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The aim of the paper is to discuss the main characteristics of a complete theoretical and numerical
model for turbulent polydispersed two-phase flows, pointing out some specific issues. The
theoretical details of the model have already been presé¢htider and Peirano, Phys. Rep52,

1 (2001)]. Consequently, the present work is mainly focused on complementary aspects that are
often overlooked and that require particular attention. In particular, the following points are
analyzed: the necessity to add an extra term in the equation for the velocity of the fluid seen in the
case of two-way coupling, the theoretical and numerical evaluations of particle averages and the
fulfillment of the particle mass-continuity constraint. The theoretical model is developed within the
probability density functionfPDF) formalism. The important physical choice of the state vector
variables is first discussed and the model is then expressed as a stochastic differential equation
written in continuous timéLangevin equationgor the velocity of the fluid seen. The interests and
limitations of Langevin equations, compared to the single-phase case, are reviewed. From the
numerical point of view, the model corresponds to a hybrid Eulerian/Lagrangian approach where the
fluid and particle phases are simulated by different methods. Important aspects of the Monte Carlo
particle/mesh numerical method are emphasized. Finally, the complete model is validated and its
performance is assessed by simulating a bluff-body case with an important recirculation zone and in
which two-way coupling is noticeable. @004 American Institute of Physics.
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I. INTRODUCTION dxp
dt = Up ) (1a
Dispersed two-phase flows, where a continuous please
gas or a liquidl carries discrete particlegsolid particles, %_i(u —U)+ (1b)
droplets, bubbles, .), are of great interest in environmental dt oo P g

studies and engineering applications, such as dispersion Gfherey — U(x,(t),t) is the fluid velocity seen, i.e., the fluid
small particles in the atmosphere or combustion of fuel drOPVeIocity sampled along the particle trajectogy(t), not to be
lets in a car engine. confused with the fluid velocity;= U(x(t),t) denoted with
To simulate these flows, the basic equations must béhe subscripf. The particle relaxation time is defined as
written: the Navier—Stokes equations for the fluid phase and
. . . . pp, 4d
the momentum equation for a single particle embedded ina  ="2__—F 2)
turbulent flow, the latter issue still being a subject of current pr 3Co|Uy]
research. For small particle-based Reynolds numbegs Ravhere the local instantaneous relative velocityUs=U,
(whose definition is specified belpvand particle diameters —Us and the drag coefficier€y is a nonlinear function of
that are of the same order of magnitude as the Kolmogorothe particle-based Reynolds number,,Ré,|U,|/v¢, which
length scale, a general form of the particle momentum equaheans thaCp, is a complicated function of,, the particle
tion has been proposéd. diamgt_eﬁ A very often retained empirical form for the drag
In the present work, only heavy particlep,& p¢) are coefficient is

under consideration and the equations of motion for a par- 24 —
@[1+0.15 R&® if Re,=<1000,

ticle can be written
CD: (3)
0.44 if Rg=1000.
dElectronic mail: jean-pierre.minier@edf.fr . .
bElectronic mail: eric.peirano@ademe.fr In the present work, attention is focused on some aspects
®Electronic mail: chibbaro@chig0bk.der.edf.fr of the problem. In particular, only dilute incompressible gas-
1070-6631/2004/16(7)/2419/13/$22.00 2419 © 2004 American Institute of Physics

Downloaded 04 Jun 2004 to 193.206.154.142. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


http://dx.doi.org/10.1063/1.1718972

2420 Phys. Fluids, Vol. 16, No. 7, July 2004 Minier, Peirano, and Chibbaro

particle flows are considered, so that particle-particle interternative formulation consists in writing a PDF equation in
actions are neglected but two-way coupling is retainedanalogy with the Boltzmann kinetic equatiththat is only
which means that particle dispersion and modulation of turfor particle location and velocity, without considering di-
bulence by the particles are accounted for. rectly the velocity of the fluid seen. For a comprehensive
The complete problem is formed by the discrete particlereview of general results and methods in particle dispersion,
equations given above, Eqd)—(3) and the field equations we refer also to Stock’s papét.
of the fluid phase, the continuity and the Navier—Stokes More specifically, the aims of the present paper are
equations, supplemented with a source t&that represents

the force exerted by the particles on the fluid: (i) to outline the main aspects of a PDF model, the inter-

ests and limitations of current state-of-the-art Lange-

AUy | vin models and the key points of numerical algo-
ax; =0, (4a) rithms;
5 (i) to point-out and to address new specific issues for
AUy dUs 1P 97Uy, Lagrangian models, such as the addition of extra
——+Uij———=———F+v—5 +S. (4b) : .
ot X pi I%; IX; terms for two-way coupling, numerical averages and

the mean-continuity constraint; and
to validate the complete model and to show how it
performs by comparing the numerical results with ex-
perimental ones in a practical case.

An “exact approach’(in the spirit of DNS is possiblée! but, ii)
in practice, the exact equations of motion are not of grea%
help. Indeed, in the case of a large number of particles and of
turbulent flows at high Reynolds numbers, the number of
degrees of freedom is huge and one has to resort to a con- The paper is organized as follows: in Sec. Il, several

tracted probabilistic description. o mathematical notions related to stochastic modeling are
Following the classical approach used in single-phasayified, that is the equivalence between the trajectory and
turbulence, one can think of writing directly mean-field ppg points of view, and the modeling strategy which is
equations for a limited number of particle statistizsean adopted in the present wotthe particle-tracking approath
velocity, kinetic energy, ..).as ink—e or Rj;—e modeling.  The dimension of the system, that is the dimension of the
This is the basis of the Eulerian approdcttowever, due to  state vector, is also given based on physical principals. In
the complex dependence of on particle diameters and on gec. |11, closure proposals are put forward for the fluid ve-
fluid and particle instantaneous velocities, the drag term r®Pcity seen, in the form of Langevin equations. Emphasis is
resents a nonlinear but locéh term of particle variables put on the terms to be added in order to model cases with
source term. The resulting closure problem that appears if\l,vo_way coupling. In Sec. IV, the numerical approach is pre-
the Eulerian gpproach is therefore difficulfc. Actually, th_is is-sented. The main steps of the particle-mesh algorithm are
sue is very similar to the one appearing in the modeling ofxpjained, while particular attention is devoted to the prob-
single-phase turbulent reactive floand, in this case, PDF lems of defining averages in two-phase flows and of verify-
models that can treat the reactive source terms without agng the particle mean-continuity constraint. These models are

proximation have shown their great potential. For the samgajigated in the simulation of a practical case of gas-solid
reason, a PDF approach to polydispersed turbulent twofows Sec. V.

phase flows is interesting. In practice, mean-field equations

(Rij—€) are used for the fluid whereas a particle PDF equa-

tion is solved by a Monte Carlo method using a trajectory

point of view (Eulerian/Lagrangian modelsThe PDF model IIl. STOCHASTIC MODELING

is therefore formulated as a particle stochastic Lagrangiap. Mathematical background

model(a set of SDEp . . . . .
Numerous Eulerian/Lagrangian two-phase flow models In this section, basic results, concerning the mathemati-

have been propose@nost of the time with interesting and cal background of the approach and the correspondence be-

clear ideas but often with a discrete formulatiofin time) tween ~SDEs and Fokker-Planck —equations, are

7,12,13 ; ; ; _
and without making the connection with a PDF model. Whenrecalled. If one considers a system of particles inter

Eulerian/Euleriarii.e., both phases are described with mean-acting through forces that can be expressed as functions of

field equations and Eulerian/Lagrangian models are com-Va”‘”‘bles attached to each partidfer example, position,

pared directly, the PDF framework is helpful to reveal thatvelocity, ...), then all available information is contained in
these methods do not contain the same level of im‘ormationﬂ1e state vectoZ, of the complete system

Lagrangian models are I_DDF mod_els from which E_u_lerlan Z=(Z},Z%,...,Zé;ZZ,Z§,. .,le); .;ZT,ZQ, ,Zg), (5)
models can be extracted in a consistent #&yhe specific- '

ity of the present work is to present a Lagrangian modelwhere Z} represents the-variable attached to the particle
based on a Langevin equation for the velocity of the fluidlabeledi. The dimension of the state vector is thés N
seen, in the PDF context. The theoretical formulation of thex p whereN is the total nhumber of particles aml is the
Langevin PDF model has already been devel8gemd the number of variables attached to each particle. The complete
purpose of the present paper is to give an overview of theystem, that is th8l-particles, is closed. In classical mechan-
complete theoretical and numerical issues insisting orics, the time evolution of such systems is often described by
complementary points. In the same PDF framework, an ala set of ordinary differential equations

Downloaded 04 Jun 2004 to 193.206.154.142. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 7, July 2004 PDF model based on Langevin equation 2421

2

dZ—AtZ 6 w_ &Atrr+1 i D;i(t,2")p" 12
which I(J:I(2)rresponds, in sample space, to the Lio“Vi”ewhereDij =B;B,;=(BB"); is a positive-definite matrix. In
equatio a weak sensévhen one is only interested in statistics of the

ap(t,z) procesy one can speak of an equivalence between SDEs and

&t’ + a_z(A(t’Z)p(t’z))zo’ (7) Fokker—Planck equations.
for the associated PDP(t,z). This formulation is similar to B Dimension of the state vector
a pure convection problertfirst-order partial derivatives in The dimension of the reduced state vecE, that is the
sample spade number of particleN and the number of attached variables

As mentioned in the previous section, most of the time; for each particle, have to be determingereafter the su-
the number of degrees of freeddthe dimension of the state perscriptsr and R are dropped for the sake of simplicity
vectop is huge and one has to resort to a redu@@dcon-  The first choice forN is done in line with current state-of-
tracted description'® Consequently, one-particle PDF, the-art models for single-phase flowbideed, when the par-
p(t,z) (for a particlei) or two-particle PDFp(t,2,2), etc.,  ticle relaxation timer, is small, particles behave as fluid
can be considered instead of choosing Mwparticle PDF,  particles. In single-phase turbulenCenly one-particle PDF
p(t,2). Let ZR be a reduced state vectfypically @ one-  models are sufficiently general to be applicable to complex
particle state vectoZ®=(Z;,Z,,....Z,) corresponding t0 fiows. For this reason, our first choice is to retain a one-
the p variables attached to each particl@hen, the time particle PDF description for the particle phase in the two-
evolution equations, in physical space, for this subsystemyhase flows under consideration hehe<(1).

have the form The second choice is to select the specific variables at-
dzR tached to the solid particles. Again, a closer look at single-
WZA(LZR’Y)’ 8 phase PDF modeisnight be helpful. In single-phase flows

at high Reynolds numbers, Kolmogorov theBryells us

where there is a dependence on the external vardblee- that, for a reference time scatk in the inertial range, La-
lated to the particles not containedZ®). In sample space, grangian increments of the fluid velocity are well correlated
the marginal PDR' (t,Z") verifies whereas increments of the fluid acceleration are nearly un-

correlated. This indicates that fdt belonging to the inertial

ap'(t,z') 9 e raa range, the fluid velocity is a slow variable and the fluid ac-
ot + ERAlZ )P (t.2)]=0, ©) celeration is a fast variable which can be eliminatéabt
N o ) variable elimination’ Therefore, the state vector should in-
where the conditional expectation is defined by clude position and velocity, i.e.x{,U;) (p=2). This is the
starting point for Langevin equation models for fluid particle
<A|zr>=J A(t,Z",y)p(y|t,z')dy velocities'®*® The model takes the form of a diffusion pro-
cess with a drift term linear in the velocity of the fluid seén,
1
=Wj A(t,Zr,y)p(ter,Y)dy- (10) de’i:Uf’idt, (13)
Equation(9) is now unclosed, showing that a reduced de- 1 (P)
scription of a system implies a loss of information and the ~ dUrj=— o %, dt+G;;(Us j—(Uy,i))dt
necessity to introduce a model. f !
In the present paper, and for reasons presented in the + ‘/CO<€>dVVia (14)

next section, the reduced system will be modeled by stochas-
tic diffusion processe§?'#**For such stochastic processes, where(P) is the mean pressure fieltk) is the mean dissi-
the time-evolution equations for the trajectories of the pro-pation rate anc, is a constant given by Kolmogorov theory

cess are SDEs written as (Cp=2.1). Gj; is a matrix which depends on mean quanti-
R R R ties,
dzZ7=A(t,Z7(1)dt+B;;(t,Z7(1))dW,, (11
where W;=(Wy,....W,) is a set of independent Wiener G..:_ig..+G? (15)
. . K ij T ‘i ij
processes andn is the dimension of the reduced state vec- L

tor. In Eq. (1), A=(A;) is called the drift vector and a ) ) _
=(Bj;) is the diffusion matrix. SDESs require a strict math- v_v_hereGij IS an anisotropy matn((depen_dmg on mean guan-
ematical definition of the stochastic intedfa*which is de-  {iti€s) and T, stands for a timescale given bk (s the tur-
fined here in thétd sensethese equations are referred to asPulent kinetic energy

Langevin equations in the physical literaturd@he corre- 1 K
sponding equation i|_"| sample space fpk(t,z") is the T = (16)
Fokker—Planck equation (43¢, (e
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r = (Up-Us)dr

fluid particle trajectory t)’l 4] p
n+1

FIG. 1. Fluid element and particle paths. ) )
FIG. 2. Mean fluid and particle paths.

In the two-phase flow case, a similar reasoflisigggests
to include the velocity of the fluid seen in the state vectorforces. Two nondimensional numbers have been introduced
that becomesthe fluid acceleration seen is a fast variable for that purpose: particle inertia is measured by the Stoke
Z=(x,,Up Uy (17) number Si:Tp/TL,. a}nd e_xternal forces bﬁflUr|/u ,u
being a characteristic fluid turbulent velocity’ (= 2k/3).

This is different from the choice made in analogy to Boltz- The influence of these two effects on the characteristitsof
mann equation, when one considers ofily (x,,U,) asin - are the following:

kinetic models®?° Yet, we are dealing with particles being

agitated by an underlying turbulent fluid, andsiow) vari- () In the absence of external forces<0), only particle
able related to the fluid, namely the velocity of the fluid seen, inertia plays a role. The characteristic, or integral,
is explicitly kept in the state vector. With the kinetic choice, timescale of the velocity of the fluid seen, saf(¢
not only the derivatives of the fluid velocity seen have to be =0), is expected to vary between the fluid Lagrang-
modeled but also the fluid velocity seen itself. lan timescaleTT, in the limit of low St numbers, and
the Eulerian timescalelg, in the limit of high St
numbers.
Il MODELING TURBULENT DISPERSION (i)  Leaving out particle inertia, external forces creates
With the present choice of the state vector, the stochastic mean drifts €+ 0) and induce a decorrelation of the
process used to describe the system has been chosen, i.e., Velocity of the fluid seen with respect to the velocity
Z=(x,,U,,Ug). Following the trajectory point of view of _fluid particles. This effgct is called the crossing
mentioned in Sec. Il A, a time-evolution equation fdg has trajectory effect(CTE) and is related to a mean rela-
to be proposed. This equation, together with Eds, will tive velocity between particles and the fluid rather
give the complete system of SDEs for the componenta. of than an instantaneous one.

Contrary to most Lagrangian models, which are often built in , o
a discrete setting, the current model is written in continuous ' the model developed in the present paper, it is as-

time, as Eq(11), in order to be consistent with the proposed sumed _thatTE remains of the same order O_f magmtude as.
mathematical framework. T, , which seems actually a reasonable choice since there is

little information for complex flows. Detailed models have
tion for Ug amounts to modeling turbulent dispersion, anP€en proposed for the effect of particle inefidgut in the
issue which is more complicated than turbulent diffusion.following it will be neglected, that isTy (=0)=T, . The
Indeed, particle inertia,) and the effect of an external representative picture is now ;ketched in Fig. 2 where only
force field induce a separation of the fluid element and of thdh® meéan drift induces separation.
discrete particle initially located at the same point, as repre- . .
sented in Fig. 1. In the asymptotic limit of small particle A. Langevin equation model
inertia, 7,— 0, and in absence of external forces, this sepa-  Using the physical description of the CTE effect as due
ration effect disappears and the problem of modeling diffuto a mean-drift(Fig. 2), Kolmogorov theory can be applied,
sion is retrieved, for which the stochastic model given by Eqas in the single-phase case, to suggest a dispersion model.
(14) can be applied. For that reason, dispersion modeltndeed, let us introducev(r,r)=u;(to+ 7,Xo+ U(tg,Xo) 7
(simulation ofU;) are extensions of diffusion modelsimu-  +r)—u¢(tq,Xg), the fluid velocity field relative to the veloc-
lation of Uy). ity of the fluid particleF at timet,, Fig. 2, that is with

An extensive description of the physical aspects of turu(ty,x,) =ug(t). Then one can write that
bulent dispersion has been proposed elsewh&rsp that B
only the key points used to derive the stochastic model are dUs=v(dt.(Up)dD), (18)
recalled in the next section. It is proposed to consider sepawvhere (U,)=(U,)—(Us) is the mean relative velocity be-
rately the physical effects of particle inertia and externaltween the discrete particle and the surrounding fluid element.

From the physical point of view, a time-evolution equa-
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Then, the differential change, and so the Eulerian statistics, |<Ur>|2
of the fluid velocity seen depend on the key variables of D|(dt)z<6>dtan( K )
Kolmogorov (as the fluid velocity, that is(e) and v, and on

the mean drift due to the CTE effect, but not on the instan- (U

taneous particle or fluid velocities. Since it is the mean ve- Dl(dt)2<€>dt0ﬂ( K )

locity U, that appears in Eq18), the Kolmogorov theory

can then be applietf, to show that for high Reynolds num- This result suggests now a Langevin equation model which
ber flows and for a time incrementt that belongs to the consists in simulating)s as a diffusion process. As explained

(29)

inertial range, we have above, this model is only an approximate model having less
support than in the fluid case. Indeed, the Langevin model
(dUs; dUg j) =Dj;(dt), (19 does not yield the correct spectruim the limit of large

relative velocity or frozen turbulengeHowever, for engi-
neering purposes, where the macroscopic behavior is the real
subject of interest, the important properties are the integral
Dij=D, &;+[Dy—D_]riry, (200 time scales rather than the precise form of the spectrum.
) o o Thus, Langevin models are “reasonable compromises” be-
the separation vectar being in the direction of the mean tyeen simplicity and physical accuracy at the moment. It is
relative velocity,r=(U,)/|[(Uy)|. The functionsD; andD,  g3is0 clear that much work remains to be done to improve
are the longitudinal and transverse velocity correlation, resiochastic models.
spectively. Dimens_ional analysis yields that, in the inertial It can be showhthat the general stochastic differential
range, one can write equations for the fluid velocity seen process have the form
|<Ur>|2) (X stands for fluid fields

<E>dt dUS’i:Ai(t,Z,<Z>,<X>)dt+ Bll(t,Z,<Z),<X))dW ,
(25

where the matriXD;; is determined by the two scalars func-
tions D, andD, through

Dy(dt) :<6>dta(

2
Di(dt)=<6>dtal(|<ur>| ) (21)  where the drift vectorAg, and the diffusion matrixBs,
(e)dt have the form

For the two functionsy, and «, , there is no exact predic- 1 a(P) HUq )
tion, but in two limit cases they can be explicitely computed. dUg; = — — ——dt+((Up ) — (U ))) gt
On one hand, when the mean relative velocity is small, ' ps X ' ' IX;
(U< ({e)dt)Y? for a given time intervadlt, the statistics 1
of the velocity of the fluid seen are expected to be close to - (Ug;—(U¢))dt
the fluid ones, and thug;=a, =C,. On the other hand, R '
when the mean relative velocity is large|(\,)]|
> ((e)dt)Y?), one can resort to the frozen turbulence hy- + \/(e)(Cobi~k/k+ 2(bk/k—1))dW,. (26)

pothesis, and in that cas€ (is a constant ) ) )
The CTE has been modeled by changing the timescales in

D, (dt)=C({e)(U,)dt)*?, drift and diffusion terms according to Csanady’s analysis.
Assuming, for the sake of simplicity, that the mean drift is
D, (dt)= 4C({e)(U,)dt)?3, (22 aligned with the first coordinate axiéhe general case is

_ ) o ) discussed elsewhébe the modeled expressions for the
which shows that, in that limit, the two functiorg(x) and  timescales are, in the longitudinal direction

a, (x) vary asx*3. Then, the Langevin model is not sup-

ported as in the fluid case, since it will always give a velocity T (€=0)
correlation linear in time for each component®f Never- TS = )
theless, a useful approximation can be proposed. Indeed, if V1+B2(U,)|2/2kI3
we freeze the values of the functioag and«, for a certain
value of the time interval, sa¥t,, and write

|<Ur>|2 TL(SZO)

_ * =T*.= . (28)
Dy(dt) <E>dt“(<e>mr)’ T 1 ap(u,) Pl

(27)

and in the transversal directioaxes labeled 2 and) 3

[(U,)|? In these equationg is the ratio of the Lagrangian and the
(e)—Atr) (23)  Eulerian timescales of the fluigg=T, /Tg, and T} (£=0)

represents the Lagrangian timescale in the absence of mean
a linear variation oD (dt) andD, (dt), with respect to the drifts but accounting for particle inertia. As mentioned at the
time interval dt, is now obtained. The reference time lag end of the previous section, particle inertia effect are ne-
may be the Lagrangian timescale which is the timescale oveglected in the present wotkand we therefore assume that
which fluid velocities are correlated. And sin¢e)T, =k, T (£=0)=T,. Inthe diffusion matrix, a new kinetic energy
we have has been introduced(=T_ /Tf,i)i

DJdt)z(e)dtaL(
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3 Eiszlbi<uf2i> the structure of turbulence in the presence of discrete par-
k=3 =3 p (29 ticles and this makes it extremely difficult to isolate the im-
=1 portant variables in order to modify the theory of Kolmog-
In the absence of mean drifts, the stochastic model foprov (which is used in our closurgsThis problem is out of
U, reverts to the Langevin equation model used in singlethe scope of the present paper and it remains an open ques-
phase PDF modelidgand is thus free of any spurious drift tion. Then, the final set of equations for the velocity of the
by construction. Finally, it must be emphasized that the derifluid seen are

vation of a satisfactory modélhat is respecting a number of 1 o(P) A(Uq )
well-established constraint$or particle dispersion remains dUg=— — ——dt+ (U, ;) —(Us,;)) B gt
an open issue. ' Pt OX ' ' IX;
B. Modeling two-way coupling L ZePe Upi~Usi dt— 1 (Ugi—(U;))dt
In order to account for the influence of the particles on g p Lii
the fluid, a new term is added in the momentum equation of N \/< )(C bk/k+ 2(bK/k—1))dW (33
€)LLobi 3(DjKIK= i

the fluid velocity, see Eq€4), and the fluid velocity seen:
It is seen that the resulting Langevin equation, which is be-

dUsi =[Asi(L.Z,(Z). (X)) + Apsi(1,Z,(Z)) ]t lieved to represent the simplest model for two-phase flows,
+Bgij(1,Z,(Z),(X))dW; . (30 contains a diagonal but non-isotropic diffusion mati;;;

) ) ) =B . Itis also worth emphasizing that the closure rela-

The exact expression for this acceleratiéi. . i(t,.2.(Z)),  tons put forward just above reflect modeling choices. For

which is induced by the presence of the discrete particles, Iistance, in the two-phase flow case, the isotropic form of

nota priori known. The underlying force corresponds to thea giffusion matrix cannot be obtained anymore, but it is

exchange of momentum between the fluid and the particlegnsento select, among different possibilities, a diagonal
but should not be confused with the total force acting ony;tsion matrix.

particles since the latter includes external forces such as

gravity. Th_e effegt of particles on fluid propertieg is ex- ¢ Equivalence with the PDF approach

pressed directly in the stochastic equation Wf with a ) )

simple stochastic model. The force exerted by one particle on  According to the arguments developed in Sec. Il A, the
the fluid corresponds to the drag force written here as ~ complete set of SDEffor the state vectoZ =(x,,Ur,Ug)],

Us—U, dxp,i=Up,dt, (343

Tp

1
. ) ) dUp,i:_(Us,i_Up|i)dt+gidt! (34b)
wherem,, is the mass of a particle. The total force acting on ™
the fluid element surrounding a discrete particle is then ob- dUgi =[Asi(t,Z(Z) (X)) + A, si(1,Z,(Z))]dt
tained as the sum of all elementary forcés, , and the ' ' '

resulting acceleration is modeled heré as +Bgij(t,Z,(Z) (X))dW,, (340
appy Uy i— Uy, is equivalent to a Fokker—Planck equation given in closed
Ap_si= L. (32)  form for the corresponding PDE{(t;y,,V,,Vs) which is, in
Pt Tp sample space,
Equation (30) is justified by the assumption that the ap ap P
mean transfer rate of energy and energy dissipat®ns —+V =———(Ap,ip)

p.i ST
changed by the presence of particles, but the nature and ot Wi Npi

structure of turbulence remain the same. Therefore (&Q. J

is written by adding an acceleration terf, ¢, to account - M([As,i"_(Apﬂs,in WV, Ve lp)
for the presence of particles, while the same closures as in '
the one-way coupling case will be used for the drift vectors T
and the diffzusion matrices, where, once again, the mean +§m([BsBs]ijp)-
fields(e€),(Uf), . .. aremodified by the presence of the par- . . .

ticles. Indeed, the drift vectors and the diffusion matrices, no?_—he equatl_on for the Eulerlan_ PDF and the resulting mean-
being affected by the nature of turbulence, remain un—'eId equations can be found in Ref. 8.

changed. In opposition to the previous hypotheses, recent

results of direct numerical simulations in the field of turbu-q\/' NUMERICAL ISSUES

lence modulation by particleén isotropic turbulencd seem The theoretical model developed in Sec. Il represents a
to indicate that there is a nonuniform distortion of the energyPDF model for the particle phase only. It does not contain
spectrum. This could mean that, contrary to our previousny description of the continuous phase. It is possible to
assumption, the nature and structure of the energy transfextend the PDF description to both the fluid and particle
mechanisms of turbulence are modified by the presence gfhase$ which may be useful for theoretical and consistency
particles. There is no precise “geometrical” knowledge onanalysis. However, at the moment, this complete PDF ap-

52
(35)
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proach is limited for practical calculations, and, in the
present work, a classical second-moment approach is fol-
lowed for the continuous phase. The complete numerical
model is therefore a hybrid method and corresponds to a
classical approach referred to as Eulerian/Lagrangian in the
literature, as mentioned in the Introduction. As one can see
from Sec. lll, the terminology is not actually adequate to
describe the complete mod@l would be better to talk of a
moment/PDF hybrid approaghbut corresponds to the nu-
merical approach. Indeed, from the numerical point of view,
the fluid phase is modeled by mean fields, obtained by solv-
ing partial differential equations on a grid with an Eulerian
approach, while the particle phase is modeled by a large
number of Lagrangian particles distributed in the domain and
whose properties are obtained by solving stochastic differen-
tial equations. It is worth emphasizing that these particles are
now stochastic particles, or more precisely samples of the
underlying PDF, rather than precise models of the actual par-
ticles. The overall numerical method is therefore an example
of Monte Carlo particle-mesh techniques.

The numerical(particle-mesh approach involves many
issues. Some of them have already been treated in classical
textbooks?? but only for deterministic equations. The sto-
chastic nature of the present equations brings in specific as-
pects and raises new questions. In that respect, the purpose of
this section is not to give a comprehensive description of all
issues. It is more to give an overview of the numerical
method, pointing out important issues and, in particular,
those that, in our opinion, require additional work. More pre-
cisely, issues that have not always been investigated or may
have been overlooke@uch as consistent discrete averages,
Sec. IVC, and mass-continuity constraint, Sec. IV @re
developed more in detail.

PDF model based on Langevin equation 2425

t(n)

EULERIAN SOLVER

<P>, <Uf> Source terms

K p, <> S (<Uf>), S(Rij)

LAGRANGIAN SOLVER

t(n+1)

FIG. 3. Sketch of the algorithm for one time step.

As previously explained, the particle properties are mod-
eled by a vectorial SDE written as

dZ=Ai(t,Z,(f(2)).(X))dt

+Bi (1 Z(f(2))(X)dW;, (36)

wheref is a general function depending on the model xnd
stands for fluid fields. It is worth emphasizing that the drift

and diffusion coefficients depend on statistics derived from

A. General algorithm

The flow-chart of the code is shown in Fig. 3. At eac

the PDF that is implicitly calculated. Therefore, these SDEs
pare different from standard on&s?® Updating particles

time step, the fluid mean fields are first computed by solvind?roPerties implies three steps) (projection of(f(2)) and

the corresponding partial differential equatidRSM mode]

(X) at particle positions,i{) time integration of Eq(36),

with a classical finite volume approach. The Eulerian solve@Nd (ii) averaging to compute the new values &(Z)) (for

then provides the Lagrangian solver with the fluid mean
fields that are necessary to advance particles properties.

stationary flows, such as the one considered later on, en-
gemble averages computed in every cell are then averaged in

the Lagrangian solver, the dispersed phase is represented Bme, once the stationary regime has been reached. This time-

a large number of particles and, as proposed by the mod
the state vector attached to each particl& is(x;,U;,Us).
Once particle properties have been updated, and, in the ca
of two-way coupling, where particles modify the fluid flow,
source terms accounting for momentum and energy exq)
change between the two phases are also calculated and are
fed back into the Eulerian solver for the next time step com-
putation. It is then seen that the two solvers are only loosely
coupled. This may lead to numerical difficulties when the
particle loading is increased, consequently the source terms
become important and the system of equations stiff. Howxii)
ever, our present aim is to model moderate particle loading
phenomena, indeed particle-particle collisions have been ne-
glected. In that range, particles can still modify the fluid flow

in a noticeable way but source terms remain small enough so
that the loosely coupled algorithm can still be retained.

eqtveraging procedure is very helpful to reduce statistical noise
t6 a negligible leve?*~2° Since averaging is basically the
[Qverse operation of projectidh,these three steps corre-
spond to two main issues:

The first concerns the derivation of accurate numeri-
cal schemes for the time integration of E§6). Due

to the nonlinear nature of the equations, this is still a
difficult point?®?” and, moreover, physical constraints
should be respectéd.This issue is briefly developed
below.

The second issue is related to the exchange of infor-
mation between the grid-based Eulerian variables, lo-
cated at cell centers, and particles which are conti-
nously distributed in the domain. At the moment, a
NGP (nearest grid pointtechniqué? is used; this rep-
resents the simplest choice but also the best one in
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terms of spatial errd® This is an important and at- FE(LXVp, ) =F(tY,=X,V, 4,)
tractive issue to investigate for particle-mesh methods
in the case of unstructured meshes and taking into _f FL(t:
= 1Yo, Vo, ) S(X—Yp)dyp,
account boundary conditions. (6Yp. Vo 4hp) O(X=¥p) Y,

(40)
) ] ) ) ~ whereFE is normalized by (pp) is the expected densjty
Since we are interested in the numerical approximation
of statistics derived from particles, a weak numerical
schemé’ (converging in law is under consideration. A nu-
merical scheme is said to be of order of convergende
time, in the weak sense, if, for any sufficiently smooth func-
tion

B. Time-integration of SDEs

ap(t,x)<pp>(t,x)=f FE(t XV, p)dVdep,. (41

a,, represents the probability to find particles at a given time
and position, in any state. The Eulerian mass density func-
tion being defined, we can introduce a general average for a

[(f(2))—(f(Z*Y)|=C(a), (37)  quantityH(U(t), ¢(t))

whereC is a constant and”! represents the numerical ap- @p(t:X)(pp) (LX) (Hp) (8X)

proximation ofZ. The numerical scheme used in the present Eov o

calculations is detailed in Ref. 28, and, consequently, in the =f Hp(Vp ) FE(LXV 4) AV pd iy (42)
present paper, only some points of particular importance are . . ) _
emphasized. Equatiof86) must be understood in thid T_he Lagran_glan mass density function can be written from a
senseand it is fundamental that numerical schemes respecf!SCrete point of view as

the 1to definition of the stochastic integral, in order to avoid M

any inconsistency problenis.The weak numerical scheme Fia(tYp. Vo th) = 2 My, —Xp(1) @ 8(Vp—Up(1))
is of order 2 in time, unconditionally stable but still =1

explicit.28 Another important issue is the numerical fuffill- ® 8(hy— Bly(1)), 43)
ment of physical limits.Indeed, in practical engineering cal- .

culations of complex flows, it may occur that, locally, one wherem,, is the mass of the particle labeléc&ndM is the
hasAt>r,, or evenAt>T*,7,, that is the time-step be- number of samples. From E@39), the discrete Eulerian
comes much larger than the characteristic time scales of th@ass-density functions is

system, Eqs(34). In the first case, one should have that LN

—Ug and, in the second case, the model expresses a pure E ) _ = [ i

diffusive behavior in spac&?® FR(tXpi Vo ) = 5y 2, Mpd(Vp=Up(t))

dxpi=(Usiydt+(Bsy TL )dW, . (38) ® 84— By(1)), (44)
It is important that the numerical scheme is consistent with5Vs being a small volume around poirtwhich containsN
these continuous limits. particles. Then, a numerical approximation of E4fl) is
N i
. : : i_.m
C. Discrete representation and numerical averages ap(t,X){pp) = I5V§ P (45)

Since averages are fundamental in the construction of
PDF models, it is useful to clarify the correspondence beand the numerical approximation of a particle mean quantity
tween the average@lefined as the mathematical expecta-is
tions) and Monte Carlo estimations, which are used in the N i i i
code. In polydispersed cases, even whgris constant, the (H)=~H N:Ei=1mpHpN(Up(t),¢p(t))
mass of each particle can be different because of different P P Eizlm'p
cyameters. This sugge_st_s_that even for cons_tant density Ioaé'onvergence of the discrete approximation is ensured by the
ticles, the natural definition or understanding of a mean - : .

L . L ..~ central limit theorem which shows that there exists a con-
guantity is themass-weightedverage. This kind of choice is
L stantC such that, whemMN— + o,
somewhat analogous to the Favre mean definition for com-
pressible single-phase fluid flows. ,»_C

To justify this, we start by introducing a Lagrangian ~ (Hpn)=(Hp) and (((Hp)—Hp 9= (47)

mass density functioﬁ'-(t;yp V) Where

. (46)

. It is therefore seen that the convergence of the underlying
Fo(tYp, Vo, ) dy,dVdi, (39 PDF is not in a strong sense but in a weak sense, or to be

is the probable mass of discrete particles in an infinitesima]"°'® precis;a inhlavV,‘ sir;]ce it is in fact theh mean value of
volume in sample space. As a matter of fact, attention igunctlons of the stochastic process that converges
focused on Eulerian averagest a point €,x) fixed in time -t

and ;pat_:}e for_which the analogous Eulerian mass density Hy,p=(H(Zn)) » (H(2)). (48)
function is defined by N—sc0
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R.=0.15m TABLE I. Computational performances.
CPU time for CPU time for

Uj=34m/s 1000 nodes/time step 1000 particles/time step
Re= 4500
EZ Eulerian solver 0.20 s

U,=6m/s / Lagrangian solver 0.17 s

Re=3.10% _

J Jd ~
= o (appp) + K(appp<up,i>)-

x=0.08 m ( 5 1)

J I
ﬁXi %pPp (9Xi

| The mean velocity correction term is then applied to each
x=0.16 m = \‘v;:{” / particle velocity.
o This pressure-correction term used here for the particle
P PO I velocity is of course similar to the classical pressure-
P S? / correction step applied in the Eulerian solver for the fluid.
x=0.24m L ‘e Yet, it is often overlooked in Lagrangian calculations. If we
Pl consider the complete algorithm, it is then seen that there are
*=040m . / now two pressure-correction steps due to the two mean-
v ? continuity equations, one for the fluid and one for the par-
P ticles. This is also a consequence of the loosely coupled al-
\ gorithm.

L=12m

urewop JeuoneIndwiod pue auOZ 153}

V. NUMERICAL INVESTIGATION

A. Experimental setup

X (gravity)
The experimental setup is typical for pulverized coal
FIG. 4. The “Hercule” experimental setup. The mean streamlines are Sho"‘"bombustion where primary air and coal are injected in the

for the fluid (solid lineg and the particlegdashed lines Two stagnation d d R d d h inh
points in the fiuid flow can be observe8,(andS,). Experimental data are CENEr and secondary air is introduced on the periphery,

available for radial profiles of different statistical quantities at five axial Fig. 4.

distances downstream of the injection<0.08,0.16,0.24,0.32,0.40 nfigx- This is a typical bluff-body flow where the gdair at
perimental data are also available on the symmetry) axis ambient temperaturd,= 293 K) is injected in the inner re-
gion and also in the outer region where the inlet velocity is
high enough to create a recirculation zone downstream of the
injection (two honeycombs were used in the experiment in

] ) order to stabilize the flow so that no swirl was presegolid
It has been shown in Sec. Il C that there is a COITeSPONparticles (glass particles of density, = 2450 kg/mi) are

dence SDE-Fokker—Planck equation. From the PDF equdpen injected from the inner cylinder with a given mass flow
tion, mean particle fields can then be ?Xtra&gd' other  rate and from there interact with the gas turbulence. This is a
words, every particle stochastic model is consistent with &qpled turbulent two-phase flow since the particle mass
certain Eulerian _m_o_d@? as in single-phase PDF mo_dé?s_. loading at the inlet is high enoug2%) for the particles to

~ With the definition of the mean particle velocity field qqify the fluid mean velocities and kinetic energy. This is
given in the previous section, the corresponding particle conzisg 5 polydispersed flow where particle diameters vary ac-
tinuity equation is(density is constant cording to a known distribution at the inlet, typically be-
tweend,=20 um andd,=110 um around an average of
dp~60 um.

Experimental data are available for radial profilgise

For each time step in the Lagrangian solver, the mean fielddoW is stationary and axisymmetjiof different statistical
a, and(Dp,i> are computed from particle location and ve- guantities at five axial distances downstream of the injection

locity, x, andU,,, using the numerical approximations given (x=0.08, 0.16, 0'24_’ 0.32 and (_).40).nTh§._se quantities in-
in Eqgs. (45) and (46). Here, we propose to modify particle clude the mean axial and radial velocities as well as the

velocities(not locations so as to enforce the mean continuity fluctuating radial and axial velocities for both the fluid and

constraint, by adding a pressure-correction field as a poter}he particle phase. Axial profiles along the axis of symmetry
tial Thé corrected particle velocity field is then or these quantities have also been measured. All the data

was gathered using PDA measurement techniques. Further
- dp details on the experimental setup and the measurement tech-

(Upi)=(Up)— - (500 niques can be found in Ref. 31.

' The “Hercule” experimental setup is a very interesting

test case for two-phase flow modelling and numerical simu-

D. Pressure correction

J J
E(appp)"'&_xi(appp<up,i>)=0- (49

where ¢ is calculated from the Poisson equation
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4.0

2.0

0.0

® single phase measures
X two-phase measures
single phase results

— — - two-phase results

- .0 1 | s 1 s | 1 | s
0.00 0.10 020 0.30 040 0.50
FIG. 5. Mean fluid velocity along the axis in single- and two-phase flow.
lations where most of the different aspects of two-phase

flows are present. The particles are dispersed by the turbuler
flow but in return modify this one. Furthermore, the exis-

tence of a recirculation zone where particles interact With_1 0

X=0.003m

Minier, Peirano, and Chibbaro

X=0.08m
8.0 T T

. 1 . I 2.0 1 I
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
X=0.16m X=0.24m
7.0 T T 6-0 T T
6-0 A 5.0

5.0
4.0

3.0

negative axial fluid velocities constitutes a much more strin-_,

gent test case compared to cases where the fluid and th
particle mean velocities are of the same sithre problem is
then mostly confined to radial dispersion issues

B. Results and discussion

All the results were obtained by using the ESTET 3.4
software on a HP-C3000 workstation. In all numerical com-
putations, the axisymmetry property was used: a two-
dimensional curvilinear mesh with ¥3X 142 nodes was
generated. The sensitivity to the various parameters of the
numerical investigation was accurately studied. In particular,

* Measurements
—— Results

. ' : -1.0 ' ‘
000 005 010 045 000 005 010 0.5
X=0.320m X=0.40m
6-0 T T 6-0 T T
5.0

4.0

3.0
2.0
1.0
0.0

independence with respect to the time step was checked. » 0-00

uniform time stepAt=10 s, was then used in all compu-
tations.
The computations were carried out with By — e tur-

bulence model, which is based on the standard IPM

0.05

0.10

0.15

0.0 R —
0.00 0.05 0.10 0.15

FIG. 7. Mean axial fluid velocity in two-phase simulation.

model®?23 Actually, this choice is satisfying from the point

of view of the consistency with the stochastic model. It is
known that there is a rigorous correspondence between t
Lagrangian stochastic models and the second-order closur

in the case of turbulent single-phase floWs.

In the two-phase flow calculations, particles were in-
jected when the single-phase flow stationary regime wa

Axial velocity Vz
5.0 T 20 ,
oM 1
4.0 ;”k..\\ J s Rs:::;emens 7
30 . o )
20 - * ..' //’ 1 1.0 - J
o'/,«/ ..\\
= . ) i .
10 ,,../ *theasegenes®es |
0.0 + o i R
-1.0 ‘ 0.0 .
0.0 0.2 0.4 0.6 0.0 0.2 04 0.6

FIG. 6. Profiles of axial particle velocity along the aximean and fluctu-

ating velocitie$.

reached(as the limit of the unstationary regimbefore the
introduction of the discrete particles in the domain. About

000 time steps were computed for the single-phase prob-

gegn. Around 400 to 500 additional time steps were needed to
reach the stationary regime for the two-phase flow situation
(around 14000 particles were at this stage present in the

gomair). Statistics extracted from the particle data set were

then averaged in timéor about 1000 time stepso reduce
the statistical noise.

The computational performances are shown in Table I.
Normally, Lagrangian algorithms require much more compu-
tational time than the Eulerian eddy-viscosity models.
this case, for the same number of computational elements
(either mesh points or nodegshey appear comparable. The
computational requirements for the Eulerian solver are in-
creased due to the use of a full second-order turbulence
model which implies the numerical resolution of six coupled
partial differential equations for the fluctuating velocities
(added to the three equations for the mean momentam-
pared to only one for eddy-viscosity models.

The experimental set of measures provides data both
along the axis and in cross sections at various points in the
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FIG. 8. Profiles of mean axial particle velocity. FIG. 9. Profiles of mean radial particle velocity.

. : . . N oments of the particles velocit}(LOp>,<Wp),\/<u£,2)) are
domain. The comparison is made in all directions and at al hown, without smoothing. The difference between experi-

cross sections of measures. The cross section=dL16 is  onia| data and computed results at the axis@) does not
located within the recirculation zone while the cross section 4. ,ance the computation in the rest of the domain. In Fig. 7
atx=0.4 is located downstream of the limit of the recircu- .o snow the profiles of the fluid mean axial velocity, where

lation zone. n analogous behavior is present, with a satisfactory agree-

The overall agreement between .expenmental .data ana1ent in the whole domain except the values on the axis.
the computed profiles is good. In particular, the particle fluc-

tntfflut:jneq velocity is well reproduced both in shape and in Magdy, ~ONCLUSIONS

In Figs. 5 and 6, the mean fluid and particle velocities  In this paper, a theoretical and numerical model for par-
along the axis are shown. It is noticeable that the comparisoticle turbulent polydispersed two-phase flows has been pre-
between the computed results and the experimental findinggented. The theoretical model is a PDF model and, in prac-
for the two-phase flow in the presence of two-way couplingtice, appears as a Lagrangian stochastic model. It consists in
is worse than in single-phase computation. The same effethe simulation of a large number of stochastic particles
characterizes both the mean fluid and the particle profileswhich simulate the behavior of real particles dispersed in the
The results are less well reproduced in two domain zoned|uid. Each particle is defined by a set of variables and the
although the qualitative agreement remains good. The poirgelection of these state variables represents an important
of recirculation is overestimated and the velocity slope aftechoice from the physical point of view. At present, the state
it is underestimated. This effect indicates the necessity ofariables attached to each particle include particle position,
further studies on the coupling between particles and thearticle velocity and the fluid velocity seen. The present
fluid. It is worth noting that these effects are limited to the model is developed as a diffusion stochastic process for the
behavior along the axis. In Figs. 8—10 first two statisticalvelocity of the fluid seen. This is similar to single-phase
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X=0.003m X=0.08m agreement with the experimental ones and can be regarded as
1.2 ‘ ‘ f'g ‘ ‘ a validation of the model.
10| 1 16l . | Some of the current developments to this work aim at
08 14| i improving numerical aspectwariance reduction technique
‘ */‘ 12 L - _ for the computational efficiency, new methods to compute
0.6 —;\i ) 1 1.0 . . statistical averagésand at improving the physics of the
04 ':H i ,v““-,‘ | g.g 3r f.."','f“ 1 model in the near-wall regiofboundary layer
0.2 /- "i | o4t 1
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