefficient of

the reduced model (Einstein’s model) provided that the

product BT remains finite. As we shall see shortly in

Section 4.2, this model problem is going to be helpful to

understand two of the four limit cases to come.

The above analysis of the model problem has been

presented in the continuous sense, i.e. when both

variables are continuous functions of time. In practical

applications, i.e. in numerical computations or in

experiments, both variables would have been observed

at discrete times. In numerical calculations, one

computes the solutions at discrete times where the

time step corresponds to the observation timescale dt.

In experiments, the variables of interest are measured at

a given sampling frequency f and one has dtZ1/f. The

development of the numerics is slightly anticipated and

the limit case T/0 is now investigated in the discrete

sense, i.e. when T/Dt. A good understanding of the

subtle difference between the continuous case and the

discrete case will be helpful in the development of weak

numerical schemes to come, see Section 5.3.1.

In the discrete sense, the limit case does not

correspond to T/0 but rather to T/Dt. Applying
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the rules of stochastic calculus, the solution to system

(31) at tZt0CDt is given by

xðtÞZ xðt0ÞCUðt0ÞT½1KexpðKDt=TÞ�C IxðtÞ;

UðtÞZUðt0ÞexpðKDt=TÞC IUðtÞ;

(
(35)

where the stochastic integrals are defined as

IxðtÞZBT

ðt
t0

dWðsÞKBT expðKt=TÞ

ðt
t0

expðs=TÞdWðsÞ;

IUðtÞZB expðKt=TÞ

ðt
t0

expðs=TÞdWðsÞ:

8>>>>>>><>>>>>>>:
(36)

Here, (Ix,IU) is a vector composed of two dependent,

centred (zero mean property, see Section 2.2) Gaussian

random variables (Gaussian since Ix and IU are

stochastic integrals of deterministic functions [15]). It

can be shown that a centred Gaussian vector can be

expressed as the product of two matrices by resorting to

the Choleski algorithm: these matrices are the

covariance matrix and a vector composed of indepen-

dent standard Gaussian random variables (Nð0; 1Þ, i.e.

zero mean and variance equal to unity). This

decomposition is well suited to numerical applications

since a set of independent standard Gaussian random

variables can easily be generated on computers by

using suitable random number generators. By applying

the Choleski algorithm to (Ix,IU), one can write

IxðtÞZ ðhIxIU i=
ffiffiffiffiffiffiffiffi
hI2U i

p
ÞxU C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI2x iKhIxIU i

2=hI2U i

q
xx;

IUðtÞZ
ffiffiffiffiffiffiffiffi
hI2U i

p
xU ;

8<:
(37)

where xx and xU are two independent standard Gaussian

random variables. The components of the covariance

matrix are given by

hI2x iZðBTÞ2fDtKT½1KexpðKDt=TÞ�½3KexpðKDt=TÞ�=2g;

hI2U iZB2T½1KexpðK2Dt=TÞ�=2;

hIxIU iZfBT½1KexpðKDt=TÞ�g2=2:

8>><>>:
(38)

Therefore, in the discrete sense, the limit system to

Langevin’s model becomes
xðtÞZ xðt0ÞCUðt0ÞT CBT

ffiffiffiffi
T

2

s
xU C

ffiffiffiffiffi
Dt

p
xx

0@ 1A;

UðtÞZ

ffiffiffiffiffiffiffiffiffi
B2T

2

vuut xU :

8>>>>>><>>>>>>:
(39)

In the discrete sense, the velocity U(t) does not

‘disappear’ (in the continuous case, it becomes

Gaussian white noise). This result is physically sound

since the velocity is only observed at time steps, which

are large compared to its memory (integral timescale).

Finally, the above results are consistent with the

observation of Einstein, i.e. for long diffusion times,

one has hx(t)2iw(BT)2t.
4.2. Limit cases

From now on, the summation rule by repeating

indices is dropped to avoid confusion, as in Eq. (24) for

example. The system of SDEs describing the dynamics

of the discrete particles reads (from now on, Bs,ij is

denoted Bij for the sake of simplicity)

dxp;iðtÞZUp;i dt;

dUp;iðtÞZ
1

tp
ðUs;iKUp;iÞdtCAi dt;

dUs;iðtÞZK
1

T�
L;i

Us;i dtCCi dt C
X

j

Bij dWjðtÞ;

8>>>>>>>><>>>>>>>>:
(40)

where Ci is a term that includes all

mean contributions: the mean pressure gradient,

K(vhPi/vxi)/rf, the mean drift term, (hUp,jiK
hUji)(vhUii/vxj), and the mean part of the return-to-

equilibrium term, hUii=T
�
L;i. As explained above, two-

way coupling is left out of the present analysis. Ai

is an acceleration (gravity in the present work, but it

can be extended for practical reasons to the case of

other external force fields). Once again, system (40)

has a physical meaning only in the case where dt/
T�
L;i and dt/tp. When these conditions are not

satisfied, it is possible to show that in the continuous

sense (time and all coefficients are continuous

functions which can go to zero), the system

converges towards several limit systems [30].
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Case 1. When tp/0, the particles behave as fluid

particles and one has

system ð40Þ½tp/0
����!

�

dxp;iðtÞZUp;i dt;

Up;iðtÞZUs;iðtÞ;

dUs;iðtÞZK
1

rf

vhPi

vxi

dt

K
1

TL

ðUs;iKhUiiÞdt

C
ffiffiffiffiffiffiffiffiffiffi
C0h3i

p
dWiðtÞ;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
(41)

i.e. the model is consistent with a known turbulent fluid

PDF model [11] as explained in Section 3.1.2. This

shows that the model is a coherent generalisation of the

fluid one, which can be recovered as a limit case.

Case 2. When T�
L;i/0 and BijT

�
L;i/cst, the fluid

velocity seen becomes a fast variable. It is then

eliminated and one can write

systemð40Þ $$%
ðBijT

�
L;i/cstÞ

T�
L;i
/0

dxp;iðtÞZUp;idt;

dUp;iðtÞZ
1

tp
ðhUii

KUp;iÞdtCAidt

C
X

j

BijT
�
L;i

tp
dWjðtÞ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
(42)

This result can be understood from the model

problem of Section 4.1. Us(t) has been eliminated

but its influence is left in the diffusion coefficient

BijT
�
L;i=tp. In this case, the equations are equivalent

to a Fokker–Planck model for particles of significant

inertia.

Case 3. When tp; T�
L;i/0 and at the same time

BijT
�
L;i/cst, the fluid velocity seen becomes a fast

variable and the discrete particles behave as fluid

particles. It can be shown that

system ð40Þ $$%
ðBijT

�
L;i/cstÞ

tp;T
�
L;i
/0

dxp;iðtÞZ hUiidtCAi dt

C
P

jðBijT
�
L;iÞdWjðtÞ :

(
(43)

We retrieve a pure diffusive behaviour, i.e. the

equations of Brownian motion, cf. Section 4.1.
Case 4. At last, when T�
L;i/0 with no condition on

BijT
�
L;i, the velocity of the fluid seen is no longer random

and the system becomes deterministic. The flow is

laminar and it can be proven that

system ð40Þ $$%
T�
L;i
/0

dxp;iðtÞZUp;i dt;

dUp;iðtÞZ
1

tp
ðhUiiKUp;iÞdtCAi dt;

Us;iðtÞZhUii:

8>>>>><>>>>>:
(44)

Limit cases 1–3 reflect the multiscale character of

the problem. When the timescales go to zero (with a

condition on their products with the coefficients of the

diffusion matrix), a hierarchy of stochastic differential

systems is obtained. Moreover, the elimination of the

fast variables (the velocities Up(t) and Us(t)) does not

mean that these variables do not (physically) exist

anymore: they simply become Gaussian white noise.

As we shall see in Section 5.3.1, both Up(t) and Us(t)

become independent Gaussian random variables, in

the discrete sense, in limit case (3) (in limit case (2),

only Us(t) becomes a Gaussian random variable).

These results are in line with the previous model

problem, cf. Eq. (39) in Section 4.1.
The existence of limit systems is a key point in the

development of weak numerical schemes to integrate in

time the set of SDEs describing the dynamics of

discrete particles, i.e. Eqs. (40). As we shall see in

Section 5, in numerical computations, dt the obser-

vation timescale of the process, is the time step. A

suitable weak numerical scheme should therefore be

consistent with all limit cases since, as we shall see, it is

not possible to control the time step to enforce the

conditions necessary for the validity of Eqs. (40).

Before we carry on to the time integration of Eqs. (40),

let us give a general overview of the numerical

procedure which is needed to solve the whole set of

equations (the mean-field (RANS) equations for the

fluid and the SDEs for the discrete particles).
5. Numerical approach

The mean-field/PDF model used in the present paper

for practical computations has now been given, see

Table 1. It consists of a set of PDEs describing the

dynamics of mean-fluid quantities and a set of SDEs

from which the joint pdf of the variables of interest for

the discrete particles can be extracted. In this approach,

the numerical solution is obtained by resorting to a

hybrid method, where the mean-fluid properties are
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computed by solving the mean-field (RANS) equations

with a classical finite volume procedure whereas the

local instantaneous properties of the discrete particles

are determined by solving the set of SDEs, Eqs. (29).

Therefore, the mean fluid properties are computed on a

mesh whereas the statistics of the discrete phase are

calculated from particles moving in the computational

domain.

A closer look at the equation system presented in

Table 1 shows that the set of equations has the

following properties:

(i) in the set of PDEs from which the mean-fluid

properties are computed, mean fields involving

discrete particles’ properties are needed in order

to compute the source terms, see Eqs. (125) and

(126).

(ii) in the set of SDEs, the knowledge of statistical

moments (for the fluid and the discrete particles),

such as mean values and variances, at the

locations of the stochastic particles, is required

in order to compute the time evolution of discrete

particle properties and, thus, of the statistics

derived from them. Indeed, from a mathematical

standpoint, the set of SDEs can formally be

written as (from now on, the notation is slightly

changed: Z(t) denotes the state vector for the

discrete particles, i.e. the superscript r is dropped

for the sake of clarity)

dZðtÞZAðt;ZðtÞ; pðt; zÞ;YðtÞÞdt

Csðt;ZðtÞ; pðt; zÞ;YðtÞÞdWðtÞ; (45)

where p(t;z) stands for the pdf of Z(t) and Y(t)
represents external mean fields, i.e. the fluid mean

fields defined at particle locations. For each time t,

p(t;z) has to be calculated in order to compute the

coefficients of the SDE: in the present approach,

the pdf (or any necessary moment extracted from

it) is computed out of all stochastic particles that

are tracked (all values taken by Z(t)), cf. Section

2.1. Thus, as mentioned in Sections 3.1.1 and

3.1.2, a kind of integro-differential equation,

no longer local in the space of Z(t), is obtained;

it is called a Mac-Kean SDE and is inherently

difficult to solve [31,32]. In other words, we are

dealing with a system where particles interact

weakly (or indirectly) through themean fields that

they create (it is the leading idea of one-point PDF

models).
As far as property (ii) is concerned, in practice,

probabilistic expectations of particle properties at a

given point are approximated by spatial averages over

nearby particles, i.e. the statistics extracted from the

stochastic particles (which are needed to compute the

coefficients of system (29)) are not calculated for each

particle (this would cost too much CPU time) but are

evaluated at each cell centre of the mesh (generated for

the solution of the set of PDEs) following a given

spatial average (averaging operator). These moments

can then be evaluated for each particle by interpolation

or projection (projection operator). The same projec-

tion operator is used to compute the statistics of the

fluid at the locations of the stochastic particles. The

source terms in the PDEs, cf. property (i), are directly

computed by resorting to the averaged particle

quantities.

This is the principle of particle-mesh methods:

exchange data between particles and mesh points. In the

present work, the main advantage of such methods is of

course the reduction of CPU time but the use of

projection and averaging operators has some draw-

backs, i.e. it creates additional numerical errors and, in

the general algorithm, each particle has to be located in

the mesh.
5.1. Particle-mesh methods

Historically, particle-mesh methods have been

widely used in other areas of physics like the dynamics

of plasmas, astrophysical simulations, electrostatics,

etc. [33]. In these applications, the system of equations,

which is solved, is deterministic and the mesh is

uniform, most of the time for unbounded domains or

bounded domains with periodic boundary conditions.

These models are often referred to as the particle-in-cell

(PIC) approach [33–35].

In fluid dynamics, apart from calculations of

dispersed two-phase flows, particle-mesh methods are

mainly encountered in computations of single-phase

turbulence with stand-alone particle models [36–38], in

hybrid particle/field models [39], in calculations of

turbulent reactive flows with PDF methods [10], and in

numerical simulations of non-Newtonian polymeric

fluids [31]. In these applications, the situation is

different from the classical PIC approach. Indeed, the

systems of equations are stochastic and the domains are

bounded with various boundary conditions. Let us

present the main lines of the particle-mesh algorithm

used in the present work. It is implemented in the

ESTET software [40].
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5.1.1. General algorithm

Let {Y[x]} stand for the set of fluid mean fields at the

different mesh points and let {Y(N)} be the fluid mean

fields interpolated at particle locations. Let {Z(N)}

denote the set of variables attached to the stochastic

particles and {Z[x]} the set of statistics, defined at cell

centres, extracted from {Z(N)}. Time is discretised with

a constant time step DtZtnC1Ktn and space with a

uniform mesh of cell size Dx.

The first step (operator F) of the algorithm is to solve

the PDEs describing the fluid

fY½x�gðtnÞ and fZ½x�gðtnÞ $$%
F

fY½x�gðtnC1Þ: (46)

The F operator corresponds to a classical finite

volume RANS solver and it gives the evolution in time

of the statistical moments of the fluid (the particle

properties are needed to compute source terms when

two-way coupling is accounted for).

The second step (projection, operator P) consists of

calculating mean-particle properties and mean-fluid

properties at particle locations

fZ½x�gðtnÞ and fY½x�gðtnÞ $$%
P

fZðNÞgðtnÞ and fYðNÞgðtnÞ:

(47)

Then, the stochastic differential system can be

integrated in time (operator T)

fZðNÞgðtnÞ and fYðNÞgðtnÞ $$%
T

fZðNÞgðtnC1Þ: (48)

Finally, from the new computed set of variables, at

particle locations, new statistical moments are eval-

uated at cell centres

fZðNÞgðtnC1Þ $$%
A

fZ½x�gðtnC1Þ; (49)

and so on. The general algorithm is therefore defined by

iterating the four operators, F/P/T/A. The

purpose of the present section, Section 5, is to discuss

different implementation aspects of the general algor-

ithm and more especially issues related to:

(i) the specificity of the treatment of averaging and

projection operators, Section 5.2,

(ii) the time integration of the SDEs (operator T), i.e.

the determination of a suitable weak numerical

scheme for system (29) which is consistent with

the multiscale character of the physics (asymp-

totic cases), Section 5.3.

Before discussing these issues, some last clarifica-

tions are given on the nature of the numerical errors
generated by the particle-mesh algorithm sketched

above.
5.1.2. Numerical errors in particle-mesh methods

The numerical particle-mesh solution of evolution

equations like Eq. (45) involves several kinds of errors.

These errors have been described in the context of PDF

methods for turbulent reactive flows [37,41]. The

overall error of the PDF computation (P/T/A) can

be separated into a deterministic and a random part, the

former involving the bias, spatial and temporal

discretisation errors. Numerical errors occur due to:

(i) spatial discretisation, represented by a typical

mesh size Dx,

(ii) finite temporal resolution, determined by the

time step Dt,

(iii) the use of a finite number of particles, both in

the whole domain (N) and per cell (Npc); these

are further decomposed into the statistical error

(of zero average) and the bias.

The spatial discretisation error (i) is akin to the

classical error in numericalmethods for solvingPDEs and

depends on the mesh size. In the present approach (Mac-

Kean SDEs), it is inherent to the use of projection and

averaging operators (A and P). This numerical error does

not occur when the coefficients of the SDEs depend only

on local values of the state vector. This is the case, for

instance, in numerical computations of stand-alone PDF

methods for homogeneous turbulence [37]. To date, only

Xu and Pope [41] have addressed this issue for non-linear

SDEs and have found some characteristics of the error for

an infinite number of particles per cell. Note that the

spatial discretisation error also occurs in grid-free

methods, such as SPH [42], and is, in this case, directly

related to the smoothing parameter (kernel size).

The temporal discretisation error (ii) is basically the

same as in any numerical method for solving the time

evolution of the solutions to deterministic ODEs or

PDEs. Numerical schemes for the SDEs (operator T)

must be developed and analysed with care due to the

specificity of stochastic calculus, cf. Section 5.3.

The statistical error, which is inherent to any Monte

Carlo method, is due to the use of a finite number of

particles per cell (samples) to compute the statistics and

is proportional to the inverse of the square root of

N, according to the central limit theorem. In

specific applications (e.g. [36]), the coefficient of

proportionality can be reduced considerably when

appropriate variance reduction techniques (VRT) are

applied [37,43].
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The bias is the difference between the mean value of

a quantity for a finite number (N) of particles and the

mean value for infinitely many particles (all other

parameters being unchanged), i.e. for any random

variable Z

BZðNÞZ hhZiN iKhZi with hZiN Z
1

N

XN

iZ1

Zi; (50)

where Zi stands for different sample values of Z. The

bias is thus a deterministic error, important for non-

linear stochastic models [37,41]. The issue is worth

explaining with a simple example. Consider a random

variable X with a certain law (pdf), say standard

Gaussian, i.e. hXiZ0 and hX2iZ1. We note X2Nð0; 1Þ.

For the mean value hXiN computed out of N samples, the

central limit theorem gives (for N sufficiently large)

hXiN Z hXiNCCx=
ffiffiffiffi
N

p
; (51)

where x2Nð0; 1Þ and C is a proportionality constant

for the statistical error; obviously hXiNZhXiZ0.

Consider next a function YZhXi2. Now YNZ0, but

for a finite number N of samples YNZC2x2/N and after

averaging hYNiZC2/N. The bias BY(N)ZhYNiKYN is

thus proportional to NK1. In more general terms [37],

for YZg(hXi) we have YNZg(hXiN), and the develop-

ment into a Taylor series, accounting for Eq. (51),

yields

YN Z gðhXiNÞZ g hXiNC
Cffiffiffiffi
N

p x

� �

Z YNC
Cg0ffiffiffiffi

N
p xC

C2g00

2N
x2 CO

g000

N3=2

� �
: (52)

After averaging the above, the bias is computed as

BY ðNÞZC2 g00

2N
CO

g000

N3=2

� �
: (53)

It depends on the local second derivative of g and is

proportional to NK1. In a general case of random fields,

the bias interplays with the spatial error because of the

kernel estimation, which is applied to compute

averages [13,44].
5.2. Averaging and projection operators

We recall that, in the numerical solution process of

Eq. (45), moments of Z(t), like hZi and hZiZji need to be

extracted from the particle data. A correct computation

of these quantities is crucial for the overall numerical

solution, since the moments are put back into the SDE

and serve to advance the particle properties to the next
time step of the simulation, see Section 5.1.1. These

ingredients of the algorithm, i.e. the computation of

mean fields (or averaging) and their interpolation at (or

projection to) particle locations are well known in the

PIC approach [33–35]. For those particle models

(deterministic equations on a regular mesh), optimum

averaging and projection schemes have been worked

out. In the present case, a new problem is addressed:

stochastic models with boundary conditions typical of

fluid mechanics. Consequently, some new important

numerical features appear.

(i) The first specificity is related to the computation

of statistics: in most applications, we not only

need the mean values, but also (at least) second-

order moments present in the evolution

equations. These moments are usually position-

dependent (non-homogeneous in space).

(ii) A second specificity here (often present in

applications in fluid mechanics) is that the

computational domain is bounded and the

associated mesh is non-uniform; as argued

further, adequate boundary conditions may affect

the computation of statistics.

Here, attention is focused specifically on the errors

due to the exchange of information between particles

and the mesh, i.e. how mean fields (usually the first and

second-order moments) are computed and projected at

particle locations, the main issue being to investigate

whether classical techniques already used in particle

simulations are also suitable for our present particle-

mesh problem.
5.2.1. Averaging operators, weighting functions

In order to introduce the numerical issues related to

the exchange of information between the particles and

the mesh, let us first discuss the difference between the

ensemble mean (expected value) and the spatial

average. For the case of a deterministic function F(x),

the spatial average h$iD (with a characteristic smoothing

length D) in the cell centred at x[i], iZ1,.,I, can be

thought of as the integral

hF½i�iD Z

ð
FðxÞ ~wðxKx½i�Þdx; (54)

where F[i]ZF(x[i]) and ~w is a given weighting function

(smoothing kernel) satisfying
Ð
~wðxÞdxZ1. For a

random field F(t,x) with a pdf fF(t,x;J), the mean at

x[i] corresponds to the probabilistic expectation, i.e.
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hF½i�iZ

ðCN

KN

JfFðt; x
½i�;JÞdJ; (55)

where J is a sample-space variable of F. In classical

Monte Carlo methods, the pdf fF(t,x
[i];J) at each point

x[i] is approximated by using a number N of

independent samples of the random variable, say F(n),

nZ1,.,N. In other words, a set of variables F(n) is

attached to every particle, located at x(n) in the

computational domain (NB, the superscript convention

helps to distinguish between particles (n) and cell-

related quantities [i]).

The mathematical expectation, hF[i]i in Eq. (55), is

computed exactly at x[i], whereas hF[i]iD in Eq. (54)

represents the spatial average centred on x[i]; both are

equal in the spatially homogeneous case only.

However, space-dependent moments cannot be calcu-

lated exactly from a Monte Carlo estimation, given a

finite number of particles used in the simulation. In

practice, under a local homogeneity assumption,

expectations hF[i]i are approximated by (local) spatial

averages hF[i]iN,D, based on a discrete particle set:

hF½i�ixhF½i�iN;D Z
XN

nZ1

FðnÞwðxðnÞKx½i�Þ: (56)

This expression, also known as kernel estimate

[13], is derived from Eq. (54) as a quadrature

formula; the weights w are the discrete equivalents

of ~w,
PN
nZ1

wðxðnÞKx½i�ÞZ1:

A generalisation of the above discussion to centred

moments of any order is straightforward. Here, the

explicit formulation is given for the variance because of

its importance in further considerations, cf. Sections

5.2.2–5.2.4. By analogy to Eq. (55), the local value (at

x[i]) of the variance s2F of the random field F(t,x) is

ðs2FÞ
½i� Z

ðCN

KN

ðJKhF½i�iÞ2fFðt; x
½i�;JÞdJ: (57)

As an extension of formula (56) for the mean value,

the expression for the variance s2F with the use of

spatial averaging becomes

ðs2FÞ
½i�xðs2FÞ

½i�
N;D Z

XN

nZ1

ðFðnÞKhFiÞ2wðxðnÞKx½i�Þ;

(58)

where hFi stands either for a cell average hF[i]i or is

interpolated at x(n). From the algorithmic standpoint,
Eq. (58) has some disadvantages. Firstly, the double

pass over particles (the mean has to be computed in

advance) results in some computational overhead.

Secondly and more important, for first-order weighting

functions (cf. Sections 5.2.2 and 5.2.3), it implies a

risky extrapolation of mean fields at the locations

outside the computational domain. We propose to get

around the difficulty by computing the central moments

directly from the standard (non-centred) moments; for

example, the variance of a random variable Q satisfies

h(QKhQi)2iZhQ2iKhQi2. Yet, some precaution is

needed since such an expression for the variance

cannot be guaranteed to remain always non-negative

because of round-off errors.

As far as the choice of the weighting function is

concerned, two methods are widely used and are under

investigation in the following: the NGP (Nearest-Grid-

Point) and CIC (Cloud-in-Cell) methods. They corre-

spond to weighting functions of zero (constant) and first

(linear) order, respectively. These methods have been

thoroughly discussed [33], as mentioned above, for

deterministic systems solved on uniform meshes and in

the particular case of unbounded domains or bounded

domains with periodic boundary conditions. In the

present work, we address the problem for the numerical

solutions of specific stochastic systems (Mac-Kean

SDEs) on non-uniform meshes for bounded domains

and non-periodic boundary conditions.

In the NGP method, particle properties are associ-

ated with the centre of the cell containing the particle

(for a uniform mesh, it is the grid point nearest to the

particle, hence the name), and the weighting function is

top-hat (or piecewise constant, Fig. 1a), i.e. wðxðnÞK
x½i�ÞZ1=Ni

pc for particle n in cell i and 0 otherwise (Ni
pc

is the number of particles in cell i). The NGP average is

thus found from the sum over all Ni
pc particles in a given

cell i

hF½i�iZ
1

Ni
pc

XNi
pc

nZ1

FðnÞ: (59)

In the CIC method, for a uniform mesh in D spatial

dimensions, the weighting function is piecewise-linear

(Fig. 1b)

wðxÞZ
YD

jZ1

1

Dj

maxf1Kj
�
x

j
j=Dj; 0g; (60)

where Dj is the width of the cell in direction j. The

particle is thus regarded not as a single point but rather

as a linear distribution of properties: a cloud centred at

x(n), with a width of 2Dj. The CIC method is less local



Fig. 1. Weighting functions of different orders used for averaging: (a)

top hat (constant) or Nearest-Grid-Point (NGP); (b) linear or Cloud-

In-Cell (CIC); (c) piecewise quadratic.
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than NGP: the average at a given cell centre is

computed not only from the particles located in this

very cell, but also from those in the neighbouring cells.

Higher order, but less local, weighting functions can

be used, for instance a piecewise-quadratic polynomial

(Fig. 1c) or a cubic spline as in Smoothed Particle

Hydrodynamics (SPH) [45]; quartic and quintic

splines as well as Gaussian kernels are also quite

popular [42,46]. An alternative to kernel estimators, cf.

Eq. (56) is offered by somewhat more costly (especially

in 2D/3D) formulae with least-squares or local least-

squares approximations, as well as cross-validated

splines [10,44].

The projection of averaged (cell) values onto the

particle locations is an interpolation procedure, in a

sense akin to averaging, Eq. (56), with (n) and [i]

replaced by each other (it is the reverse operation). The

consistency of averaging and projection steps has been

a serious concern in PIC applications. Indeed, it has

been demonstrated (see [33], Section 5.2.4) that, in the

case of a system of charged particles moving in an

electric field generated by themselves, unphysical

forces may appear if the averaging scheme is not of

order equal to (acceptably also higher than) the

projection scheme. Those authors have also stated

that the CIC method performs better than NGP.

5.2.2. CIC statistics on a non-uniform mesh

Although the usual presentation of CIC formulae is

made for a uniform mesh, in typical applications of the

present mean-field/PDF approach for polydispersed

turbulent two-phase flows, a non-uniform mesh may be

of advantage (wall-bounded flows). A number of

difficulties arise in this generalisation, depending

whether the mean density computed from the particle

masses or the mean of a variable attached to the

particles is sought. For the sake of simplicity, we will

illustrate the issue in a 1D setting; extension to 2D and

3D is straightforward through the Cartesian products.

First, consider the computation of fluid density. A

particle located at x(n) where x[i]%x(n)!x[iC1], cf.

Fig. 2(a), will contribute to the mean density at x[i] and

x[iC1]. Here, we treat the particle as a ‘cloud’ (or a

linear distribution of mass) centred at x(n) and stretched

on the interval dxiZmin(Dxi,DxiC1). With this assump-

tion, the particle mass is contained between x½iK1�
0 and

x½iC1�
0 and does not contribute to other cell averages

(three possible locations of a ‘stretched’ particle are

shown in Fig. 2a). The fraction of the cloud that belongs

to the cell [iC1], RxZ ðxðnÞCdxi=2Kx½i�0 Þ=dxi, adds to

the average at x[iC1], whereas (1KRx) adds to the cell

average at x[i]. For a boundary cell, the whole mass of



Fig. 2. CIC scheme used to compute cell averages for (a) particle density and (b) a linear function attached to particles (the linear function is defined

by its slope DF andF0 which is the value of F at xZx[iC1]). The cells are characterised by the cell boundary coordinates x½iK1�
0 ; x½i�0 ; x½iC1�

0 ;. and by

the coordinates of the cell centres x[iK1], x[i], x[iC1],.; Dxi and DxiC1 represent the cell sizes.
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particles located close to the boundary (between the

boundary and the centre of the cell closest to it) is

attributed to the centre of the cell next to the boundary.

Fig. 3 presents 2D computation results of the r.m.s.

density (r.m.s. deviation from the mean particle

density) on a 10!10 mesh, both uniform and non-

uniform, using the standard NGP averaging and the

CIC method described above. For the uniform mesh,

particle locations in the domain are generated randomly

from the uniform random distribution. The non-

uniform mesh has been generated using random

numbers from a uniform distribution on the interval

(0.5Dx, 1.5Dx); in this case, particle locations have

been generated deterministically with a constant

number density. To reduce the statistical error of the

r.m.s. density deviation, it has been computed as an

average of four different runs with different seeding
values for pseudorandom number generator. As

expected, the statistical error is higher for the NGP

average and varies as NK1=2
pc . We note that although the

r.m.s. density on the non-uniform mesh is higher, there

is no systematic error for the CIC computation which

confirms the correctness of the method above.

Next, consider the computation of cell-averaged

values for any variable F assigned to the particles

(a typical example is the calculation of the mean

velocity at a given point from the set of particle

instantaneous velocities). In this case, both the particle

masses and the values of F attached to the particles

come into play (it has been mentioned in Appendix A

that in the frame of the present formalism, one has to

resort to mass-weighted expected values). The first idea

could be to use the method described above for the

calculation of the mean density. However, in a basic



Fig. 3. Computations of the r.m.s. of particle density on a mesh using NGP and CIC averaging: (a) uniform mesh, (b) non-uniform mesh. NGP

method (,), CIC method (&).
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test of a linear deterministic function and particles

distributed uniformly on the interval, this method is

readily shown not to retrieve given values of particle

variables at cell centres for a non-uniform grid.

Fig. 2(b) illustrates this point, where cell [i] is half

the size of its neighbours. To compute the average

value of F at x[iC1], the particles labelled 2, 3 and 4

contribute with the respective weights of 1, 3/4, and 1/4

2hF½iC1�iZ1ðF0CDFÞC
3

4
ðF0KDFÞC

1

4
ðF0K3DFÞ:

(61)

For this simple example, it is readily checked

that hF[iC1]i depends on DF (it should not) and that

F[iC1]sF0. The reason for this behaviour can be traced

into the formula of particle weights which is not

symmetric with respect to x[iC1]. Indeed, the same

behaviour can be noticed when non-symmetric CIC

weight functions are used though they seem to be a

natural generalisation of Eq. (60). This point is also
Fig. 4. The r.m.s. value of the mean of a linear deterministic function comp

non-uniform mesh. NGP method (,), CIC method (&).
illustrated in Fig. 2(b) that includes one such basis

function w(x) decreasing linearly from a maximum at

the considered cell centre, here x[iC1], to zero at the

neighbouring cell centres, here x[i] and x[iC2]. Using

these weighting functions, we readily find again

5

3
hF½iC1�iZ

2

3
ðF0CDFÞC

3

4
ðF0KDFÞC

1

4
ðF0K3DFÞ;

(62)

i.e. hF[iC1]isF0, a result that would explicitly depend

upon the gradient of the function and size of the mesh.

Instead, we propose the following method that works

correctly for particle variables on a non-uniform mesh.

We generalise Eq. (60) by taking D as min{DxiK1, Dxi}

to preserve the symmetry of w(x). This expression gives

the correct result for the example of Fig. 2(b). An

alternative to the above is the use of a two-stage

algorithm [44], satisfactory but arguably more time-

consuming. Again, a 2D computation has been

performed for the r.m.s. of a variable assigned to
uted on a mesh using NGP and CIC averaging: (a) uniform mesh, (b)



Fig. 5. Normalised r.m.s. of a linear random function computed on a mesh using NGP and CIC averaging: (a) uniform mesh, (b) non-uniform mesh.

NGP method (,), CIC method (&).
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particles from a deterministic linear profile in space

with the same procedure as above for particle density

computations. Both the standard NGP averaging and

the CIC method described above have been used.

Results shown in Fig. 4 confirm the advantages of CIC

averaging in this case. To continue, let us now remove

the deterministic assumption for F and consider

averaging of a random variable assigned to particles

FðnÞZFðxðnÞÞZmðxðnÞÞCsðxðnÞÞx; (63)

where x2Nð0;1Þ, m(x)Za0Ca1x is a linear function

and s(x)ZD (where D denotes the average mesh size)

to study the effect of spurious variance resulting from

the NGP averaging. A numerical test has been

performed again with the same methodology as

described above. Fig. 5 shows the normalised r.m.s.

of this linear random function (i.e. the square root of its

variance computed at the cell centres divided by the

prescribed r.m.s.) computed out of particle locations. A

systematic error is readily noticed for NGP statistics,

unless a1D/Oð1Þ.
Fig. 6. Cells and particles—schematic plot. Mirror particles (,),

corresponding to (&) are added outside the computational domain.

The values of variables attached to them (like velocity) correspond to

those of their ‘host’ particles in border cells. Dashed lines delimit cells

and dotted lines indicate where mirror particles are needed.
5.2.3. CIC statistics with boundary conditions

In wall-bounded flow applications, the CIC method

has to be modified so that suitable boundary conditions

(BC) are properly accounted for. Dreeben and Pope

[44] describe their application of CIC statistics in the

PDF method but the treatment of flow boundaries is not

reported there. In Fig. 6, a schematic plot shows clearly

why the CIC averaging requires some care in the

presence of flow boundaries (here walls). The NGP

statistics are local (in a cell) and they can thus be

computed in border cells without any change. However,

for the CIC method this is not the case. As it transpires

from Fig. 6, the CIC average of the particle density in a

border cell, computed with the weight w1(x), incor-

rectly gives a smaller value than the density in the
neighbouring internal cell, computed with w2(x).

The obvious reason is that less particles contribute to

the mass in the border cell. The problem differs

depending upon whether we consider the particle

density field or the mean of any variable F (such as

velocity) assigned to particles. To compute the mean

density, for the particles located between the cell centre

and the boundary, it is sufficient to assign all their mass

to the centre of this boundary cell. For other particle

variables, this treatment is not applicable: even for a

linear function F(x), the higher spatial accuracy

(compared to NGP) of CIC is lost.

A working remedy to this situation is the addition of

‘ghost’ or ‘mirror’ particles outside the actual compu-

tational domain in order to compensate for the incorrect

CIC computation at the cell centres close to the

boundaries. The idea of these ‘ghost’ particles is
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known in the context of SPH simulation [46]. The very

presence of ghost particles with masses equal to their

‘hosts’ allows for a correct CIC density computation in

boundary cells. Next, to compute CIC statistics of any

variable F attached to the particles, values F 0 of the

variables are to be determined also for the mirror ones,

as they enter Eq. (56) with a corresponding weight. The

procedure is relatively straightforward for the CIC

averaging of given functions (either deterministic or

random) where the value of the function at a mirror

particle location is known. However, the main interest

for using ghost particles is in actual particle simulations

where precisely these functions are unknown. The

values of the variables attached to the mirror particles

are to be determined directly from those of the host

particles through the application of relevant BCs. For

example, if F stands for a particle velocity component,

then the no-slip, impermeable wall implies F 0ZKF

(Fig. 6) so that at the boundary hFiZ0. Generalisation

is possible for more complex, yet still block-structured,

2D and 3D geometries. Other types of possible

boundary conditions in the PDF method for turbulent

flow computations, e.g. where particle boundary

conditions are determined from a physical reasoning

for the near-wall region [36], are also readily

implemented this way.
5.2.4. Test case: space-dependent SDE

Let us now analyse the behaviour of a simple

nevertheless realistic example of the generic SDE, Eq.

(45), where emphasis is put on the averaging and

projection operators. Both the NGP and CIC techniques

are going to be used with the suitable modifications

presented in Sections 5.2.2 and 5.2.3. We consider a

one-dimensional Ornstein–Uhlenbeck process on

0%x%1 interval

dFðtÞZK
FðtÞKmðxÞ

T
dtC

ffiffiffiffiffiffiffiffiffiffiffiffi
2s2ðxÞ

T

r
dWðtÞ; (64)

with a fixed timescale T; the space-dependence of the

mean value m(x) and the variance s2(x) is essential to

study the spatial discretisation error, cf. Section 5.1.2.

In Eq. (64), there is no physical coupling in x; it would

occur if convection was added (e.g., dxZf(F)dt) or if

non-local operators were present (e.g., aV2hFidt term

on the RHS). Here, only a ‘numerical’ coupling exists;

it is due to the approximate computation of ensemble

averages through spatial averages, Eq. (56).

For a given time step, DtZtlC1Ktl, trajectories of

the stochastic process (64) can be integrated analyti-

cally [9,17], thus avoiding any temporal discretisation
error; this yields (the location x is a parameter)

FlC1 ZFl exp K
Dt

T

� �
CmðxÞ 1Kexp K

Dt

T

� �� �

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðxÞ 1Kexp K

2Dt

T

� �� �s
x;

(65)

where x is a standard Gaussian random variable,

x2Nð0; 1Þ.

The actual test case consists in using the computed

values of hFi and s2F in Eq. (65) in place of m(x) and

s2(x), respectively. The computed profiles (at different

times) for a quadratic mean m(x) and a constant

variance s2(x) are presented in Fig. 7. Qualitatively, a

typical behaviour of CIC averaging is to modify the

shape of the mean hFi(t,x) (ultimately towards a linear

profile) and to produce an increase of the variance in the

centre of the computational interval. On the contrary,

the NGP mean value remains basically unchanged,

while the variances in separate cells become increas-

ingly uncorrelated in time. Indeed, in the CIC method,

neighbouring cells are linked through the averaging

procedure, thus the profile of the variance stays

relatively smooth. The NGP computation of Eq. (64)

is local and as a result, separate cells become

independent of one another, cf. the upper right plot in

Fig. 7. These numerical outcomes raise the question of

the existence of a bias (cf. Section 5.1.2). A detailed

numerical study of this issue has been performed by

analysing the temporal behaviour of the r.m.s. of F

averaged over all cells, denoted by sF(t) and given by

sFðtÞZ
1

I

XI

iZ1

s½i�ðtÞ; (66)

where s[i](t) are the r.m.s. values obtained in cell i.

Indeed, for the NGP method, calculations done in

each cell are uncorrelated and s[i](t), iZ1,.,I, can be

regarded as independent samples. The simplest case

to be discussed now is that of constant mean m(x) and

variance s2(x) in Eq. (64). Fig. 8(a) shows how sF(t),

normalised by its initial value, evolves in time. The

procedure, in the NGP case, is sensitive to the

number of particles per cell. In subsequent time steps,

the recomputed variance decreases. The decrease is

faster for a smaller number of particles per cell. This

phenomenon is identified to be related to the bias and

is due to the finite value of Npc. Fig. 8(b) clearly

indicates that there is a bias; however, computations

of the variance of sF(t) (results presented as error

bars in the same figure) show that the statistical



Fig. 7. Temporal evolution of the mean (lower plots), hFi, and variance (upper plots), ðs2FÞ, profiles for quadratic initial mean profile and constant

initial non-zero variance. Left plots: CIC; right plots: NGP. Three successive time instants (solid, dotted and dashed lines).
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fluctuations of this quantity are significant. With this

precaution in mind, the bias (resulting from several

different runs for several number of cells, etc.) has

been plotted as a function of the number of particles

per cell Npc. Results in Fig. 9(a) indicate that the

slope for different runs is indeed close to the

theoretical prediction of the bias, BFwNK1
pc (plotted

as a dotted line). The computed probability distri-

butions of sF are shown in Fig. 9(b).
Fig. 8. Temporal evolution of the r.m.s. of F in scaled time; NGP computat

respectively (from the lowest to the highest curve); (b) the r.m.s. of F with

(solid line with C).
5.2.5. NGP or CIC in practical computations?

In Fig. 7, the centred second-order moment, i.e. the

variance, has been computed using the non-centred

moments in order to avoid problems with the correct

statement of boundary conditions, which are necessary

for CIC averages. It is readily seen that the computed

profiles of hFi(x) and s2(x) tend to become linear (both

are fixed to the respective m(x) and s(x) values at the

boundaries xZ0 and 1). In Fig. 9, it is seen that
ion over 1000 cells. (a) Results for NpcZ20, 25, 40, 80, 160, and 320,

its standard deviation for NpcZ25 (dotted line with B) and NpcZ320



Fig. 9. (a) Analysis of the bias of the r.m.s. of F as a function of the number of particles per cell Npc for three different NGP computations; dotted

line:K1 slope. (b) PDF of the r.m.s. of F at t/TZ3 in the NGP computation over 5000 cells. Solid line: NpcZ20, dashed line: NpcZ70. Results are

smoothed histograms (dashed lines).
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the NGP computation generates a non-zero spurious

variance.

The comparison between the NGP and CIC

methods for stochastic processes reveals that none

of the results are entirely satisfactory. Compared to

classical deterministic particle systems, where the

CIC has a known advantage over NGP, new features

have been revealed. NGP is a local and robust

method, which does not require specific develop-

ments. It respects given mean profiles but leads to

spurious variances. The spurious variances are shown

to be related to a bias, which decreases linearly with

the number of particles. On the contrary, when using

CIC, developments are needed to account for non-

uniform meshes and for boundary conditions. It is a

less local (higher order) method than NGP but it is

more complicated to implement in the general case.

The results obtained in a prototypical SDE, cf.

Section 5.2.4, show that the CIC method does not

present advantages in accuracy. Furthermore, in the

particular case considered (no convection), the CIC

technique performs globally worse than the NGP one.

Indeed, CIC does not preserve the mean and shows a

systematic error in the variance.

As a consequence, all practical computations per-

formed in the rest of the present paper (cf. Section 7) will

be based upon the NGP technique.
5.3. Accurate schemes for SDE integration

It has now been explained how information is

exchanged between the discrete particles and the mesh

(operators P and A, cf. Section 5.1.1). We recall that

this is done here in the case of one-way coupling and

the extension of the numerical schemes, presented in
this section, to the case of two-way coupling will be

discussed in Section 6.

As shown in Sections 3.1.2 and 3.2, and as explained

at the beginning of this section, cf. Eq. (45), the SDEs

reproducing the dynamics of the discrete particles are

Mac-Kean SDEs since the coefficients depend not only

on the state vector but also on expected values of

functions of Z(t). In particle-mesh methods, as

explained above, quantities such as hf ðZÞi (where f is

a linear or quadratic function of Z(t) in our problem) are

extracted from the particle data and evaluated at grid

points. In Section 5.2, the difficulties inherent to the

projection and averaging procedures have been

detailed.

Attention is now focused on the time integration of the

set of SDEs (operator T). The development of a suitable

weak numerical scheme for the time integration of SDEs

is a much more difficult task than the corresponding one

for ODEs. Indeed, SDEs do not obey the rules of classical

differential calculus, see Section 2.2, and one has to rely

on the theory of stochastic processes [15]. In that sense,

particular attention has to be paid to the problem of

consistency between discretised equations and the

original continuous set of SDEs. It is recalled that, in

the present paper, Itô’s calculus is adopted and therefore

all SDEs arewritten in the Itô’ sense, see Section 2.2. This

choice has no physical motivation: Itô’s calculus is very

convenient in the development of weak numerical

schemes for SDEs because of the zeromean and isometry

properties, cf. Eqs. (16).

An essential preliminary is to clearly frame the

development of the weak numerical scheme in the

general methodology that has been followed here. We

propose, indeed, to describe the problem of turbulent

polydispersed two-phase flows within an engineering
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context but with a rigorous treatment of the multiscale

character, which is a distinctive feature of these flows,

cf. Section 4. The model, Eqs. (40), contains several

characteristic timescales and this system of SDEs

becomes stiff, from a mathematical point of view,

whenever one of these timescales goes to zero. In those

cases, various limit systems are obtained, see Section 4,

which represent the asymptotic limits of the physical

model. A proper treatment of the physics of the

multiscale aspect imposes to put forward weak

numerical schemes, which are consistent with all

asymptotic limits when different timescales go to zero.

It is worth emphasising that this corresponds to a

practical concern. Indeed, in the numerical simulation

of a complex flow, the timescales may be negligible

(much smaller than the time step) in some areas of the

computational domain. For example, in a wall-bounded

flow, the integral timescale of the fluid velocity seen,

T *
L;i, goes to zero when the distance to the wall

decreases. Furthermore, when dealing with polydis-

persed particles, or with phenomena involving evapor-

ation or combustion (when particle diameters decrease

in time), one has to handle often a whole range of

particle diameters (say from 1 to 100–200 mm) and thus

a whole range of values for tp (for example,

10K6 s(tp(10K2 s). It would be inefficient to carry

out computations with a time step limited by the

smallest possible value of tp and/or T *
L;i. This is the very

reason why in the simulations of particle dispersion in

wall-bounded flows, based on discrete models, it is

necessary to use different time steps for different

classes of diameters (and thus of tp) and to lower the

time step in the wall region.

As a consequence of the above discussion, the

constraints, which are required for a suitable weak

numerical scheme, can now be summarised, consider-

ing both physical and numerical issues. Since a particle-

mesh method is adopted here, the PDEs for the fluid are

first solved and then the dynamics of the stochastic

particles are computed (see Section 5.1.1), thus, the

scheme has to be explicit for the fluid mean fields. By

choice, the scheme will also be explicit for the particle

properties. Furthermore, the time step, which has to be

the same for the integration of the PDEs and the SDEs,

is imposed by stability conditions required by the finite

volume algorithm solving the mean-field equations for

the fluid. This implies that since there is no possibility

to control the time step when integrating the SDEs, the

numerical scheme has to be unconditionally stable. At

last, since particle localisation on a mesh (needed for

projection and averaging, see Section 5.1) is CPU-
demanding, the numerical scheme should minimise

these operations.

The constraints required for a suitable weak

numerical scheme are:

(i) the numerical scheme must be explicit, stable and

the number of calls to particle localisation

(sub)routine has to be minimum,

(ii) the numerical scheme must be consistent with all

limit systems.
5.3.1. Weak numerical schemes for SDEs

In Section 2, the correspondence (in a weak sense)

between a set of SDEs and a Fokker–Planck equation

(for the associated law) has been established. In this

work, weak numerical schemes shall be developed for

Eqs. (40), i.e. we are not interested in the exact

trajectories of the process but instead in statistics (the

pdf) extracted from the stochastic particles (the real

particles are replaced by stochastic ones, which should

reproduce the same statistics). The numerical method

proposed in this work is therefore nothing else than the

simulation of an underlying pdf, or in other words, the

equivalent Fokker–Planck equation is solved by

simulating the trajectories of stochastic particles, i.e.

by a dynamical Monte Carlo method. As briefly

explained in Section 2.1, this non-trivial numerical

procedure, i.e. to resort to SDEs to solve a PDE, is well

suited for PDEs with a large number of degrees of

freedom.

Since the Itô interpretation of stochastic integrals

has been chosen, it is implicitly assumed, in the

discretisation of the stochastic integral, that Bij

should not anticipate the future, i.e. for each time

step DtZtkC1Ktk, Bij should be computed at tZtk.

As a result, classical numerical schemes for ODEs,

for example Runge-Kutta schemes, cannot be applied

directly. More precisely, careless applications of such

schemes for SDEs can introduce spurious drifts,

which may not be easy to detect. An illuminating

example of this kind of error is illustrated in Ref.

[47]. The key point here is that the numerical

discretisation of the stochastic integral must be in

line with its mathematical definition.

Let ZDt(t) be a numerical approximation of Z(t)

obtained with a uniform time discretisation, Dt. A

numerical scheme of order m will converge, in a weak

sense, if at time tZT (T is called the stopping time), for

all sufficiently smooth functions f, there exists a

constant C (function of T) such that
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sup
t%T

jhf ½ZðtÞ�Kf ½ZDtðtÞ�ij%CðTÞðDtÞm: (67)

Other convergence modes are possible, for example

strong convergence in the mean-square sense, if one is

interested in the exact trajectories of the process. It is

fairly rare that this is the case for engineering problems.

Indeed, in most engineering applications, one is mainly

interested in the expected values (statistics) of

functionals of the variables of interest. For further

discussion on the convergence modes, see the book of

Kloeden and Platen [17].

5.3.2. Analytical solution to the system of SDEs

In the present work, the weak numerical schemes,

with the required features, are developed based on the

analytical solution to Eqs. (40) with constant coeffi-

cients (independent of time), the main idea being to

derive a numerical scheme by freezing the coefficients

on the integration intervals. This methodology ensures

stability and consistency with all limit systems:

– stability because the form of the equations gives

analytical solutions with exponentials of the type

exp(KDt/T) where T is one of the characteristic

timescales (tp T *
L;i),

– consistency with all limit systems by construction,

since the schemes are based on an analytical

solution.

Different techniques shall be used to derive first- and

second-order (in time) schemes from the analytical

solutions with constant coefficients. A first-order

scheme can be obtained by computing, at each time

step, the variables on the basis of the analytical

solutions (all coefficients are frozen at the beginning

of the integration interval), i.e. a numerical scheme of

the Euler kind is obtained. A second-order scheme can

be derived by resorting to a predictor–corrector

technique, where the prediction step is the first-order

scheme.

Before presenting the weak numerical schemes, it is

a prerequisite to give the analytical solutions to system

(40), with constant coefficients (in time). These

solutions are obtained by resorting to Itô’s calculus in

combination with the method of the variation of the

constant. For instance, for the fluid velocity seen, one

seeks a solution of the form Us;iðtÞZHiðtÞexpðKt=TiÞ,

where Hi(t) is a stochastic process defined by (from now

on the notation is slightly changed: T *
L;i is noted Ti for

the sake of clarity in the complex formulae to come)

dHiðtÞZ expðt=TiÞ½Ci dtC �Bi dWiðtÞ�; (68)
i.e. by integration on a time interval [t0,t] (DtZtKt0),

Us;iðtÞZUs;iðt0ÞexpðKDt=TiÞCCiTi½1KexpðKDt=TiÞ�

C �Bi expðKt=TiÞ

ðt
t0

expðs=TiÞdWiðsÞ;

(69)

where �BiZBii since Bij is a diagonal matrix, cf. Eq.

(24). By proceeding in the same way for the other

equations (position and velocity), the analytical

solution is obtained for the entire system, cf.

Table 2. The three stochastic integrals, Eqs. (130)–

(132) in Table 2, are centred Gaussian processes

(they are stochastic integrals of deterministic func-

tions [15]). These integrals are defined implicitly, but

they can be simplified by integration by parts, cf.

Table 2. As explained in Section 4.1, for the

numerical representation of the stochastic integrals,

the knowledge of the covariance matrix (second-

order moments) is needed, see Table 3. Using the

isometry property, see Section 2.2, the second-order

moments, i.e. Eqs. (136)–(141) in Table 3, can be

calculated. The analytical solutions are now known.

Before presenting the first-order scheme, let us verify

that the analytical solution given by Tables 2 and 3

is consistent with the limit cases obtained in Section

4.2, i.e. Eqs. (41)–(44).

5.3.2.1. Limits systems of analytical solution. In limit

case 1, where the discrete particles behave as fluid

particles, the limit system is given by Eq. (41). When

tp/0, Eq. (128) becomes

Up;iðtÞZUs;iðt0ÞexpðKDt=TiÞCCiTi expðKDt=TiÞ

CGiðtÞ; (70)

and for the stochastic integral Gi(t), one has

hG2
i ðtÞi½tp/0

����!
�
�B
2
i Ti

2
½1KexpðK2Dt=TiÞ�Z hg2

i ðtÞi;

hGiðtÞgiðtÞi½tp/0
����!

�hg2
i ðtÞi:

8>><>>:
(71)

The last two equations indicate that Gi(t)/gi(t)

when tp/0. By comparing Eq. (70) to Eq. (129) with

Gi(t)Zgi(t), the results of Eq. (41) are retrieved, i.e.

Up(t)ZUs(t).

In limit case 2, the fluid velocity seen, Us(t), is a fast

variable which is eliminated. The results obtained in

Tables 2 and 3 with Ti/0 and �BiTiZcst, give



Table 2

Analytical solutions to system (40) for time-independent coefficients

xp;iðtÞZ xp;iðt0ÞCUp;iðt0Þtp½1KexpðKDt=tpÞ�CUs;iðt0ÞqifTi½1KexpðKDt=TiÞ�Ctp½expðKDt=tpÞK1�gC ½CiTi�fDtKtp½1KexpðKDt=tpÞ�

KqiðTi½1KexpðKDt=TiÞ�Ctp½expðKDt=tpÞK1�ÞgCUiðtÞ;

with qi ZTi=ðTiKtpÞ

(127)

Up;iðtÞZUp;iðt0ÞexpðKDt=tpÞCUs;iðt0Þqi½expðKDt=TiÞKexpðKDt=tpÞ�C ½CiTi�f½1KexpðKDt=tpÞ�Kqi½expðKDt=TiÞKexpðKDt=tpÞ�gCGiðtÞ

(128)

Us;iðtÞZUs;iðt0ÞexpðKDt=TiÞCCiTi½1KexpðKDt=TiÞ�CgiðtÞ (129)

The stochastic integrals gI(t), Gi(t), Ui(t) are given by:

giðtÞZ �Bi expðKt=TiÞ

ðt
t0

expðs=TiÞdWiðsÞ; (130)

GiðtÞZ
1

tp
expðKt=tpÞ

ðt
t0

expðs=tpÞgiðsÞds; (131)

UiðtÞZ

ðt
t0

GiðsÞds: (132)

By resorting to stochastic integration by parts, gi(t), Gi(t), Ui(t) can be written:

giðtÞZ �Bi expðKt=TiÞI1;i; (133)

GiðtÞZ qi
�Bi½expðKt=TiÞI1;iKexpðKt=tpÞI2;i�; (134)

UiðtÞZ qi
�BifðTiKtpÞI3;iK½Ti expðKt=TiÞI1;iKtp expðKt=tpÞI2;i�g; (135)

with I1;i Z

ðt
t0

expðs=TiÞdWiðsÞ; I2;i Z

ðt
t0

expðs=tpÞdWiðsÞ and I3;i Z

ðt
t0

dWiðsÞ:
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Up;iðtÞZUp;iðt0ÞexpðKDt=tpÞ

C ½hUiiCAitp�½1KexpðKDt=tpÞ�

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B
2
i T2

i

2tp
½1KexpðK2Dt=tpÞ�

s
Gp;i;

(72)

where Gp;i is a Nð0; 1Þ vector (composed of

independent standard Gaussian random variables)

and we recall that hUiiZhUi(t,xp(t)i. It can be rapidly

verified, by applying Itô’s calculus, that Eq. (72) is the

solution to system (42) when the coefficients are

constant.

In limit case 3, both the fluid velocity seen and the

velocity of the discrete particles become rapid
variables. When tp/0 and Ti/0 with �BiTiZcst,

Eq. (127) becomes
xp;iðtÞZ xp;iðt0ÞC ½hUiiCAitp�DtC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B
2
i T2

i Dt

q
Gx;i;

(73)
which is the solution to Eq. (43) when the coefficients

are constant (Gx;i is a Nð0; 1Þ vector).

In limit case 4, when Ti/0 (with no condition on
�BiTi) the system becomes deterministic, the results

are in agreement with Eq. (44). When Ti/0, Eqs.

(127)–(129) become



ðKDt=tpÞ�;

CAitp�fDtKtp½1KexpðKDt=tpÞ�g;

ð74Þ

Table 3

Derivation of the covariance matrix for constant coefficients

hg2
i ðtÞiZ �B

2
i

Ti

2
½1KexpðK2 Dt=TiÞ�; where �B

2
i ZB2

ii (136)

hG2
i ðtÞiZ �B

2
i q

2
i

Ti

2
½1KexpðK2 Dt=TiÞ�K

2tpTi

Ti Ctp
½1KexpðKDt=TiÞexpðKDt=tpÞ�C

tp

2
½1KexpðK2Dt=tpÞ�

	 

(137)

1

�B
2
i q

2
i

hU2
i ðtÞiZðTiKtpÞ

2Dt C
T3

i

2
½1KexpðK2Dt=TiÞ�C

t3p

2
½1KexpðK2Dt=tpÞ�K2T2

i ðTiKtpÞ½1KexpðKDt=TiÞ�

C2t2pðTiKtpÞ½1KexpðKDt=tpÞ�K2
T2

i t
2
p

Ti Ctp
½1KexpðKDt=TiÞexpðKDt=tpÞ�

(138)

hgiðtÞGiðtÞiZ �B
2
i qiTi

1

2
½1KexpðK2Dt=TiÞ�K

tp

Ti Ctp
½1KexpðKDt=TiÞexpðKDt=tpÞ�

	 

(139)

hgiðtÞUiðtÞiZ �B
2
i qiTi ðTiKtpÞ½1KexpðKDt=TiÞ�K

Ti

2
½1KexpðK2Dt=TiÞ�C

t2p

Ti Ctp
½1KexpðKDt=TiÞexpðKDt=tpÞ�

( )
(140)

1

�B
2
i q

2
i

hGiðtÞUiðtÞiZðTiKtpÞfTi½1KexpðKDt=TiÞ�Ktp½1KexpðKDt=tpÞ�gK
T2

i

2
½1KexpðK2Dt=TiÞ�

K
t2p

2
½1KexpðK2Dt=tpÞ�CTitp½1KexpðKDt=TiÞexpðKDt=tpÞ�

(141)
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Us;iðtÞZ hUii;

Up;iðtÞZUp;iðt0ÞexpðKDt=tpÞC ½hUiiCAitp�½1Kexp

xp;iðtÞZ xp;iðt0ÞCtp½1KexpðKDt=tpÞ�Up;iðt0ÞC ½hUii

8>>><>>>:
which is the analytical solution to system (44) when

the coefficients are constant.
5.3.3. Weak first-order scheme

The derivation of the weak first order scheme is now

rather straightforward since the analytical solutions to

system (40) with constant coefficients have already

been calculated. Indeed, the Euler scheme (which is a

weak scheme of order 1 [17]) is simply obtained by

freezing the coefficients at the beginning of the time

intervals DtZ[tn, tnC1]. Let Zn
i and ZnC1

i be the

approximated values of Zi(t) at time tn and tnC1,

respectively. The Euler scheme is then simply written

by using the results of Tables 2 and 3 as shown in

Table 4. Before showing that the scheme is consistent

with all limit cases, some clarifications must be given.

Here, the limit systems are considered in the discrete

sense. The observation timescale dt has now become

the time step Dt. The timescales tp and Ti do not go to

zero, as in the continuous sense (Section 4), but their

values, depending on the history of the particles, can be
smaller or greater than Dt. The continuous limits, i.e.

Eqs. (41)–(44), represent a mathematical limit, whereas

in the discrete formulation, as we shall see just below,

the limit systems correspond to a numerical solution

where the ratios Dt/Ti and Dt/tp become large (the limit

systems are obtained by Taylor expansions).

In limit case 1, when tp/0 in the continuous sense

and tp/Dt/Ti in the discrete sense, the numerical

scheme gives UnC1
p;i ZUnC1

s;i , see Table 4, which is

consistent with the results of Section 4.2.

In limit case 2, in the continuous sense Ti/0 and
�BiTiZcst, i.e. the fluid velocity seen Us(t) becomes a

fast variable, which is eliminated. In the discrete case,

Us(t) is simply observed at a timescale which is great

compared to its memory, i.e. Ti/Dt/tp, and the

numerical scheme yields (see Table 4)

UnC1
s;i Z hUn

i iC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ �B

i
n�

2Tn
i

2

s
G1;i; (75)
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where hUn
i iZ hUiðtn; x

n
pÞi. The fluid velocity seen

becomes a Gaussian random variable, a result which

is physically sound since Us(t) is observed at time steps

which are greater than its memory. This result is in line

with that of the model problem presented in Section 4.1.

Furthermore, by Taylor expansion, it can be shown that

the numerical scheme is consistent with Eq. (72).

In limit case 3, i.e. when 1/Dt=Ti and 1/Dt=tp
(discrete case), one obtains for the velocity of the

particles and for the fluid velocity seen (see Table 4)
Table 4

Weak first-order scheme (Euler scheme)

Numerical integration of the system:

xnC1
p;i Z xn

p;i CA1Un
p;i CB1Un

s;i CC1½T
n
i Cn

i �CUn
i ;

UnC1
s;i ZUn

s;i expðKDt=Tn
i ÞC ½Tn

i Cn
i �½1KexpðKDt=Tn

i Þ�Cgn
i ;

UnC1
p;i ZUn

p;i expðKDt=tn
pÞCD1Un

s;i C ½Tn
i Cn

i �ðE1KD1ÞCGn
i :

The coefficients A1, B1, C1, D1 and E1 are given by:

A1 Z t
n
p½1KexpðKDt=tn

pÞ�;

B1 Z qn
i ½T

n
i ð1KexpðKDt=Tn

i ÞKA1�; with qn
i Z Tn

i =ðT
n
i Ktn

pÞ;

C1 ZDtKA1KB1;

D1 Z q
n
i ½expðKDt=Tn

i ÞKexpðKDt=tn
pÞ�;

E1 Z 1KexpðKDt=tn
pÞ:

The stochastic integrals gn
i , U

n
i , G

n
i are simulated by:

g
n
i ZP11G1;i;

Un
i ZP21G1;i CP22G2;i

Gn
i ZP31G1;i CP32G2;i CP33G3;i;

where G1;i, G2;i, G3;i are independent Nð0; 1Þ random variables.

The coefficients P11, P21, P22, P31, P32, P33 are defined as:

P11 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hðgn

i Þ
2i

q
;

P21 Z
hUn

i g
n
i iffiffiffiffiffiffiffiffiffiffiffiffiffi

hðgn
i Þ

2i
p ; P22 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðUn

i Þ
2iK

hUn
i g

n
i i
2

hðgn
i Þ

2i

s
;

P31 Z
hGn

i g
n
i iffiffiffiffiffiffiffiffiffiffiffiffiffi

hðgn
i Þ

2i
p ; P32 Z

1

P22

ðhUn
i G

n
i iKP21P31Þ;

P33 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðGn

i Þ
2iKP2

31KP2
32Þ

q
:

UnC1
p;i Z hUn

i iCAn
i t

n
p

C

ffiffiffiffiffiffiffiffiffiffiffi
½ �B

n
i �

2

2

vuut Tn
i

Tn
i Ctn

p

ffiffiffiffiffi
Tn

i

p
G1;i C

ffiffiffiffiffi
tn
p

p
G2;i

� �
;

UnC1
s;i Z hUn

i iC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ �B

n
i �

2Tn
i

2

vuut G1;i:

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
(76)

Once again, Up,i(t), and Us,i(t), which were

eliminated in the continuous case, do not disappear.

They become Gaussian random variables, a result

which is physically sound since these two random

variables are observed at time steps, which are greater

than their respective memories. Moreover, by Taylor

expansion, one can show that the numerical scheme is

consistent with Eq. (73).

In limit case 4, TiZ0, and the flow becomes laminar.

It can be easily shown that the numerical scheme is

consistent with Eqs. (74). For instance, one has for the

fluid velocity UnC1
s;i Z hUn

i i, cf. Table 4.

The previous results show that the Euler scheme

presented in Table 4 is consistent with all limit cases.

Therefore, the scheme gives numerical solutions, which

are physically sound, i.e. a consistent representation of

the multiscale character of the model is obtained.

5.3.4. Weak second-order scheme

Most of the time, dynamical Monte Carlo methods

are used with first-order schemes only, for example in

nuclear or particle physics. In those cases, the time-step

value is not a very important factor, and attention is

rather focused on obtaining accurate statistics. On the

contrary, in industrial fluid mechanics applications with

complex geometries and strong inhomogeneities in the

flow, a higher-order accuracy in time can be critical in

order to avoid prohibitively small time steps resulting

in huge computational time. Such an example will be

presented in Section 7.1.

From a formal point of view, weak high-order

schemes for a set of SDEs can be derived for any

desired accuracy, though this is much more compli-

cated than for ODEs. Such high-order schemes are

generally based on truncated stochastic Taylor expan-

sions, see for example Refs. [17,48]. These techniques

cannot be applied directly in our particular case since

neither the unconditional stability nor the consistency

in limit cases can be obtained.

5.3.4.1. Property of the system of SDEs. The diffusion

matrix of system (29) has a singular property of

crucial importance here [30]. In the present case, this

nine-dimensional matrix can be written, using block
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notation, as (we recall that Z(t)Z(xp(t), Up(t), Us(t)))

sðt;ZðtÞÞZ

0 0 0

0 0 0

0 0 Bsðt; xpðtÞÞ

264
375; (77)

where each block represents a three-dimensionalmatrix.

Indeed, fromEq. (24), it can be noticed thatBs,ij depends

only on time, position, xp, and the mean value of the

relative velocity, hUri. Therefore, the only variable of the

state vector on which Bs,ij depends is position, because

hUri (t,xp(t)) is a mean field. The fact that sij depends

neither on Up nor on Us implies that quantities such as

vsij/vzk are non-zero only when 1%k%3 and 7%i, j%9.

For these values of k and j, one has skjZ0.

Thus, the diffusion matrix sij has the following

singular propertyX
k

X
j

skj

vsij

vzk

Z 0; ci: (78)

5.3.4.2. General idea. Let us consider the following

model problem

dXiðtÞZAiðXðtÞÞdt C
X

j

BijðXðtÞÞdWjðtÞ; (79)

where Bij verifies property (78). It can be shown, for

example by stochastic Taylor expansions [17], that a

predictor-corrector scheme of the type

~X
nC1
i ZXn

i CAn
i Dt C

P
j B

n
ijDWj;

XnC1
i ZXn

i C
1

2
ðAn

i C ~A
nC1
i ÞDt

C
P

j

1

2
ðBn

ij C ~B
nC1
ij ÞDWj;

8>>>>>>>><>>>>>>>>:
(80)

is a weak second-order scheme: ~A
nC1
i ZAið ~X

nC1
Þ,

~B
nC1
ij ZBijð ~X

nC1
Þ, DtZtnC1Ktn and DWjZWnC1

j

KWn
j . This result is true, once again, only when the

diffusion matrix verifies property (78), cf. Ref. [47]. If

this property is not verified, the problem is more

complex and other terms are needed to enforce second-

order accuracy, see for example [32]. Since the

predictor step of the scheme above is the Euler scheme

(already developed in Section 5.3.3), the remaining task

consists in finding a suitable correction step, which

ensures the fulfilment of the constraints listed above.

5.3.4.3. Derivation of the numerical scheme. How

should the coefficients of the predictor step, ~A
nC1
i and
~B
nC1
ij , be computed? The main idea here is to generate a

correction step based on the analytical solutions by

considering that the acceleration terms vary linearly

with time. This idea originates from considerations

related to Taylor series expansions. The numerical

solution obtained from the analytical solution with

constant coefficients is an approximation of first-order

accuracy. Mathematically, the solution is given in terms

of the integral of acceleration terms. Thus, one can state

that the solution based on the zeroth order (constant

terms) development of the acceleration terms gives a

first-order approximation in time. By analogy, it can be

guessed that approximating the acceleration terms by

piecewise linear functions in time yields a second-order

approximation in time.

Let us introduce the following notation: ~U
nC1
p;i and

~U
nC1
s;i stand for the predicted velocities and ~T

nC1
i and

~tnC1
p are the predicted timescales. The values of the

fields related to the fluid taken at (tnC1, xnC1
p ) are

denoted, for example, hUnC1
i i or hPnC1i. As far as the

computation of the mean fields extracted from the

discrete particles are concerned, it is worth emphasising

that none of them are computed at (tnC1, x
nC1
p ), because

the scheme would become implicit, i.e. fields such as

the expected value of the particle velocity are computed

from the predicted velocities. For example, one has

CiðtnC1; x
nC1
p ÞZCnC1

i

Z
hUnC1

i i

~T
nC1
i

C f ðh ~U
nC1
p i; hUnC1i; hPnC1iÞ:

(81)

Let us first consider the fluid velocity seen. The

analytical solution to system (40) when the coefficients

are constant is, by applying the rules of Itô’s calculus

Us;iðtÞZUs;iðt0ÞexpðKDt=TiÞ

C

ðt
t0

Ciðs; xpÞexp½ðsKtÞ=Ti�dsCgiðtÞ;
(82)

where the temporal coefficients (the timescales) are

considered constant, while the term Ci is retained in the

integral. Following the previous ideas, let us suppose

that Ci(s, xp) varies linearly on the integration interval

[t0, t], i.e. (DtZtKt0)

Ciðs; xpðsÞÞZCiðt0; xpðt0ÞÞC
1

Dt
½Ciðt; xpðtÞÞ

KCiðt0; xpðt0ÞÞ�ðsKt0Þ: (83)

By inserting Eq. (83) into Eq. (82), integration gives
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Us;iðtÞZUs;iðt0ÞexpðKDt=TiÞ

C ½TiCiðt0; xpðt0ÞÞ�A2ðDt;TiÞ

C ½TiCiðt; xpðtÞÞ�B2ðDt;TiÞCgiðtÞ; (84)

where the functions A2(Dt,x) and B2(Dt,x) are given by

(x is a positive real variable)

A2ðDt; xÞZKexpðKDt=xÞC ½1KexpðKDt=xÞ�½Dt=x�;

B2ðDt; xÞZ 1K½1KexpðKDt=xÞ�½Dt=x�:

(
(85)

Accounting for the time dependence of the coeffi-

cients, i.e. Ti, it is proposed to write the following

correction step, which is in line with the treatment of

the acceleration terms

UnC1
s;i Z

1

2
Un

s;iexpðKDt=Tn
i Þ

C
1

2
Un

s;iexpðKDt= ~T
nC1
i ÞCA2ðDt;Tn

i Þ

!½Tn
i Cn

i �CB2ðDt; ~T
nC1
i Þ½ ~T

nC1
i CnC1

i �C ~gnC1
i ;

(86)

where a consistent formulation for the stochastic

integral ~gnC1
i is needed. The same procedure is used,

i.e. the diffusion matrix Bij is linearised and integration

is carried out. The final expression is

~gnC1
i Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½B*

i �
2
~T

nC1
i

2
½1KexpðK2Dt= ~T

nC1
i Þ�

s
G1;i; (87)

where G1;i is the same Nð0; 1Þ random variable used in

the simulation of gn
i in the Euler scheme (cf. Table 4)

and where B*
i is defined by

½1KexpðK2Dt= ~T
nC1
i Þ�B*

i

ZA2ð2Dt; ~T
nC1
i Þ

ffiffiffiffiffiffiffiffiffiffi
ðBn

i Þ
2

q
CB2ð2Dt; ~T

nC1
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~�B

nC1

i Þ2
q :

(88)

Here, some explanations must be given. During

integration, another step is necessary in order to achieve

the closed form presented in Eq. (88). Indeed, two parts

derive from the integration by parts carried out when Bij

varies linearly. The first term is an analytical function,

while the second term is still a stochastic integral,

therefore the global integral can be written formallyegnC1
i Zd1Cd2. It has been considered that a projection

of this second integral on the first remains of second-

order accuracy for the global scheme. Therefore, the

following hypothesis has been used, d2zðhd1d2i=hd
2
1iÞd1.
In the case of the velocity of the particles, the same

approach followed for the fluid velocity seen is

adopted. Let us start from the exact solution with

constant coefficients for Up(t). By resorting to the rules

of Itô’s calculus, one can write

Up;iðtÞZUp;iðt0ÞexpðKDt=tpÞC
1

tp
expðKDt=tpÞ

!

ðt
t0

expðs=tpÞ½Us;iðsÞCtpAiðs; xpÞ�ds; (89)

and by inserting Eq. (82) in the previous equation, one

has

Up;iðtÞ

ZUp;iðt0ÞexpðKDt=tpÞCUs;iðt0Þqi½expðKDt=TiÞ

KexpðKDt=tpÞ�CGiðtÞC
1

tp
expðKt=tpÞ

ðt
t0

expðs=tpÞ

! expðKs=TiÞ

ðs
t0

Ciðu; xpÞexpðu=TiÞduCtpAiðs; xpÞ

264
375ds:

(90)

Two deterministic integrals must be treated in

Eq. (90). A multiple one, involving Ci(t, xp) and a

simple one with the acceleration term Aiðt; xpÞ. Both
integrals are handled as done previously for the fluid

velocity seen, i.e. it is assumed that both accelerations

vary linearly on the integration interval, see for

example Eq. (83) for Ci(t, xp). By integration by parts

of both integrals, one finds after some derivations

Up;iðtÞZUp;iðt0ÞexpðKDt=tpÞCUs;iðt0Þqi½expðKDt=TiÞ

K expðKDt=tpÞ�C ½TiCiðt0; xpðt0ÞÞ�A2cðtp; TiÞ

C ½TiCiðt; xpðtÞÞ�B2cðtp;TiÞ

C ½tpAiðt0; xpðt0ÞÞ�A2ðDt; tpÞ

C ½tpAiðt; xpðtÞÞ�B2ðDt; tpÞCGiðtÞ;

(91)

where the functions C2c(x,y), A2c(x,y) and B2c(x,y) are

given by (x and y are two positive real variables)

C2cðx; yÞZ ½y=ðyKxÞ�½expðKDt=yÞKexpðKDt=xÞ�;

A2cðx; yÞZKexpðKDt=xÞC ½ðxCyÞ=Dt�

!½1KexpðKDt=xÞ�Kð1Cy=DtÞC2cðx; yÞ;

B2cðx; yÞZ 1K½ðxCyÞ=Dt�½1KexpðKDt=xÞ�

Cðy=DtÞC2cðx; yÞ:

8>>>>><>>>>>:
(92)
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In analogy with the expression proposed for the

fluid velocity seen, cf. Eq. (86), the following

correction step is proposed
UnC1
p;i Z

1

2
Un

p;iexpðKDt=tn
pÞC

1

2
Un

p;iexpðKDt= ~tnC1
p Þ

C
1

2
Un

s;iC2cðt
n
p;T

n
i ÞC

1

2
Un

s;iC2cð ~t
nC1
p ; ~T

nC1
i Þ

CA2cðt
n
p;T

n
i Þ½t

n
i Cn

i �

CB2cð ~t
nC1
p ; ~T

nC1
i Þ½ ~T

nC1
i CnC1

i �

CA2ðDt; tn
pÞ½t

n
pA

n
i �

CB2ðDt; ~tnC1
p Þ½ ~tnC1

p AnC1
i �C ~G

nC1
i : ð93Þ
For the simulation of the stochastic integral, one

has (G2;i is the Nð0; 1Þ random variable used in the

simulation of Gn
i in the Euler scheme, see Table 4)
~G
nC1
i Z

h ~G
nC1
i ~gnC1

i i

hð ~gnC1
i Þ2i

~gnC1
i

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð ~G

nC1
i Þ2iK

½h ~G
nC1
i ~gnC1

i i�2

hð ~gnC1
i Þ2i

s
G2;i; (94)

where the second-order moments hð ~G
nC1
i Þ2i and

h ~G
nC1
i ~gnC1

i i are computed from Eqs. (137) and (139),

respectively, by inserting the suitable timescales and

diffusion matrix, i.e. tn
p, ~T

nC1
i and B*

i . This completes

the weak second-order scheme.

It can be shown, by means of stochastic Taylor

expansion [17], that the present scheme is a weak

scheme of order 2 in time for system (40). It is worth

emphasising that no correction is done on position,

xp(t), since the prediction is already of order 2. The

complete scheme is summarised in Table 5.

5.3.4.4. Limit cases. In limit case 1, when 1/Dt=tp,

one has A2c(tp, Ti)/A2(Dt, Ti), B2c(tp, Ti)/B2(Dt, Ti)

and C2c(tp, Ti)/exp(KDt/Ti). For the stochastic

integral, one can show that ~G
nC1
i / ~gnC1

i . Inserting

these results in Eq. (93) yields UnC1
p;i ZUnC1

s;i , which is

consistent with Eq. (41). This result is a second-order

scheme for Up(t), and therefore the scheme remains of

order 2 in limit case 1.

When 1/Dt=Ti and �BiTiZcst (limit case 2), one

has A2c(tp, Ti)/A2(Dt, tp) and B2c(tp, Ti)/B2(Dt, tp),

which gives for the numerical correction of the velocity

of the particles
UnC1
p;i Z

1

2
Un

p;iexpðKDt=tn
pÞ

C
1

2
Un

p;iexpðKDt= ~tnC1
p ÞCA2ðDt; tn

pÞ

!½hUn
i iCtn

pA
n
i �CB2ðDt; ~tnC1

p Þ½hUnC1
i i

C ~tnC1
p AnC1

i �C ~G
nC1
i : (95)

For the simulation of the stochastic integral, one can

prove by looking at the limit values (when 1/Dt=Ti

and �BiTiZcst) in Eqs. (136), (137) and (139) that (here

G0
p;i is a Nð0; 1Þ random variable)

~G
nC1
i /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½B*

i
~T

nC1
i �2

2tn
p

½1KexpðK2Dt=tn
pÞ�

s
G0

p;i; (96)

which is in accordance with Eq. (72). Unfortunately, it

can be established, again by Taylor stochastic expan-

sion, that the scheme is not of second-order in time for

system (42), but of first order. This is due to the

treatment of the correction step for the stochastic

integral Gi(t) where tn
p has been retained in order to

avoid anticipation and inconsistent numerical

expressions of the Itô integral. As far as the fluid

velocity seen is concerned, one has

UnC1
s;i Z hUnC1

i iC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½B*

i �
2 ~T

nC1
i

2

s
G1;i; (97)

which is in line with the previous result. This scheme is

of second order, but the whole scheme is not. Indeed, as

mentioned above, the scheme is only of first order for

the velocity of the particles.

When both the fluid velocity seen and the velocity of

the particles become fast variables (limit case 3), i.e.

when 1/Dt=Ti, 1/Dt=tp and �BiTiZcst, one can

write for the velocity of the particle, for example from

Eq. (95) with 1/Dt=tp

UnC1
p;i Z hUnC1

i iC ~tnC1
p AnC1

i C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½B*

i
~T

nC1
i �2

2tn
p

s
G0

p;i:

(98)

For the fluid velocity seen, Eq. (97) is unchanged.

These results are consistent with the expressions of

Section5.3.3. In limit case3, the numerical scheme for the

position of the particles is equivalent to the Euler scheme

written previously and is of first order in time.

When the flow becomes laminar, i.e. when Ti/0

with no condition on the product �BiTi, one has the

following limits: A2(Dt, Ti)/0, B2(Dt, Ti)/1 and



Table 5

Weak second-order scheme

Prediction step: Euler scheme, see Table 4.

Correction step:

UnC1
p;i Z

1

2
Un

p;iexpðKDt=tn
pÞC

1

2
Un

p;iexpðKDt= ~tnC1
p ÞC

1

2
Un

s;iC2cðt
n
p; T

n
i ÞC

1

2
Un

s;iC2cð ~t
nC1
p ; ~T

nC1
i ÞCA2cðt

n
p; T

n
i Þ½T

n
i Cn

i �CB2cð ~t
nC1
p ; ~T

nC1
i Þ½ ~T

nC1
i CnC1

i �

CA2ðDt; tn
pÞ½t

n
pA

n
i �CB2ðDt; ~tnC1

p Þ½ ~tnC1
p AnC1

i �C ~G
nC1
i ;

UnC1
s;i Z

1

2
Un

s;iexpðKDt=Tn
i ÞC

1

2
Un

s;iexpðKDt= ~T
nC1
i ÞCA2ðDt; Tn

i Þ½T
n
i Cn

i �CB2ðDt; ~T
nC1
i Þ½ ~T

nC1
i CnC1

i �C ~gnC1
i :

The coefficients A2, B2, A2c and C2c are defined as:

A2ðDt; xÞZKexpðKDt=xÞC ½1KexpðKDt=xÞ�½Dt=x�;

B2ðDt; xÞZ 1K½1KexpðKDt=xÞ�½Dt=x�;

A2cðx; yÞZKexpðKDt=xÞC ½ðxCyÞ=Dt�½1KexpðKDt=xÞ�Kð1Cy=DtÞC2cðx; yÞ;

B2cðx; yÞZ 1K½ðxCyÞ=Dt�½1KexpðKDt=xÞ�C ðy=DtÞC2cðx; yÞ;

C2cðx; yÞZ ½y=ðyKxÞ�½expðKDt=yÞKexpðKDt=xÞ�:

The stochastic integrals ~gnC1
i and ~G

nC1
i are simulated as follows:

~gnC1
i Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½B*

i �
2 ~T

nC1
i

2
½1KexpðK2Dt= ~TnC1

i Þ�

s
G1;i;

with ½1KexpðK2Dt= ~T
nC1
i Þ�B*

i ZA2ð2Dt; ~T
nC1
i Þ

ffiffiffiffiffiffiffiffiffiffiffi
ðBn

i Þ
2

q
CB2ð2Dt; ~T

nC1
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~�B

nC1

i Þ2
q

:

~G
nC1
i Z

h ~G
nC1
i ~gnC1

i i

hð ~gnC1
i Þ2i

~gnC1
i C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð ~G

nC1
i Þ2iK

h ~G
nC1
i ~gnC1

i i2

hð ~gnC1
i Þ2i

s
G2;i

with h ~G
nC1
i ~gnC1

i iZ hGigiiðt
n
p; ~T

nC1
i ;B*

i Þ and hð
~G

nC1
i Þ2iZ hG2

i iðt
n
p; ~T

nC1
i ;B*

i Þ:
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gi(t)/0, which gives UnC1
s;i Z hUnC1

i i for the fluid

velocity seen. For the velocity of the particles, the

coefficients have the following limits: A2c(tp, Ti)/
A2(Dt, tp), B2c(tp, Ti)/B2(Dt, tp) and C2c(tp, Ti)/0

which gives together with the limit Gi(t)/0

UnC1
p;i Z

1

2
Un

p;iexpðKDt=tn
pÞC

1

2
Un

p;iexpðKDt= ~tnC1
p Þ

CA2ðDt; tn
pÞ½hU

n
i iCtn

pA
n
i �

CB2ðDt; ~tnC1
p Þ½hUnC1

i iC ~tnC1
p AnC1

i �:

(99)
It can be shown, by regular Taylor expansion, that

this scheme, together with the prediction step (Euler

scheme) is a second-order scheme for system (44).
In summary, a weak second-order scheme for

system (40) has been derived. This scheme satisfies

all conditions listed in Section 5.3. However, second-

order convergence is not obtained in limit cases 2 and 3.

In this latter case, the first-order convergence is

inherent to the spirit of the scheme, i.e. a single step

to compute position xp(t) (in order to minimise the

number of particle localisations in the algorithm).
6. Specific and open issues

The main objective of this paper is to present a

consistent and rigorous numerical method for the

computations of polydispersed turbulent two-phase
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flows using a mean-field/PDF approach. The math-

ematical framework and the models used in this

approach have been put forward (Sections 2 and 3)

and a general methodology for the derivation of

weak numerical schemes for the set of SDEs

describing the dynamics of the stochastic particles

has been given in the context of particle-mesh

methods (Sections 4 and 5).

In this general methodology, the derivation of the

weak numerical schemes has been performed only in

the case of one-way coupling. As mentioned before,

this is not a limitation of the methodology and it is

simply the status of the developments so far. The

extension of the present results to two-way coupling is

now discussed. Two issues are addressed:

(i) the computations of the source terms in the PDEs

describing the dynamics of the fluid mean fields.

When two-way coupling is accounted for. When

the particle mass fraction is high enough and the

influence of the particles on the fluid mean fields

must be taken into account, particle source terms

are added to the fluid equations, cf. Eqs. (125)

and (126),

(ii) the extension of the methodology introduced in

Sections 4 and 5, i.e. when two-way coupling is

considered, an acceleration is added to the SDE

describing the dynamics of the fluid velocity

seen, cf. Eqs. (28) and (29), and the structure of

the system of SDEs is changed.

The first point is a specific issue, i.e. a practical

solution is given for the computational procedure of the

source terms. The second point is considered as an open

issue since only explanations on the procedure to

follow, for the extension of the weak numerical

schemes to two-way coupling, are provided.

After the treatment of the two-way coupling issues

and before showing computational examples, some

possible improvements and some open questions

related to the numerical method will be discussed.

The list of open questions related to the present

numerical (particle-mesh) method is long. Here,

attention is focused on two open issues:

(iii) the formulation of boundary conditions in wall-

bounded flows,

(iv) the development of new numerical methods

based on the present one.

We start now with aspects related to two-way

coupling, i.e. issues (i) and (ii).
6.1. Computation of the source terms

As can be seen from the equations given in Table 1,

i.e. Eqs. (125) and (126), two source terms are present

when two-way coupling is considered. The first one,

say SU, represents the exchange of momentum between

the discrete particles and the fluid. In the present paper,

the only force exerted by the fluid on the discrete

particles is the drag force, see Eqs. (1), and by reaction

the force exerted by the particles on the fluid is the

reverse drag force. The mean momentum source term is

expressed by

ðSUÞi Zc
Up;iKUs;i

tp

� �
; (100)

where cZ ðaprpÞ=ðafrfÞ. From the particle equation of

motion, cf. Eqs. (29), the drag term is equal to the

discrete particle acceleration (when gravity is first

subtracted) and SU can be re-expressed as

ðSUÞi ZKc
dUp;i

dt

� �
: (101)

From the discrete point of view, if we use the NGP

technique, as explained in Section 5.2.1, for the sake of

simplicity (since most of what is presented below

concern particle instantaneous quantities that can be put

within the CIC formalism), this source term is the sum

of the reverse drag force due to the discrete particles

that are found in a given fluid cell. Then, the total fluid

momentum in a cell [k], whose volume is V½k�
f can be

written as

afrfV
½k�
f ðSUÞ

½k�
i Z

XNk

lZ1

ml
p

ðUl
p;iÞ

nC1KðUl
s;iÞ

n

Dt
; (102)

where ml
p and Ul

p;i stand for the mass and the velocity of

the discrete particle labelled l, respectively. The sum is

performed over the Nk particles that are located in cell

[k] at iteration n (tZnDt).

The source term for the fluid Reynolds-stress

equations, see Eq. (126), raises new questions and its

numerical evaluation is an interesting example of the

specificities of stochastic calculus, cf. Section 2.2. For

the discussion of its expression, we limit ourselves to

the simplified case of a stationary one-dimensional

system and to the source term, Sk, for the fluid kinetic

energy k. The system of SDEs that we consider is
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dUpðtÞZ
UsðtÞKUpðtÞ

tp
dt;

dUsðtÞZK
UsðtÞ

T
dtKc

UsðtÞKUpðtÞ

tp

0@ 1AdtC
ffiffiffiffi
K

p
dWðtÞ;

8>>>>><>>>>>:
(103)

and the fluid kinetic source term which represents the

work performed by the drag force is

Sk Zc Us

UpKUs

tp

� �� �
: (104)

For this simplified case, and when the coefficients of

the equations are constant, we can derive the analytical

expression of the second-order moments. Indeed, for a

long-enough time after the initial conditions, the

stochastic process Z(t)Z{Up(t),Us(t)} (since here

xp(t) is irrelevant) reaches a stationary state and hU2
p i,

hUpUsi and hU
2
s i become constant. Therefore, using Itô’s

calculus, we have that

dhU2
p iZ 2hUp dUpiZ 0;

dhUpUsiZ hUp dUs CUs dUpiZ 0;

dhU2
s iZ 2hUs dUsiCK dt Z 0:

8>><>>: (105)

The first two equations yield the equilibrium

formulae for the second-order moments

hU2
p iZ hUpUsi;

hUpUsiZ hU2
s i

1

1Ctp=T
;

8>>><>>>: (106)

while the third one gives the expression of the diffusion

coefficient K to maintain a constant value of the fluid

kinetic energy

K Z 2hU2
s i

1

T
C

c

T Ctp

� �
: (107)

Using these formulae, the (equilibrium) analytical

expression of the kinetic source term can be written as

Sk ZKchU2
s i

1

T Ctp
: (108)

This source term is always negative which indicates

that the drag force, which is indeed a friction force,

induces a loss of energy in the fluid energy budget. This

is valid for the total energy budget, whereas if we

consider the fluid energy spectrum and its modulation

by particles, particles may enhance turbulence at some

lengthscales (or wave numbers) due, for example, to

wakes generated behind the particles. In the present
model, we consider only Sk, which is the integrated

value of the exchange term over the whole spectrum,

and, if we leave out the (possible) energy injected from

particles by their initial conditions, the total energy

gained by the particles comes from the fluid and the

fluid kinetic energy source term is negative. However,

when tp/0, i.e. when the discrete particles behave as

fluid elements (but with a constant mass fraction, c), we

expect the kinetic source term to vanish (Sk/0) since

we consider a stationary case. Yet, from Eq. (108), it is

seen that the limit is

Sk $$%
tp/0

KchU2
s i

1

T
: (109)

This spurious non-zero limit for vanishing particle

characteristic timescale can be traced back to the

Langevin model and is related to the fact that

acceleration is indeed replaced by a white-noise term,

cf. in Ref. [8, Chapter 6.8].

Nevertheless, it is possible to retrieve the correct

limit in the numerical evaluation of Sk by resorting to a

discretisation based on the Stratonovich definition, see

Section 2.2. The first step is to write the source term

with the particle acceleration as

Sk ZKc Us

dUp

dt

� �
: (110)

Therefore, if we consider the integration of the

source term in a time interval, we get

Sk dt ZKchUs dUpi (111)

and, in a formal sense, when tp/0, we expect the

source term to become

Sk dt/KchUs dUsi; (112)

since in that case Up/Us, cf. Eq. (41) in Section 4.2.

Now, from Section 2.2, we know that the above

expression can have different meanings. If we decide to

regard the term hUs dUsi as being defined in the Itô

sense, as it should be in order to be consistent with the

algebra retained throughout the paper, we would find

the non-zero limit given above. Yet, if for this

expression of the source term, we decide to consider

it as being defined in the Stratonovich sense, then

Sk dt $$%
tp/0

KchUs+dUsiZK
c

2
hdðUsÞ

2i; (113)

which is indeed zero since we are in a stationary case.

The difference between the two stochastic calculus

is only presented here since it provides a useful

guideline. In the present case, it is seen that the interest
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of the Stratonovich expression is that the formal

quantity dUs/dt can still be handled as if it were a

normal derivative (and, in our case, the limit of dUp/dt

when tp/0). This suggests therefore to express the

kinetic source term numerically, in a fluid cell [k] at

time tZn Dt with Nk particles, as

afrfV
½k�
f S½k�

k ZK
XNk

lZ1

ml
p

1

2
ððUl

sÞ
nC1 C ðUl

sÞ
nÞ

!
ðUl

pÞ
nC1KðUl

pÞ
n

Dt
: (114)

From the properties of the numerical schemes

developed in the previous sections, we have that ðUl
pÞ

n

/ðUl
sÞ

n when tp/0. Thus, in that limit

afrfV
½k�
f S½k�

k /K
XNk

lZ1

ml
p

1

2
ððUl

sÞ
nC1 C ðUl

sÞ
nÞ

!
ðUl

sÞ
nC1KðUl

sÞ
n

Dt
ZK

XNk

lZ1

ml
p

1

2
ð½ðUl

sÞ
nC1�2K½ðUl

sÞ
n�2Þ

xaprpV
½k�
f h½ðUl

sÞ
nC1�2K½ðUl

sÞ
n�2i ð115Þ

and when the stationarity of Us is indeed enforced

numerically, this term is zero. Finally, going back to the

exact fluid Reynolds stress equations, we propose to

express the numerical source terms as

afrfV
½k�
f S½k�

Rij
ZK

XNk

lZ1

ml
p

1

2
½ðUl

s;jÞ
nC1

	

CðUl
s;jÞ

n�
ðUl

p;iÞ
nC1KðUl

p;iÞ
n

Dt
C

1

2
½ðUl

s;iÞ
nC1

CðUl
s;iÞ

n�
ðUl

p;jÞ
nC1KðUl

p;jÞ
n

Dt

)
: ð116Þ

As mentioned at the beginning of this section, most

of the arguments that have been presented concern the

discrete evaluation of each particle term Us(dUp/dt).

The expression proposed above in the NGP formulation

can be used directly within the CIC technique. Another

interesting question is to ask to what cell (or cells) the

different source terms should be assigned. Indeed,

within one time step, particles may cross several fluid

cells and the source terms, say SU and SR, which

represent the total momentum and energy exchange

terms, should be distributed between the different cells

crossed by the particles. One possibility is to apply to

each fluid cell crossed by a particle, the different

reverse expressions, say dUp/dt and Us(dUp/dt) in

proportion of the time spent in that cell (the residence

time) which is then a fraction of the time step. This is
probably the most precise expression and the most

accurate discrete formulation, but it implies to keep

track of the different fluid cells along the particle

trajectory within one time step. In a complex geometry

discretised with unstructured meshes, given present

localisation algorithms, this is not an easy task and it

induces computational overloads. For these reasons, at

the moment, it is proposed to evaluate the total source

terms from the particles that were located in that cell at

the beginning of the time step. This evaluation has been

applied in various computational examples presented in

Section 7. It can be seen as a first-order spatial

approximation or based on an implicit assumption

that the particle Courant number remains of order one

in most cases.
6.2. Extension of the weak numerical schemes

When two-way coupling is accounted for, the

SDE describing the dynamics of the fluid velocity

seen is supplemented with an acceleration term, cf.

Eqs. (28) and (29), in order to account for the

influence of the discrete particles on the statistics of

the fluid velocity sampled along the trajectory of a

discrete particle. This supplementary acceleration

changes drastically the nature of the equation system

and one has (the equation for position is omitted for

the sake of clarity)

dUp;iðtÞZK
1

tp
Up;i dtC

1

tp
Us;i dtCgi dt;

dUs;iðtÞZ
c

tp
Up;i dtK

1

Ti

C
c

tp

0@ 1AUs;i dt CCi dt

C
P

j Bij dWjðtÞ;

8>>>>>>><>>>>>>>:
(117)

i.e. the SDE for the fluid velocity seen, Us(t),

depends explicitly on the velocity of the discrete

particle, Up(t). This dependence complicates the

analysis of the system, in particular the limit systems

when the timescales go to zero, cf. Section 4. If one

is able to find the limit systems in the continuous

sense, the extension of the numerical schemes can be

obtained in the same way as presented in Section

5.3. However, in order to calculate the analytical

solution with constant coefficients, one has to

express the following matrix in diagonal or

triangular form (depending on the roots of the

characteristic polynomial)
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K1=tp 1=tp

c=tp Kð1=Ti Cc=tpÞ

" #
: (118)

Once this is done, the previous analysis can be

used, but in the frame of much more complex

algebra. Once the analytical solution is obtained for

the eigensystem, one has to go back to the original

system (state vector) with some transformation

matrix (which is formed by the eigenvectors).

This difficulty is actually not a typical feature of

two-way coupling. As a matter of fact, in the one-way

coupling case, if the alternative model is chosen, cf.

Section 3.1.2, the drift term is written in terms of the

local instantaneous velocities. Therefore, an accelera-

tion, which has the same form as Ap/s, is introducedX
j

1

Tij

ðUp;jKUs;jÞ; (119)

where the timescales of the mean flow, Tij, are given by

TK1
ij ZvhUii=vxj. As a consequence, if such a model is

used for the drift term, the problems inherent to the

derivation of the present schemes with two-way

coupling are already encountered for the one-way

coupling case. There is, to our knowledge, no specific

work in the literature dealing with this subject.
6.3. Boundary conditions in wall-bounded flows

In the present work, for the computational examples,

cf. Section 7, the wall boundary conditions for the

system of SDEs are treated as follows: for the discrete

particle velocity, Up(t), an elastic wall-particle collision

is applied whereas for the fluid velocity seen, Us(t), we

build on ideas from turbulent single-phase flows

[36,49] in order to ensure consistency when tp/0.

As a matter of fact, in one-point PDF models for single-

phase turbulent flows, cf. Section 3.1.1, or in one-point

PDF models for the discrete particles, cf. Section 3.1.2,

the derivation of boundary conditions for fluid or

discrete particles, when solid boundaries are present,

has not received the needed attention. Here, for the sake

of simplicity, we make our point by considering, as an

example, only the motion of fluid particles.

In the framework of PDF methods for single-phase

turbulent flows, boundary conditions of the wall

function kind have been studied and proposed [36,50].

This solution has been investigated rigorously from the

mathematical and physical (based on the knowledge of

the phenomenology of the near-wall region) points of

view. In practice, the numerical treatment is developed

in analogy with the wall-function approach used in
RANS computations, a method which is perfectly in

line with one-point high-Reynolds number PDF

models. However, in some engineering applications

where a precise description of the near-wall region is

needed, it may be of interest to replace the wall-

function boundary conditions with a direct particle-wall

interaction, i.e. Uf(t)Z0 at the wall. According to

Section 3.1.1, a one-point PDF model for single-phase

turbulent flows reads

dxf;iðtÞZUf;iðtÞdt;

dUf;iðtÞZAiðt;xfðtÞ;UfðtÞÞdtC
P

jBijðt;xfðtÞÞdWjðtÞ;

(
(120)

and it has been shown in Section 5.3.4 that a possible

weak second-order scheme is (when Bij verifies

property (78))

~xnC1
f;i Zxn

f;iCUn
f;iDt

~U
nC1
f;i ZUn

f;iCAn
i DtCBn

ijDWiðtÞ;

UnC1
f;i ZUn
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1

2
ðAn

i C ~A
nC1
i ÞDt

C
P

j

1

2
ðBn

ijC ~B
nC1
ij ÞDWjðtÞ;
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where ~A
nC1
i ZAiðtCDt; ~xnC1

f;i ; ~U
nC1
f;i Þ and ~B

nC1
ij Z

BijðtCDt; ~xnC1
f;i Þ. This scheme is used for our present

discussion and it is different from the one developed

above, cf. Table 5. With this stochastic framework in

mind, some open questions remain.

(i) Is it possible to propose a general form of wall

boundary conditions for the fluid particles,

independently of our particular Langevin model?

(ii) What boundary condition ensures that the

impermeability condition is valid just at the wall

(as in the real world)?

(iii) What is the order of accuracy of the boundary

conditions in the frame of our numerical

schemes?

(iv) Is it possible to propose high-order (second-order)

boundary conditions?

The above questions might seem easy to answer at

first glance, but the subtleties of stochastic calculus

make these open issues difficult to solve. At present,

only one proposition has been made [51]. In that work,

the authors have proposed to impose a zero velocity to

the particles reaching the wall during a time step and to
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move them in space by symmetry at the wall. The

proposed treatment is sensible, but it presents some

shortcomings, i.e. it remains dependent on the

particular model used (a Wiener process was used in

the equation for position to account for viscous effects

in the vicinity of the wall), and the order of accuracy is

not given. A mathematical approach to this problem can

be found in the book of Öttinger [31].

The scarcity of the literature on this subject calls for

future rigorous development in the formulation of

boundary conditions at the wall in one-point PDF

methods. A good illustration of the lack of knowledge

will be presented in Section 7 for a computational

example of particle deposition phenomena.

6.4. New hybrid methods

In the present work, a hybrid method has been used:

the fluid is described with a mean-field (RANS)

approach whereas the statistics (the pdf) of the discrete

particles are reproduced by introducing stochastic

particles (SDEs).

In stand-alone methods for one-point PDF models for

single-phase turbulent flows, it is known that the bias (cf.

Section 5.1.2) is the main concern in the control of the

numerical error [41]. If this is also the case for the

numerics put forward for one-point PDF models for

discrete particles, every idea improving this shortcoming

iswelcome.A solution could be to resort toVRT that have

been developed in disparate fields. A possibility could be

to resort to a hybrid algorithm for the numerical treatment

of the discrete particles where some variables could be

solved by a mean-field method and others by a PDF

method. In such configurations, duplicate fields usually

arise, and consistency conditionsmust be imposed. These

consistency conditions give the opportunity of introdu-

cing VRT. Indeed, the mean variables computed from a

mean-field method are by construction not biased. If the

PDF method contains the evolution in time of the

corresponding instantaneous variables, the operation of

centering the moments extracted from the PDF approach

with the ones computed from the mean-field algorithm

leads to an excellent reduction of variance [37]. More-

over, it would be helpful to find a criterion, in the frame of

domain decomposition, in order to use the mean-field or

PDF algorithms where it is most appropriate. For

example, in some parts of the flow where the knowledge

of some mean-fields is sufficient, one would resort to

mean-field algorithmswhereas in other regions,where the

physics are complex and the pdf is needed, one would use

a PDF algorithm. In such an approach, the central issue

becomes the consistency at the boundaries between
the contiguous domains. Some work in that sense has

been carried out in the field of Direct Monte Carlo

Simulations (DSMC) [52].

At last, in the present work, the proposed particle

algorithm (the numerical algorithm for the set of SDEs,

cf. Section 5.1.1) is compatible with other approaches

for the fluid. It is one of the strong points of this

numerical method. Therefore, it is conceptually possible

to think about some other configuration and in particular

to a LES/PDF one, i.e. the set of SDEs is provided with

filtered fluid fields instead of mean fluid fields. Even

though, in such a configuration, an increase of the

computational effort is expected, the quality of results, in

particular, for cases where RANS models are known to

be inadequate, could be improved, cf. the computational

example for particle deposition in Section 7. In such an

algorithm, the challenge is to reconstruct the subgrid

scale fluid velocity along the discrete particle trajec-

tories [6,7,53]. A possibility is to use PDF methods; it

has been attempted in single-phase flows [54] and it

remains to be developed for dispersed two-phase flows.

7. Computational examples

Three numerical computations of polydispersed

turbulent two-phase flows are now presented. The first

one (swirling flow) is chosen in order to show that

significant improvements in the computing efficiency

can be achieved by using, for the integration of the set

of SDEs, a second-order scheme instead of a first-order

scheme. The second computation (bluff-body flow)

demonstrates the ability of the models to capture the

main physics of the flow and the specificity of PDF

models from which valuable information can be

extracted. The third example (particle deposition)

illustrates the ability of PDF models to treat flows

where complex physics are involved.

In the first and third examples, i.e. swirling flow and

particle deposition, both flows are dilute enough so that

only one-way coupling is under consideration. The

numerical schemes presented in Section 5.3 can

therefore be used directly. In the second example,

bluff-body flow, the suspension is rather dense and one

has to take into account two-way coupling. Numeri-

cally, for the integration in time of the set of SDEs, this

is done by resorting to the first-order scheme and by

treating the coupling term, cf. Eq. (28), as an explicit

source term. Collisions that might occur in some

restricted areas of the computational domain are not

taken care of. It is, however, fully possible to treat

collisions between discrete particles in the frame of the

present PDF approach. This has been discussed
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elsewhere [8] on a theoretical basis and the inherent

numerical developments remain to be done.

7.1. Swirling flow

In this particular example, no comparison with

experimental data is attempted since the purpose of the

computations is to show the benefits of using second-

order schemes instead of first-order schemes for the

integration of the set of SDEs.

7.1.1. Experimental setup

The turbulent polydispersed two-phase flow under

investigation corresponds to a gas–solid flow (air and

solid particles) in a cyclone of Stairmand type [55], see

Fig. 10. Cyclone separators are devices used to separate

particles from gas flows. The gas flow inside the

cyclone has quite complicated patterns, i.e. a reverse

swirling flow with quite high rotational velocities. The

swirl is created by the tangential inlet, but it is well-

known from experiments that the gas flow exhibits a

double helix structure. The flow spirals downwards

(with a constant intensity) to the vortex finder (exit tube

of the cyclone at the bottom) where it reverses and

spirals upwards in a cylindrical volume having roughly

the diameter of the exit. In such a device, the separation
Fig. 10. Definition of the geometry of a cyclone of the Stairmand

design. All dimensions are given as a function of the diameter D of the

cyclone.
between air and particles is not due to gravity but to the

effect of the double helix. Indeed particles entering the

device are entrained towards the outer wall (by

centrifugal forces) where they flow downwards to the

exit (the axial velocity of the gas is oriented downwards

at the walls).

The efficiency of a cyclone is characterised by its

selectivity curve. This curve expresses the ratio (in

mass) of captured particles as a function of their

diameter. For very small particles, this curve goes to

zero efficiency as their inertia decreases (tp/0), i.e.

particles tend to behave as fluid elements. On the

contrary, large particles are all collected and the

efficiency attains 1. Between these two asymptotic

cases, the cyclone efficiency is an increasing function of

the particle diameter.

7.1.2. Numerical simulations

The simulated cyclone [56,57] has a diameter

DZ0.2 m, the glass particles have a density of rpZ
2500 kg/m3 and diameters ranging between 0.5 and

5 mm. The gas (air at ambient temperatureZ293 K)

is injected with a constant velocity of 30 m/s. In the

present simulations, the flow is dilute enough (the

mass of particles per unit of gas is quite low) not to

consider two-way coupling effects (the particles have

no influence on the flow field). In addition, it is well

established from experiments that such flows are

stationary. Consequently, the flow field is computed

in advance and all the particles are tracked in a

frozen field. The prediction of the flow field is rather

challenging given the complex structure of the flow.

In this work, a second-order turbulence model (Rotta

model [13], which is consistent with the form of the

SDEs) was used with a fine grid (approximately 4!
105 nodes) in order to obtain mesh-independent

calculations. Figs. 11 and 12 show the axial and

radial mean velocity profiles of the air flow at two

different heights: it can be seen that the numerical

results are in good agreement with the

measurements.

Particles are then tracked in this frozen field. The

diameter range of the glass particles has been

discretised as follows, dpZ[0.5; 1; 1.5; 2; 3; 4; 5] mm.

For each class (diameter of particles), a number Npc of

particles is released (this number is identical for each

class). The computation stops when all particles have

left the computational domain.

7.1.3. Results and discussion

A numerical study has been carried out to show that

the results (the obtained selectivity curves) are



Fig. 11. Gas mean axial velocity profiles at two different heights: zZ0.36 m (left) and zZ0.57 m (right). The velocities are plotted as functions of

the radius R. Continuous lines: computations. Experimental data: 6.
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independent of the time step, Dt, and the number of

particles per class, Npc. For instance, for the second-

order scheme, the computations show, for two different

time steps, that roughly 400 particles per class are

necessary to obtain selectivity curves, which do not

depend on Npc, see Fig. 13. The time step ofDtZ10K4 s

guarantees that the results do not depend on the time

discretisation, Fig. 13. For the first-order scheme, similar

results are obtained: DtZ5!10K6 s and NpcZ400

ensure that the results depend neither on the time step

nor on the number of particles per class, Fig. 13.

It is then observed that, for this particular flow, there

is a great difference between the respective time steps

for the first- and second-order schemes, see Fig. 13, and
Fig. 12. Gas mean tangential velocity profiles at two different heights: zZ0.3

of the radius R. Continuous lines: computations. Experimental data: 6.
this for the same numerical results (selectivity curve).

In fact, with a second-order scheme, the time step can

be multiplied by a factor 20 compared to a first-order

scheme. If one accounts for the computer time (the

computation of a time step takes approximately 30%

extra time compared to the first-order scheme), there is

a gain in CPU time by a factor 15 by using a second-

order scheme. Therefore, in this case, it is seen that the

complexity of the second-order scheme is balanced by

the reduction of computing time.

It can be stated that for flows where velocities and

the curvature of the trajectories of the discrete particles

are important, it is recommended to use a second-order

scheme rather than a first-order one, unless one is ready
6 m (left) and zZ0.57 m (right). The velocities are plotted as functions



Fig. 13. Sensitivity analysis for the second-order and first-order schemes. The sensitivity analysis is carried out for the number of particles per class,

Npc, and the time step, Dt (with NpcZ400). At last, comparison of the time steps for the first- and second-order schemes for identical numerical

results (bottom right corner). All numerical results represent the selectivity curve which gives the efficiency of the cyclone, 3, as a function of the

particle diameter, dp, i.e. 3(dp).
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to pay the computational price. This is clearly seen in

this computational example, where the time step of the

first-order scheme is extremely small: as a matter of

fact, in such a flow, a precise prediction of the particle

velocity is needed because the numerical error on this

quantity amounts at simulating an additional centrifu-

gal force.
7.2. Bluff body flow

In this second example, the numerical results are

compared to experimental data in order to show the

ability of the present approach to reproduce the

main trends of complex turbulent polydispersed two

phase-flows. Other results are displayed to enhance
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the specificity of the mean-field/PDF approach, i.e. the

type of information, which can be extracted.
7.2.1. Experimental setup

The ‘Hercule’ experimental setup [58,59] is charac-

teristic of pulverised coal combustion where primary

air and coal are injected in the centre and secondary air

is introduced on the periphery, Fig. 14. This is a typical

bluff-body flow where the gas (air at ambient

temperature and atmospheric pressure) is injected

both in the inner region (jet) and the outer cylinders

(exterior). The ratio between the gas velocity in the

inner region, Uj, and the gas velocity in the outer

region, Ue, is low enough so that a recirculation zone

downstream of the injection is created. Two honey-

combs are used in the experimental setup in order to

stabilise the flow so that no swirl is present. Solid

particles (glass spheres) are then injected from the inner

cylinder with a given mass flow rate. The injected glass

spheres have a density rpZ2470 kg/m3 and a known
Fig. 14. The ‘Hercule’ experimental setup. The mean streamlines are

shown for the fluid (solid lines) and the particles (dashed lines). Two

stagnation points in the fluid flow can be observed (S1 and S2).

Experimental data is available for radial profiles of different statistical

quantities at five axial distances downstream of the injection (xZ
0.08, 0.16, 0.24, 0.32, 0.40 m) (experimental data is also available on

the symmetry axis).
diameter distribution, typically between dpZ20 and

110 mm around a mass-weighted average of

dpw65 mm. A polydispersed turbulent two-phase

flow, which is stationary and axisymmetric, is then

obtained. Moreover, two-way coupling takes place

since the particle mass loading, fZchUpi=hUf i, at the

inlet is high enough. Experimental data are available

for radial profiles of different statistical quantities at

five axial distances downstream of the injection, Fig. 14

(axial profiles along the axis of symmetry have also

been measured). The ‘Hercule’ experimental setup is a

very interesting test case for polydispersed turbulent

two-phase flow modelling and numerical simulations

since most of the different aspects encountered in such

flows are present. The particles are dispersed by the

turbulent flow but in return modify it. Furthermore, the

existence of a recirculation zone (with two stagnation

points, S1 and S2 in Fig. 14) where particles interact

with negative axial fluid velocities constitutes a much

more stringent test case compared to cases where the

fluid and the particle mean velocities are of the same

sign (the problem is then mostly confined to radial

dispersion issues). These features are displayed in

Fig. 14, where mean streamlines are shown (solid lines

for the fluid and dashed lines for the particles). For the

fluid, there is a rather large recirculation zone with

stagnation points. For the particles, depending on their

inertia, several behaviours can be observed: some

particles do not ‘feel’ the recirculation zone and leave

the test section immediately. Others are partially

influenced and change direction before leaving the

apparatus, whereas some particles follow closely the

recirculation pattern. This will be seen in the results

showing the pdf of the particle residence time at

different locations in the flow.

7.2.2. Numerical simulation

A two-dimensional, single block, non-Cartesian,

non-uniform mesh (142!3!75 nodes for the (x, r, q)

coordinate system) has been generated in accordance

with the axisymmetric property of the flow. It was

carefully checked that the results are not too sensitive

either to the time and spatial discretisations or to the

number of stochastic particles (DtZ10K3 s and NZ
14,000 particles). A second-order turbulence model

(Rotta model, which is consistent with the form of

SDEs) was used. The projection and averaging

operators were approximated with a NGP technique

[33]. For further details on numerical computations, see

Ref. [60].

In the simulations, the following procedure is

adopted. The single-phase flow case is first computed
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until the stationary state is reached. By doing so, it is

possible to check that the prediction of the flow field,

without the particles, is accurate. Then the discrete

particles are introduced until the stationary state is

obtained again. At that point, the number of particles in

the flow is roughly constant (it fluctuates around a mean

value). From this state, computations are continued to

extract the statistics, which are compared to the

experimental values. The last computation is performed

to allow time averaging on the ensemble averages so

that the statistical noise can be reduced to a minimum.

7.2.3. Results and discussion

In this particular flow, there is almost no difference

between the predictions with the first- and second-order

schemes. The main difference takes place in regions,

where only few particles are present (large diameters)

and consequently the statistical results contain some

noise.

Three sets of results are given: (i) radial profiles

of the particle axial velocity, Fig. 15, (ii) radial

profiles of the particle radial velocity, Fig. 16 and

(iii) radial profiles of the fluid axial velocity, Fig. 17.

All sets of numerical results compare relatively well
Fig. 15. Radial profiles of the particle axial velocity at xZ0.08 and 0.16 m.

lines: computations (first order scheme). Experimental data: &.
with the experimental data, in terms of the shape of

the curve and of the magnitude, which are observed.

The recirculation zone (xZ0.16 m) is well predicted

as indicated by the velocity profiles. All (mean and

fluctuating) velocities go to zero when no particles

are present. The widths of the numerical

curves indicate that the predicted radial dispersion

of the particles is also in line with experimental

findings.

In Figs. 15–17, only first- and second-order moments

of the variables of interest have been displayed (mean and

fluctuating velocities for the fluid and the particles). This

information could have been obtained by resorting to

classical mean-field equations. However, in many

engineering applications (for example combustion), it is

necessary to know the distribution of the residence time of

the particles at a certain time. In other words, one would

like to know for all the particles found in a certain zone

howmuch time theyhave spent inside thedomain, or even

if theyhavepreviously entered amarked region.This kind

of information is not available in a mean-field model

whereas in the present hybrid approach, this information

is directly providedwithout additional costs: the pdf of the

variables attached to each particle, which contains far
Mean velocities (top) and fluctuating velocities (bottom). Continuous



Fig. 16. Radial profiles of the particle radial velocity at xZ0.08 and 0.16 m. Mean velocities (top) and fluctuating velocities (bottom). Continuous

lines: computations (first order scheme). Experimental data: &.
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more information than a few moments, is explicitly

computed.

A typical example of this type of information is

given in Fig. 18. In the first plot, on the left-hand side, a

snap shot of the local instantaneous positions of the

particles is given, where particles are coloured by their
Fig. 17. Radial profiles of the fluid axial velocity at xZ0.08 and 0.16 m (mean

Experimental data: &.
residence time. Two distributions are extracted, one in a

cell close to the inlet and the other one in a cell close to

the outlet. The pdf in the cell near the inlet clearly

shows the recirculation pattern: the distribution is

highly peaked, which represents particles which have

just entered the domain, but a small number of particles
velocities only). Continuous lines: computations (first-order scheme).



Fig. 18. Left-hand side: snapshot of the flow, at a given time, where the particles are coloured by their residence time in the computational domain.

Right-hand side (upper corner): probability density functions of the particle residence time inside the domain (close to the injection and close to the

outlet of the domain). Right-hand side (bottom corner): axial velocity (horizontal axis) of the particles (coloured by their residence time in the

computational domain) close to the inlet at different time steps (vertical axis).
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have a quite high residence time, i.e. they recirculate.

At the outlet, since the particles have different

trajectories in the domain, a continuous spread in

residence time is observed. In the region near the inlet,

more information can be gathered, for example the

local instantaneous axial velocity, see the RHS graph in

Fig. 18. Most particles have the same axial velocity,
around 4 m/s which is actually the inlet velocity. These

particles correspond to the peak observed in the

residence time: they have just entered the domain and

travel directly to this region. The rest of the particles

have a smaller axial velocity but with much wider

fluctuations: these particles correspond to particles,

which are recirculating.



E. Peirano et al. / Progress in Energy and Combustion Science 32 (2006) 315–371364
At last, it is often argued that the mean-field/PDF

approach is time-consuming. As a matter of fact, in this

computation, the time spent by both solvers (the mean-

field solver for the fluid and the PDF solver for the

particles) has been compared for the same number of

computational elements (mesh points and particles,

respectively). It is found that the PDF solver is slightly

faster: this is not really surprising since the mean-field

fluid solver implies the use of a full second-order

turbulence model (six coupled PDEs).
7.3. Pipe flow: deposition

In this last example of numerical applications with

the mean-field/PDF approach, a flow where complex

physics are involved, i.e. particle deposition, is under

investigation. Particle deposition from a turbulent flow

on walls is a phenomenon, which is observed in many

engineering applications (for example thermal and

nuclear systems, cyclone separators, spray cooling) and

also in various environmental situations. Given the

large number of possible applications, a lot of interest

has been devoted to this subject and many studies have

been carried out in the last decades.
7.3.1. Experimental setup

Different experiments have been conducted to

observe deposition in turbulent flows. In most of

them, attention is focused on the deposition velocity

[61,62] which is defined as kpZmp= �C, where mp is the

mass flux and �C is the bulk mean particle concentration.

This deposition rate, often presented as the dimension-

less deposition velocity kp/u
*, is a function of the

dimensionless particle relaxation time, tCp , defined as

tCp Z SC
u*
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Z
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where SC is the dimensionless stopping distance, Up0

is the particle initial velocity and u* is the

friction velocity. u* is evaluated with the Blasius

formula, u*Z[0.03955Re0.25]0.5Um, where Um is the

bulk mean velocity. The deposition velocity is the key

point in many engineering applications, where one

seeks the law that gives kp/u
* as a function of tCp , i.e. as

a function of the particle diameter. Recently, several

experimental studies and DNS studies of particle

deposition have been presented, for example [63,64],

and have improved the understanding of the

physical mechanisms at play. In particular, a lot of

information has been obtained on the dynamical
structures of wall-bounded flows, like the coherent

structures, which manifest themselves in the near-wall

region.

In the present computational example, the principal

interest is to show the advantage of solving the set of

SDEs with a numerical scheme consistent with all limit

cases, see Sections 4, 5.3.3 and 5.3.4. Indeed, in pipe

flows with particle diameters ranging from 1 to 100 mm,

all limit cases can be encountered:

1. for the smallest particles (tp/0 in the continuous

sense and tp/Dt in the discrete sense), limit case

1 is obtained,

2. in the near wall region, i.e. T *
L;i/Dt, for example

in the peak-production region where turbulent

kinetic energy is maximal, one has BijT
*
L;iZcst, a

situation which is characteristic of limit case 2,

3. in the same region as above with small particles, one

has limit case 3,

4. in the close vicinity of the wall, i.e. T *
L;i/Dt, with

no condition on the other moments, the flow is

laminar, i.e. limit case 4.

The need to cope with limit cases is the result of

practical considerations. Indeed, if the numerical

schemes were not consistent with the limit cases, it

would be very inefficient to carry out computations

with a time step limited by the smallest timescale.

In the present work, numerical simulations corre-

sponding to the experimental setup of Liu and Agarwal

[61] are presented, i.e. the deposition of particles

(920 kg/m3 in density and diameters in the range 1.4–

68.5 mm) in a vertical pipe flow at a Reynolds number

of 104.
7.3.2. Numerical simulation

In order to describe the particle phase, 104 stochastic

particles (distributed in 10 diameter classes, cf. Table 6)

are released in a frozen field, i.e. the flow is stationary

and dilute enough so that only one-way coupling is

under consideration. Two frozen fields are computed

with a standard k–e turbulence model and with a Rij–e

(Rotta model) both with wall-function boundary

conditions. The computations are performed with a

2D mesh, 100!20!3 nodes (the flow is

axisymmetric).

To compute the deposition velocity, the fraction of

particles remaining in the flow, F, is evaluated as a

function of the axial position x [65]. F is calculated as

the number of particles that reach the sampling cross-

section, divided by the total number of released

particles. The particle deposition velocity is then



Fig. 19. Sensitivity analysis: deposition velocity computed with

different time steps Dt and with the first and second order schemes.

DtZ10K4 s (B) and DtZ10K5 s ($) with the first-order scheme.

DtZ10K4 s (,) and DtZ10K5 s (6) with the second-order scheme.

Fig. 20. sensitivity analysis: deposition velocity computed with

different number of particles per class Npc for the same fluid mean-

fields (NpcZ500 (B), NpcZ1000 (,), NpcZ5000 ($)).

Table 6

Mean near-wall (yC!30) residence time tC for different diameters

(the simulation is carried out with the exact frozen field)

tCp dp (mm) tC (wall units)

0.2 1.4 29.5

0.4 2.0 29.9

0.9 2.9 28.7

1.9 4.3 30.9

3.5 5.8 31.5

6.4 7.8 31.6

13.2 11.2 35.4

29.6 16.8 40.6

122.7 34.2 55.3

492.2 68.5 96.8

The residence time is given in non-dimensional form (it is normalised

with the viscous timescale, nf/(u*)
2, i.e. tCZt(u*)2/nf).
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computed as follows [65]

kp Z
UmDh

4ðx2Kx1Þ
ln

F1

F2

� �
; (123)

where Dh is the diameter of the pipe and Fi is the value

of F at a given sampling cross section labelled i (axial

position xi).

Numerical tests have been performed to check that

the numerical results are independent of the values of

numerical parameters, in particular the number of

particles, N, and the time-step, Dt. It was checked

beforehand that the numerical prediction of the fluid

field is grid-independent.

Both numerical schemes (first- and second-order)

were tested with different time steps, cf. Fig. 19. All

computations were then performed with the weak

second-order scheme and a time step of 10K4 s. Indeed,

Fig. 19 shows that both schemes give similar results and

that a time step DtZ10K4 s ensures that the compu-

tations are independent of Dt. The independence of the

deposition velocity for the whole range of particle

diameters with respect to the time step illustrates the

benefits of a numerical scheme which is consistent in all

limit cases: for instance, the values of the particle

relaxation timescales given in Table 6 cover three

orders of magnitude (limit case 1). Computations can

anyway be carried out with by using the same constant

time-step for all classes and in the whole domain.

An analysis of the statistical error has also been

carried out. Since particle deposition velocities are

calculated by a Monte Carlo method, it is important to

check that the number of particles (which represent

samples of the pdf) is sufficiently large so that statistical

error is reasonably small. In Fig. 20, results obtained

with three different values of Npc (the number of

particles used for each class of diameter) are presented
(NpcZ500, 1000 and 5000). Fig. 20 shows that there is

no clear difference between the results obtained with

different values of Npc. As a matter of fact, it seems that

500 particles for each class of diameter are enough.

Nevertheless, for all the following simulations, the

value of NpcZ1000 particles for each class of diameter

has been chosen, in order to reduce statistical noise.
7.3.3. Results and discussion

The numerical results are now compared to

experiments and some sensitivity tests are conducted.



Fig. 22. Deposition velocity with different mean fields for the fluid.

First, mean field obtained by computation with a standard k–e model

(B). Second, mean field where hUii is computed with the law-of-the-

wall equations and where the values k and e are that of the

computations ($). Third, hUii is still given by the law-of-the-wall, and

k and e are curve-fitted to DNS data [65] (6). Experimental data (7).

Fig. 21. Deposition velocity with different mean fields for the fluid.

Fluid mean-fields calculated with a k–emodel (B). Fluid mean-fields

computed with a Rij–e model (,). Experimental data (7).
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Some proposals are put forward for the features, which

seem to be the most significant ones for a good

representation of deposition phenomena. Possible

improvements of the computational method shall be

exposed.

In Fig. 21, results obtained with the general PDF

model, Eqs. (1) and (24), and two turbulence models

(k–e and Rij–e), are displayed. The difference between

the simulations performed with two different turbulence

models is negligible; this is not too surprising, since for

turbulent pipe flow, both models give similar mean

fluid velocity profiles. The standard PDF model is

integrated with wall-function conditions for the fluid

and pure-deposition boundary conditions for the

particles. These results are coherent with those obtained

in an analogous configuration by Schuen [66].

Fig. 21 shows that for heavy particles (tCp O10), the

model predictions are in good agreement with

experiments whereas for light particles (tCp !10), the

deposition velocities are strongly overestimated (they

remain at the same level as that of the heavy particles).

Therefore, the model is not suitable for simulations of

deposition phenomena in the range tCp !10. This

statement is consistent with experimental and DNS

findings [67]: heavy particles are slightly affected by

near-wall boundary layer and more especially by the

specific features of the local instantaneous turbulent

structures in the near-wall region. On the contrary, for

light particles, the physical mechanism of deposition

changes with a growing importance of turbulent

structures and near-wall physics. In the current PDF

model, near wall physics are mainly described by
wall-function boundary conditions which may be

sufficient for heavy particles deposition but not for

light particle deposition.

Wall-functions give a reasonable approximation of

the mean fluid velocity profile in the logarithmic region,

but in any case they do not describe the viscous sub-

layer. Therefore, a question arises: is the prediction of

small particle deposition velocity sensitive to changes

in the fluid mean-field profiles? This matter was

recently investigated for other Lagrangian models

[65]. Following the same reasoning, simulations have

been carried out with a given frozen field (conse-

quently, wall-function boundary conditions are sup-

pressed). The frozen field can be obtained, in this

particular case, either from analytical solutions for the

mean fluid fields (hUi,k, hei) [4] and/or from DNS data.

In Fig. 22, two frozen fields are tested. In the first field,

the axial mean fluid velocity hUii is given by the law-of-

the-wall equations (the values k and e are that of the

computations). In the second field, hUii is still given by

the law-of-the-wall, and the turbulent kinetic energy, k,

and the turbulent dissipation rate, e, are curve-fitted to

the DNS data that can be found in the work of Matida

et al. [65]. Thus, in the second field, mean fluid profiles

are exact. Fig. 22 shows that an exact frozen field

hardly improves the results. An explanation might be

that the eventual effect of the exact mean fluid profiles

is concentrated in a very thin region. The most

important quantity is expected to be the turbulent
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kinetic energy, which goes to zero at the wall and

should affect mainly light particles. Nevertheless, k

diminishes only from yCz10, where it has its

maximum (peak production). The resulting effect is

not easy to be foreseen and it may be negligible with

respect to the overall effect of migration of particles

towards the wall due to the net mean flow.

In order to further support the argument above, mean

near-wall residence times of deposited particles have

been computed in the layer yC!30, for each class of

diameters. Indeed, this quantity has been found to

properly distinguish different deposition mechanisms

[67]. A rough description of the physics of deposition is

that heavy particles, which are slightly influenced by

near-wall structures, deposit with small near-wall

residence times by the so-called free-flight mechanism.

On the contrary, light particles are trapped and driven by

turbulent structures and deposit with large near-wall

residence times, this mechanism is called diffusional.

The lighter the particles are, the more important the

diffusional mechanism is. In Table 6, the results obtained

for each class of diameters are given for a simulation

corresponding to the exact frozen field. For the sake of

clarity, the residence time is always expressed in non-

dimensional form (it is normalised with the viscous

timescale, nf/(u
*)2, tCZt(u*)2/nf). Table 6 shows that all

particles deposit after small near-wall residence time, i.e.

by free-flight mechanism. Moreover, since the residence

time slightly increases with dp, the motion of particles is

influenced by the migratory flux. The force exerted on

the particles by the fluid being inversely proportional to

dp, light particles reach the walls faster than the coarse

ones. Therefore, in the absence of representation of

turbulent coherent structures (which should be able to

trap particles in the near-wall region and which should

describe correctly the mechanisms of deposition), the

sole mean fluid profiles are not the main mechanism.

Two possibilities exist to improve the prediction of

deposition phenomena and in particular of light

particles:

(i) some phenomenological model can be intro-

duced, based on the present knowledge of

deposition physics. In this type of approach,

some hypotheses are made in accordance with

experimental findings. Some parameters may be

present and may be fitted in order to find good

comparison with experiments. This approach

ought to verify if the hypotheses made are correct

or not, and, thus, ought to show which are the

dominant aspects not covered by the standard

model.
(ii) it is also possible to propose extensions of the

present PDF model that reproduce correctly the

variations of the fluid statistical moments (such as

hUi, Rij, e, etc.) throughout the near-wall region,

including the viscous sublayer [49]. Such a model

might lead to improvement for the deposition

velocity. However, it would require a very refined

mesh in the near-wall region, considering the high

value of Reynolds number. Furthermore, only the

statistics of the fluid would be well reproduced

and, as mentioned above, it is believed that the

contribution of the specific features of coherent

structures should be considered for small particle

deposition.

Therefore, for practical purposes, the first prop-

osition has been retained [68]. This subject is not

further developed here and it is left as a challenging

open issue.
8. Conclusions and perspectives

In this paper, we have presented a comprehensive

review of the numerical methods involved for the

computation of polydispersed turbulent two-phase

flows using a particle stochastic method based on

Langevin equations. The present mean-field/PDF

model is one among a host of other so-called

Euler/Lagrange models. However, it is worth putting

forward two main specific aspects of the present

framework.

(i) The usual term Euler/Lagrange refers to the point

of view adopted for the description of the two

phases: an Eulerian point of view for the fluid

phase and a Lagrangian one for the particle phase.

This terminology can be misleading and does not

clearly identify the physics involved, the level of

information contained in the statistical description

and the numerical tools, which are adopted. For

example, the so-called Eulerian equations for the

fluid phase can be directly obtained through the

two-particle stochastic formulation sketched in

Section 3.2.1 and Appendix A, and its numerical

solution may involve Lagrangian ideas (for

instance, in the method of characteristics for the

discretisation of the convection terms) and, at least

in theory, the PDF equation could also be solved

using a mesh and an Eulerian description in phase

space. In the present work, the complete model is

called a mean-field/PDF approach. This refers

directly to the level of information contained in



E. Peirano et al. / Progress in Energy and Combustion Science 32 (2006) 315–371368
the description: the fluid phase is described by a

limited number of statistical moments (in practice,

at most two for the fluid velocity) while the

particle phase is characterised by the PDF of the

variables retained for its description. The com-

plete model is therefore a hybrid model. The

hybrid nature of the model is then reflected in the

numerical approach developed in Section 5. The

fluid mean fields are computed as the solution of

PDEs, involving a mesh and, say, classical Finite

Volume schemes. As explained in Section 2, the

PDF equation is solved, in a weak sense, by a

particle Monte Carlo method, where the particles

should be seen as instantaneous realizations of this

PDF rather than real particles. The numerical

approach is thus a hybrid PDE/Particle Stochastic

method, or a Mesh/Particle Stochastic method; its

specificities have been discussed at length in

Section 5. The various details treated in that

section can be improved, but the important point is

that they are developed once a clear framework

about the complete hybrid method is first set forth.

This framework is a necessary guideline.

(ii) Drawing on these first remarks, the second aspect

of the present formulation is the fact that there is a

separation between the theoretical construction of

the model and its numerical solution. Indeed,

given the correspondence (in a weak sense)

between the PDF equation and particle stochastic

equations, as explained in Section 2, it may be

tempting to develop directly the model in discrete

time. This amounts to treating the model and its

numerical scheme without distinction. This may

be confusing and may not help to identify the

actual issues. In the present work, the theoretical

stochastic model is developed and first written in

continuous time. This requires knowledge of the

mathematical background of stochastic diffusion,

but actually this effort is a valuable investment and

the formulation in terms of the particle trajectories

of the stochastic process in continuous time

simplifies the situation and the numerical

developments.

The central point of the complete work presented in

Section 4 concerns the multiscale character of the

stochastic theoretical model which is then reflected in

the numerical developments of Section 5. Placed

between the mathematical background and the numeri-

cal implementations, this section illustrates the interplay

between mathematical formulation, physical modelling

and numerical developments. The mathematical
manipulation of the system of equations reveals the

property of the model: different limits are continuously

reached depending upon the values of the observation

timescale with respect to the different physical time-

scales. These limits correspond to natural physical

diffusive limits and they point out that some physical

variables are not real white-noise terms, but that their

effects may be regarded as such at a certain scale. Using

the numerical time step as the observation timescale, this

physical property appears in turn as a basis for the

development of the numerical schemes which, while

being explicit and stable, can satisfy these limits without

any constraint or threshold on the time step.

Finally, the main purpose of this work has been to

propose a consistent and specific framework for the

simulation of polydispersed two-phase flows based on

Langevin stochastic equations. Together with the

presentation of the theoretical aspects [8], it provides

a comprehensive description of the model and of the

numerical ideas. It does not pretend to be the ultimate

word in this field and much work remains to be done.

The Langevin equations still require new developments

[8] and, on the numerical side, boundary conditions

must be properly addressed, see Section 6.3. Yet, it is

hoped that the present framework paves the way for the

improvement of current methods as well as for the

formulation of new ideas. In particular, new hybrid

methods may benefit from these first steps, by trying to

go further into a mixed mean-field/PDF approach

within the description of the particle phase itself. This

will require a good understanding of the consistency

between the mean field equations satisfied by particle

statistical properties and the instantaneous stochastic

equations for the trajectories, of their mathematical

manipulation and of the issues involved with particle/

mesh exchange of information.
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Appendix A. Two-point description

Here, some additional information is given on the

construction of the two-point description, i.e., the form

of the acceleration term to be added in the Langevin
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equation describing the velocity increments along the

trajectory of a fluid particle. Once this is done, it is

briefly explained how the mean-field (RANS) equations

for the fluid can be extracted from this two-point

description.
A.1. Model for a two-way coupling term

In the exact local instantaneous equations for the

fluid (the Navier–Stokes equations), a formal treatment

of the force exerted on the fluid by the discrete particles

implies the use of a distribution (or density of force)

acting on the fluid located in the neighbourhood of the

discrete particles in order to express the resulting

acceleration on nearby fluid particles. This accurate

treatment, which would result in a multi-point

treatment of the discrete phase, is outside the scope of

the present work. Here, in the frame of the one-point

approach, the influence of the discrete particles on the

fluid is expressed directly in the SDEs, Eqs. (30), with

stochastic tools.

As explained in Section 3.1.2, for Ap/s, the

underlying force corresponds to the exchange of

momentum between the fluid and the particles (drag

force). The acceleration acting on the fluid element

surrounding a discrete particle can be obtained as the

sum of all elementary accelerations (due to the

neighbouring particles), i.e., at the discrete particle

location xp, the elementary acceleration (UpKUs)/tp is

multiplied by cZ(aprp)/(afrf), that is the probable

mass of particles divided by the probable mass of fluid

(since the total force is distributed only on the fluid

phase).

For Ap/f, the problem of finding a suitable

stochastic model is slightly more difficult since the

drag force can only be defined in terms of variables

attached to the discrete particles (which are not defined

at the location of a fluid particle). As a consequence,

the influence of the neighbouring discrete particles on

the fluid particle located, at time t, at xZxf(t), is

ensured by considering that Ap/f is a random variable

given by

Ap/f Z
0; with probability 1Kapðt; xÞ;

Pp with probability apðt; xÞ;

(
(A1)

where Pp is a random variable which plays the role of

an ersatz of the Eulerian random variable which is

formed from the discrete particles at xZxp(t)

Pp hK
rp

rf

UsKUp

tp
: (A2)
This random term mimics the reverse force due to

the discrete particles and is only non zero when the

fluid particle is in the close neighbourhood of a

discrete particle. In addition, it is required that, at

xZxfðtÞ, Pp and U(t, x) are correlated so that

hPpiZKðrp=rfÞhðUsKUpÞ=tpi;

hPpUiZKðrp=rfÞhðUsKUpÞUs=tpi:

(
(A3)

For further explanations on the modelling of two-

way coupling, see Refs. [8,29].
A.2. Mean-field (RANS) equations for the fluid

In sample space, Eqs. (30) are equivalent (in a weak

sense) to a general Fokker–Planck equation for the two-

point Lagrangian pdf, pr(t; zf, zp), cf. the correspon-

dence between Eqs. (10) and (11). It can be shown [8]

that the Fokker–Planck equation verified by pr(t; zf, zp)
is also verified by the two-point Eulerian mass density

function (mdf) and therefore by one of its marginals,

FE
f ðt; x;VfÞ. This mdf is given by FE

f ðt; x;VfÞZrfp
E
f

ðt; x;VfÞ where pE
f is the Eulerian distribution function

of the fluid. The knowledge of the PDE verified by an

Eulerian quantity allows us, using classical tools of

kinetic theory [69,70], to write field equations for the

velocity moments of the fluid: the PDE verified by FE
f is

multiplied by a given function of Vf, HðVfÞ. Applying

the following operator

afðt; xÞrf hHðUðt; xÞiZ

ð
HðVfÞF

E
k ðt; x;VfÞdVf (A4)

to this PDE gives field equations for any hHðUðt; xÞi. By
replacing H by HZ1; Vf;i and Vf;iVf;j, the continuity

equation, the momentum equations and the Reynolds-

stress equations are obtained, respectively [29]. These

equations are given in Table 1, i.e. Eqs. (124)–(126).
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