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The aim of the paper is to discuss the main characteristics of a complete theoretical and numerical
model for turbulent polydispersed two-phase flows, pointing out some specific issues. The
theoretical details of the model have already been presented@Minier and Peirano, Phys. Rep.352,
1 ~2001!#. Consequently, the present work is mainly focused on complementary aspects that are
often overlooked and that require particular attention. In particular, the following points are
analyzed: the necessity to add an extra term in the equation for the velocity of the fluid seen in the
case of two-way coupling, the theoretical and numerical evaluations of particle averages and the
fulfillment of the particle mass-continuity constraint. The theoretical model is developed within the
probability density function~PDF! formalism. The important physical choice of the state vector
variables is first discussed and the model is then expressed as a stochastic differential equation
written in continuous time~Langevin equations! for the velocity of the fluid seen. The interests and
limitations of Langevin equations, compared to the single-phase case, are reviewed. From the
numerical point of view, the model corresponds to a hybrid Eulerian/Lagrangian approach where the
fluid and particle phases are simulated by different methods. Important aspects of the Monte Carlo
particle/mesh numerical method are emphasized. Finally, the complete model is validated and its
performance is assessed by simulating a bluff-body case with an important recirculation zone and in
which two-way coupling is noticeable. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1718972#

I. INTRODUCTION

Dispersed two-phase flows, where a continuous phase~a
gas or a liquid! carries discrete particles~solid particles,
droplets, bubbles, . . .!, are of great interest in environmental
studies and engineering applications, such as dispersion of
small particles in the atmosphere or combustion of fuel drop-
lets in a car engine.

To simulate these flows, the basic equations must be
written: the Navier–Stokes equations for the fluid phase and
the momentum equation for a single particle embedded in a
turbulent flow, the latter issue still being a subject of current
research. For small particle-based Reynolds numbers Rep

~whose definition is specified below! and particle diameters
that are of the same order of magnitude as the Kolmogorov
length scale, a general form of the particle momentum equa-
tion has been proposed.1,2

In the present work, only heavy particles (rp@r f) are
under consideration and the equations of motion for a par-
ticle can be written

dxp

dt
5Up , ~1a!

dUp

dt
5

1

tp
~Us2Up!1g, ~1b!

whereUs5U(xp(t),t) is the fluid velocity seen, i.e., the fluid
velocity sampled along the particle trajectoryxp(t), not to be
confused with the fluid velocityUf5U(xf(t),t) denoted with
the subscriptf . The particle relaxation time is defined as

tp5
rp

r f

4dp

3CDuUru
, ~2!

where the local instantaneous relative velocity isUr5Up

2Us and the drag coefficientCD is a nonlinear function of
the particle-based Reynolds number, Rep5dpuUru/n f , which
means thatCD is a complicated function ofdp , the particle
diameter.3 A very often retained empirical form for the drag
coefficient is

CD5H 24

Rep
@110.15 Rep

0.687# if Rep<1000,

0.44 if Rep>1000.

~3!

In the present work, attention is focused on some aspects
of the problem. In particular, only dilute incompressible gas-
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particle flows are considered, so that particle-particle inter-
actions are neglected but two-way coupling is retained,
which means that particle dispersion and modulation of tur-
bulence by the particles are accounted for.

The complete problem is formed by the discrete particle
equations given above, Eqs.~1!–~3! and the field equations
of the fluid phase, the continuity and the Navier–Stokes
equations, supplemented with a source termS that represents
the force exerted by the particles on the fluid:

]U f , j

]xj
50, ~4a!

]U f ,i

]t
1U f , j

]U f ,i

]xj
52

1

r f

]P

]xi
1n

]2U f ,i

]xj
2 1Si . ~4b!

An ‘‘exact approach’’~in the spirit of DNS! is possible,4 but,
in practice, the exact equations of motion are not of great
help. Indeed, in the case of a large number of particles and of
turbulent flows at high Reynolds numbers, the number of
degrees of freedom is huge and one has to resort to a con-
tracted probabilistic description.

Following the classical approach used in single-phase
turbulence, one can think of writing directly mean-field
equations for a limited number of particle statistics~mean
velocity, kinetic energy, . . .! as ink2e or Ri j 2e modeling.
This is the basis of the Eulerian approach.5,6 However, due to
the complex dependence oftp on particle diameters and on
fluid and particle instantaneous velocities, the drag term rep-
resents a nonlinear but local~in term of particle variables!
source term. The resulting closure problem that appears in
the Eulerian approach is therefore difficult. Actually, this is-
sue is very similar to the one appearing in the modeling of
single-phase turbulent reactive flows7 and, in this case, PDF
models that can treat the reactive source terms without ap-
proximation have shown their great potential. For the same
reason, a PDF approach to polydispersed turbulent two-
phase flows is interesting. In practice, mean-field equations
(Ri j 2e) are used for the fluid whereas a particle PDF equa-
tion is solved by a Monte Carlo method using a trajectory
point of view~Eulerian/Lagrangian models!. The PDF model
is therefore formulated as a particle stochastic Lagrangian
model ~a set of SDEs!.

Numerous Eulerian/Lagrangian two-phase flow models
have been proposed~most of the time with interesting and
clear ideas!, but often with a discrete formulation~in time!
and without making the connection with a PDF model. When
Eulerian/Eulerian~i.e., both phases are described with mean-
field equations! and Eulerian/Lagrangian models are com-
pared directly, the PDF framework is helpful to reveal that
these methods do not contain the same level of information:
Lagrangian models are PDF models from which Eulerian
models can be extracted in a consistent way.6,8 The specific-
ity of the present work is to present a Lagrangian model,
based on a Langevin equation for the velocity of the fluid
seen, in the PDF context. The theoretical formulation of the
Langevin PDF model has already been developed8,9 and the
purpose of the present paper is to give an overview of the
complete theoretical and numerical issues insisting on
complementary points. In the same PDF framework, an al-

ternative formulation consists in writing a PDF equation in
analogy with the Boltzmann kinetic equation,10 that is only
for particle location and velocity, without considering di-
rectly the velocity of the fluid seen. For a comprehensive
review of general results and methods in particle dispersion,
we refer also to Stock’s paper.11

More specifically, the aims of the present paper are

~i! to outline the main aspects of a PDF model, the inter-
ests and limitations of current state-of-the-art Lange-
vin models and the key points of numerical algo-
rithms;

~ii ! to point-out and to address new specific issues for
Lagrangian models, such as the addition of extra
terms for two-way coupling, numerical averages and
the mean-continuity constraint; and

~iii ! to validate the complete model and to show how it
performs by comparing the numerical results with ex-
perimental ones in a practical case.

The paper is organized as follows: in Sec. II, several
mathematical notions related to stochastic modeling are
clarified, that is the equivalence between the trajectory and
PDF points of view, and the modeling strategy which is
adopted in the present work~the particle-tracking approach!.
The dimension of the system, that is the dimension of the
state vector, is also given based on physical principals. In
Sec. III, closure proposals are put forward for the fluid ve-
locity seen, in the form of Langevin equations. Emphasis is
put on the terms to be added in order to model cases with
two-way coupling. In Sec. IV, the numerical approach is pre-
sented. The main steps of the particle-mesh algorithm are
explained, while particular attention is devoted to the prob-
lems of defining averages in two-phase flows and of verify-
ing the particle mean-continuity constraint. These models are
validated in the simulation of a practical case of gas-solid
flows, Sec. V.

II. STOCHASTIC MODELING

A. Mathematical background

In this section, basic results, concerning the mathemati-
cal background of the approach and the correspondence be-
tween SDEs and Fokker–Planck equations, are
recalled.7,12,13If one considers a system ofN particles inter-
acting through forces that can be expressed as functions of
variables attached to each particle~for example, position,
velocity, . . .!, then all available information is contained in
the state vector,Z, of the complete system

Z5~Z1
1 ,Z2

1 ,...,Zp
1;Z1

2 ,Z2
2 ,...,Zp

2;...;Z1
N ,Z2

N ,...,Zp
N!, ~5!

where Zj
i represents thej -variable attached to the particle

labeled i . The dimension of the state vector is thend5N
3p whereN is the total number of particles andp is the
number of variables attached to each particle. The complete
system, that is theN-particles, is closed. In classical mechan-
ics, the time evolution of such systems is often described by
a set of ordinary differential equations
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dZ

dt
5A~ t,Z!, ~6!

which corresponds, in sample space, to the Liouville
equation12

]p~ t,z!

]t
1

]

]z
~A~ t,z!p~ t,z!!50, ~7!

for the associated PDF,p(t,z). This formulation is similar to
a pure convection problem~first-order partial derivatives in
sample space!.

As mentioned in the previous section, most of the time,
the number of degrees of freedom~the dimension of the state
vector! is huge and one has to resort to a reduced~or con-
tracted! description.13 Consequently, one-particle PDF,
p(t,zi) ~for a particlei ) or two-particle PDF,p(t,zi,zj), etc.,
can be considered instead of choosing theN-particle PDF,
p(t,z). Let ZR be a reduced state vector@typically a one-
particle state vectorZR5(Z1 ,Z2 ,...,Zp) corresponding to
the p variables attached to each particle#. Then, the time
evolution equations, in physical space, for this subsystem
have the form

dZR

dt
5A~ t,ZR,Y!, ~8!

where there is a dependence on the external variableY ~re-
lated to the particles not contained inZR). In sample space,
the marginal PDFpr(t,zr) verifies

]pr~ t,zr !

]t
1

]

]zr @^Auzr&pr~ t,zr !#50, ~9!

where the conditional expectation is defined by

^Auzr&5E A~ t,zr ,y!p~yut,zr !dy

5
1

p~ t,zr !
E A~ t,zr ,y!p~ t,zr ,y!dy. ~10!

Equation~9! is now unclosed, showing that a reduced de-
scription of a system implies a loss of information and the
necessity to introduce a model.

In the present paper, and for reasons presented in the
next section, the reduced system will be modeled by stochas-
tic diffusion processes.7,9,12,14For such stochastic processes,
the time-evolution equations for the trajectories of the pro-
cess are SDEs written as

dZi
R5Ai~ t,ZR~ t !!dt1Bi j ~ t,ZR~ t !!dWj , ~11!

where Wj5(W1 ,...,Wn) is a set of independent Wiener
processes14 andn is the dimension of the reduced state vec-
tor. In Eq. ~11!, A5(Ai) is called the drift vector andB
5(Bi j ) is the diffusion matrix. SDEs require a strict math-
ematical definition of the stochastic integral12,14 which is de-
fined here in theItô sense~these equations are referred to as
Langevin equations in the physical literature!. The corre-
sponding equation in sample space forpr(t,zr) is the
Fokker–Planck equation

]pr

]t
52

]

]zi
r @Ai~ t,zr !pr #1

1

2

]2

]zi
r]zj

r @Di j ~ t,zr !pr #. ~12!

whereDi j 5Bil Bl j 5(BBT) i j is a positive-definite matrix. In
a weak sense~when one is only interested in statistics of the
process!, one can speak of an equivalence between SDEs and
Fokker–Planck equations.

B. Dimension of the state vector

The dimension of the reduced state vector,ZR, that is the
number of particlesN and the number of attached variables
p for each particle, have to be determined~hereafter the su-
perscriptsr and R are dropped for the sake of simplicity!.
The first choice forN is done in line with current state-of-
the-art models for single-phase flows.7 Indeed, when the par-
ticle relaxation timetp is small, particles behave as fluid
particles. In single-phase turbulence,15 only one-particle PDF
models are sufficiently general to be applicable to complex
flows. For this reason, our first choice is to retain a one-
particle PDF description for the particle phase in the two-
phase flows under consideration here (N51).

The second choice is to select the specific variables at-
tached to the solid particles. Again, a closer look at single-
phase PDF models7 might be helpful. In single-phase flows
at high Reynolds numbers, Kolmogorov theory16 tells us
that, for a reference time scaledt in the inertial range, La-
grangian increments of the fluid velocity are well correlated
whereas increments of the fluid acceleration are nearly un-
correlated. This indicates that fordt belonging to the inertial
range, the fluid velocity is a slow variable and the fluid ac-
celeration is a fast variable which can be eliminated~fast
variable elimination!.17 Therefore, the state vector should in-
clude position and velocity, i.e., (xf ,Uf) (p52). This is the
starting point for Langevin equation models for fluid particle
velocities.15,18 The model takes the form of a diffusion pro-
cess with a drift term linear in the velocity of the fluid seen,18

dxf ,i5U f ,idt, ~13!

dUf , j52
1

r f

]^P&

]xi

dt1Gi j ~U f , j2^U f ,i&!dt

1AC0^e&dWi , ~14!

where^P& is the mean pressure field,^e& is the mean dissi-
pation rate andC0 is a constant given by Kolmogorov theory
(C052.1). Gi j is a matrix which depends on mean quanti-
ties,

Gi j 52
1

TL
d i j 1Gi j

a , ~15!

whereGi j
a is an anisotropy matrix~depending on mean quan-

tities! and TL stands for a timescale given by (k is the tur-
bulent kinetic energy!

TL5
1

~ 1
2 1 3

4 C0!

k

^e&
. ~16!
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In the two-phase flow case, a similar reasoning9 suggests
to include the velocity of the fluid seen in the state vector
that becomes~the fluid acceleration seen is a fast variable!

Z5~xp ,Up ,Us!. ~17!

This is different from the choice made in analogy to Boltz-
mann equation, when one considers onlyZ5(xp ,Up) as in
kinetic models.19,20 Yet, we are dealing with particles being
agitated by an underlying turbulent fluid, and a~slow! vari-
able related to the fluid, namely the velocity of the fluid seen,
is explicitly kept in the state vector. With the kinetic choice,
not only the derivatives of the fluid velocity seen have to be
modeled but also the fluid velocity seen itself.

III. MODELING TURBULENT DISPERSION

With the present choice of the state vector, the stochastic
process used to describe the system has been chosen, i.e.,
Z5(xp ,Up ,Us). Following the trajectory point of view
mentioned in Sec. II A, a time-evolution equation forUs has
to be proposed. This equation, together with Eqs.~1!, will
give the complete system of SDEs for the components ofZ.
Contrary to most Lagrangian models, which are often built in
a discrete setting, the current model is written in continuous
time, as Eq.~11!, in order to be consistent with the proposed
mathematical framework.

From the physical point of view, a time-evolution equa-
tion for Us amounts to modeling turbulent dispersion, an
issue which is more complicated than turbulent diffusion.
Indeed, particle inertia (tp) and the effect of an external
force field induce a separation of the fluid element and of the
discrete particle initially located at the same point, as repre-
sented in Fig. 1. In the asymptotic limit of small particle
inertia, tp→0, and in absence of external forces, this sepa-
ration effect disappears and the problem of modeling diffu-
sion is retrieved, for which the stochastic model given by Eq.
~14! can be applied. For that reason, dispersion models
~simulation ofUs) are extensions of diffusion models~simu-
lation of Uf).

An extensive description of the physical aspects of tur-
bulent dispersion has been proposed elsewhere,9,21 so that
only the key points used to derive the stochastic model are
recalled in the next section. It is proposed to consider sepa-
rately the physical effects of particle inertia and external

forces. Two nondimensional numbers have been introduced
for that purpose: particle inertia is measured by the Stoke
number St5tp /TL , and external forces byj5uUr u/u8, u8
being a characteristic fluid turbulent velocity (u85A2k/3).
The influence of these two effects on the characteristics ofUs

are the following:

~i! In the absence of external forces (j50), only particle
inertia plays a role. The characteristic, or integral,
timescale of the velocity of the fluid seen, sayTL* (j
50), is expected to vary between the fluid Lagrang-
ian timescale,TL , in the limit of low St numbers, and
the Eulerian timescale,TE , in the limit of high St
numbers.

~ii ! Leaving out particle inertia, external forces creates
mean drifts (jÞ0) and induce a decorrelation of the
velocity of the fluid seen with respect to the velocity
of fluid particles. This effect is called the crossing
trajectory effect~CTE! and is related to a mean rela-
tive velocity between particles and the fluid rather
than an instantaneous one.

In the model developed in the present paper, it is as-
sumed thatTE remains of the same order of magnitude as
TL , which seems actually a reasonable choice since there is
little information for complex flows. Detailed models have
been proposed for the effect of particle inertia,21 but in the
following it will be neglected, that isTL* (j50)5TL . The
representative picture is now sketched in Fig. 2 where only
the mean drift induces separation.

A. Langevin equation model

Using the physical description of the CTE effect as due
to a mean-drift~Fig. 2!, Kolmogorov theory can be applied,
as in the single-phase case, to suggest a dispersion model.
Indeed, let us introducev(t,r )5uf(t01t,x01u(t0 ,x0)t
1r )2uf(t0 ,x0), the fluid velocity field relative to the veloc-
ity of the fluid particleF at time tn , Fig. 2, that is with
uf(t0 ,x0)5us(t0). Then one can write that

dUs5v~dt,^Ur&dt!, ~18!

where ^Ur&5^Up&2^Us& is the mean relative velocity be-
tween the discrete particle and the surrounding fluid element.

FIG. 1. Fluid element and particle paths.
FIG. 2. Mean fluid and particle paths.
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Then, the differential change, and so the Eulerian statistics,
of the fluid velocity seen depend on the key variables of
Kolmogorov~as the fluid velocity!, that is^e& andn, and on
the mean drift due to the CTE effect, but not on the instan-
taneous particle or fluid velocities. Since it is the mean ve-
locity Ur that appears in Eq.~18!, the Kolmogorov theory
can then be applied,16 to show that for high Reynolds num-
ber flows and for a time incrementdt that belongs to the
inertial range, we have

^dUs,i dUs, j&5Di j ~dt!, ~19!

where the matrixDi j is determined by the two scalars func-
tions D i andD' through

Di j 5D'd i j 1@D i2D'#r i r j , ~20!

the separation vectorr being in the direction of the mean
relative velocity,r5^Ur&/u^Ur&u. The functionsD i and D'

are the longitudinal and transverse velocity correlation, re-
spectively. Dimensional analysis yields that, in the inertial
range, one can write

D i~dt!5^e&dta iS u^Ur&u2

^e&dt D ,

D'~dt!5^e&dta'S u^Ur&u2

^e&dt D . ~21!

For the two functionsa i and a' , there is no exact predic-
tion, but in two limit cases they can be explicitely computed.
On one hand, when the mean relative velocity is small,
u^Ur&u!(^e&dt)1/2, for a given time intervaldt, the statistics
of the velocity of the fluid seen are expected to be close to
the fluid ones, and thusa i.a'.C0 . On the other hand,
when the mean relative velocity is large (u^Ur&u
@(^e&dt)1/2), one can resort to the frozen turbulence hy-
pothesis, and in that case (C is a constant!

D i~dt!.C~^e&^Ur&dt!2/3,

D'~dt!. 4
3C~^e&^Ur&dt!2/3, ~22!

which shows that, in that limit, the two functionsa i(x) and
a'(x) vary asx1/3. Then, the Langevin model is not sup-
ported as in the fluid case, since it will always give a velocity
correlation linear in time for each component ofD. Never-
theless, a useful approximation can be proposed. Indeed, if
we freeze the values of the functionsa i anda' for a certain
value of the time interval, sayDt r , and write

D i~dt!.^e&dta iS u^Ur&u2

^e&Dt r
D ,

D'~dt!.^e&dta'S u^Ur&u2

^e&Dt r
D , ~23!

a linear variation ofD i(dt) andD'(dt), with respect to the
time interval dt, is now obtained. The reference time lag
may be the Lagrangian timescale which is the timescale over
which fluid velocities are correlated. And since^e&TL.k,
we have

D i~dt!.^e&dta iS u^Ur&u2

k D ,

D'~dt!.^e&dta'S u^Ur&u2

k D . ~24!

This result suggests now a Langevin equation model which
consists in simulatingUs as a diffusion process. As explained
above, this model is only an approximate model having less
support than in the fluid case. Indeed, the Langevin model
does not yield the correct spectrum~in the limit of large
relative velocity or frozen turbulence!. However, for engi-
neering purposes, where the macroscopic behavior is the real
subject of interest, the important properties are the integral
time scales rather than the precise form of the spectrum.
Thus, Langevin models are ‘‘reasonable compromises’’ be-
tween simplicity and physical accuracy at the moment. It is
also clear that much work remains to be done to improve
stochastic models.

It can be shown9 that the general stochastic differential
equations for the fluid velocity seen process have the form
~X stands for fluid fields!

dUs,i5Ai~ t,Z,^Z&,^X&!dt1Bi j ~ t,Z,^Z&,^X&!dWj ,
~25!

where the drift vector,As , and the diffusion matrix,Bs ,
have the form

dUs,i52
1

r f

]^P&

]xi

dt1~^Up, j&2^U f , j&!
]^U f ,i&

]xj

dt

2
1

TL,i*
~Us,i2^U f ,i&!dt

1A^e&~C0bi k̃/k1 2
3 ~bi k̃/k21!!dWi . ~26!

The CTE has been modeled by changing the timescales in
drift and diffusion terms according to Csanady’s analysis.
Assuming, for the sake of simplicity, that the mean drift is
aligned with the first coordinate axis~the general case is
discussed elsewhere9!, the modeled expressions for the
timescales are, in the longitudinal direction,

TL,1* 5
TL* ~j50!

A11b2 u^Ur&u2/2k/3
, ~27!

and in the transversal directions~axes labeled 2 and 3!

TL,2* 5TL,3* 5
TL* ~j50!

A114b2u^Ur&u2/2k/3
. ~28!

In these equationsb is the ratio of the Lagrangian and the
Eulerian timescales of the fluid,b5TL /TE , andTL* (j50)
represents the Lagrangian timescale in the absence of mean
drifts but accounting for particle inertia. As mentioned at the
end of the previous section, particle inertia effect are ne-
glected in the present work21 and we therefore assume that
TL* (j50)5TL . In the diffusion matrix, a new kinetic energy
has been introduced (bi5TL /TL,i* ):
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k̃5
3

2

( i 51
3 bi^uf ,i

2 &

( i 51
3 bi

. ~29!

In the absence of mean drifts, the stochastic model for
Us reverts to the Langevin equation model used in single-
phase PDF modeling7 and is thus free of any spurious drift
by construction. Finally, it must be emphasized that the deri-
vation of a satisfactory model~that is respecting a number of
well-established constraints! for particle dispersion remains
an open issue.

B. Modeling two-way coupling

In order to account for the influence of the particles on
the fluid, a new term is added in the momentum equation of
the fluid velocity, see Eqs.~4!, and the fluid velocity seen:

dUs,i5@As,i~ t,Z,^Z&,^X&!1Ap→s,i~ t,Z,^Z&!#dt

1Bs,i j ~ t,Z,^Z&,^X&!dWj . ~30!

The exact expression for this acceleration,Ap→s,i(t,Z,^Z&),
which is induced by the presence of the discrete particles, is
not a priori known. The underlying force corresponds to the
exchange of momentum between the fluid and the particles,
but should not be confused with the total force acting on
particles since the latter includes external forces such as
gravity. The effect of particles on fluid properties is ex-
pressed directly in the stochastic equation ofUs with a
simple stochastic model. The force exerted by one particle on
the fluid corresponds to the drag force written here as

Fp→ f52mp

Us2Up

tp
, ~31!

wheremp is the mass of a particle. The total force acting on
the fluid element surrounding a discrete particle is then ob-
tained as the sum of all elementary forces,Fp→ f , and the
resulting acceleration is modeled here as9

Ap→s,i5
aprp

a fr f

Up,i2Us,i

tp
. ~32!

Equation ~30! is justified by the assumption that the
mean transfer rate of energy and energy dissipation^e& is
changed by the presence of particles, but the nature and
structure of turbulence remain the same. Therefore, Eq.~30!
is written by adding an acceleration term,Ap→s , to account
for the presence of particles, while the same closures as in
the one-way coupling case will be used for the drift vectors
and the diffusion matrices, where, once again, the mean
fields ^e&,^U f

2&, . . . aremodified by the presence of the par-
ticles. Indeed, the drift vectors and the diffusion matrices, not
being affected by the nature of turbulence, remain un-
changed. In opposition to the previous hypotheses, recent
results of direct numerical simulations in the field of turbu-
lence modulation by particles~in isotropic turbulence!4 seem
to indicate that there is a nonuniform distortion of the energy
spectrum. This could mean that, contrary to our previous
assumption, the nature and structure of the energy transfer
mechanisms of turbulence are modified by the presence of
particles. There is no precise ‘‘geometrical’’ knowledge on

the structure of turbulence in the presence of discrete par-
ticles and this makes it extremely difficult to isolate the im-
portant variables in order to modify the theory of Kolmog-
orov ~which is used in our closures!. This problem is out of
the scope of the present paper and it remains an open ques-
tion. Then, the final set of equations for the velocity of the
fluid seen are

dUs,i52
1

r f

]^P&

]xi

dt1~^Up, j&2^U f , j&!
]^U f ,i&

]xj

dt

1
aprp

a fr f

Up,i2Us,i

tp

dt2
1

TL,i*
~Us,i2^U f ,i&!dt

1A^e&~C0bi k̃/k1 2
3 ~bi k̃/k21!!dWi . ~33!

It is seen that the resulting Langevin equation, which is be-
lieved to represent the simplest model for two-phase flows,
contains a diagonal but non-isotropic diffusion matrix,Bs,i j

5Bs,id i j . It is also worth emphasizing that the closure rela-
tions put forward just above reflect modeling choices. For
instance, in the two-phase flow case, the isotropic form of
the diffusion matrix cannot be obtained anymore, but it is
chosento select, among different possibilities, a diagonal
diffusion matrix.

C. Equivalence with the PDF approach

According to the arguments developed in Sec. II A, the
complete set of SDEs@for the state vectorZ5(xp ,Uf ,Us)],

dxp,i5Up,idt, ~34a!

dUp,i5
1

tp
~Us,i2Up,i !dt1gidt, ~34b!

dUs,i5@As,i~ t,Z,^Z&,^X&!1Ap→s,i~ t,Z,^Z&!#dt

1Bs,i j ~ t,Z,^Z&,^X&!dWj , ~34c!

is equivalent to a Fokker–Planck equation given in closed
form for the corresponding PDFp(t;yp ,Vp ,Vs) which is, in
sample space,

]p

]t
1Vp,i

]p

]yp,i
52

]

]Vp,i
~Ap,i p!

2
]

]Vs,i
~@As,i1^Ap→s,i uyp ,Vp ,Vs&#p!

1
1

2

]2

]Vs,i]Vs, j
~@BsBs

T# i j p!. ~35!

The equation for the Eulerian PDF and the resulting mean-
field equations can be found in Ref. 8.

IV. NUMERICAL ISSUES

The theoretical model developed in Sec. III represents a
PDF model for the particle phase only. It does not contain
any description of the continuous phase. It is possible to
extend the PDF description to both the fluid and particle
phases,8 which may be useful for theoretical and consistency
analysis. However, at the moment, this complete PDF ap-
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proach is limited for practical calculations, and, in the
present work, a classical second-moment approach is fol-
lowed for the continuous phase. The complete numerical
model is therefore a hybrid method and corresponds to a
classical approach referred to as Eulerian/Lagrangian in the
literature, as mentioned in the Introduction. As one can see
from Sec. III, the terminology is not actually adequate to
describe the complete model~it would be better to talk of a
moment/PDF hybrid approach!, but corresponds to the nu-
merical approach. Indeed, from the numerical point of view,
the fluid phase is modeled by mean fields, obtained by solv-
ing partial differential equations on a grid with an Eulerian
approach, while the particle phase is modeled by a large
number of Lagrangian particles distributed in the domain and
whose properties are obtained by solving stochastic differen-
tial equations. It is worth emphasizing that these particles are
now stochastic particles, or more precisely samples of the
underlying PDF, rather than precise models of the actual par-
ticles. The overall numerical method is therefore an example
of Monte Carlo particle-mesh techniques.

The numerical~particle-mesh! approach involves many
issues. Some of them have already been treated in classical
textbooks,22 but only for deterministic equations. The sto-
chastic nature of the present equations brings in specific as-
pects and raises new questions. In that respect, the purpose of
this section is not to give a comprehensive description of all
issues. It is more to give an overview of the numerical
method, pointing out important issues and, in particular,
those that, in our opinion, require additional work. More pre-
cisely, issues that have not always been investigated or may
have been overlooked~such as consistent discrete averages,
Sec. IV C, and mass-continuity constraint, Sec. IV D!, are
developed more in detail.

A. General algorithm

The flow-chart of the code is shown in Fig. 3. At each
time step, the fluid mean fields are first computed by solving
the corresponding partial differential equations~RSM model!
with a classical finite volume approach. The Eulerian solver
then provides the Lagrangian solver with the fluid mean
fields that are necessary to advance particles properties. In
the Lagrangian solver, the dispersed phase is represented by
a large number of particles and, as proposed by the model,
the state vector attached to each particle isZ5(xp ,Uf ,Us).
Once particle properties have been updated, and, in the case
of two-way coupling, where particles modify the fluid flow,
source terms accounting for momentum and energy ex-
change between the two phases are also calculated and are
fed back into the Eulerian solver for the next time step com-
putation. It is then seen that the two solvers are only loosely
coupled. This may lead to numerical difficulties when the
particle loading is increased, consequently the source terms
become important and the system of equations stiff. How-
ever, our present aim is to model moderate particle loading
phenomena, indeed particle-particle collisions have been ne-
glected. In that range, particles can still modify the fluid flow
in a noticeable way but source terms remain small enough so
that the loosely coupled algorithm can still be retained.

As previously explained, the particle properties are mod-
eled by a vectorial SDE written as

dZi5Ai~ t,Z,^ f ~Z!&,^X&!dt

1Bi j ~ t,Z,^ f ~Z!&,^X&!dWj , ~36!

wheref is a general function depending on the model andX
stands for fluid fields. It is worth emphasizing that the drift
and diffusion coefficients depend on statistics derived from
the PDF that is implicitly calculated. Therefore, these SDEs
are different from standard ones.14,23 Updating particles
properties implies three steps: (i ) projection of^ f (Z)& and
^X& at particle positions, (i i ) time integration of Eq.~36!,
and (i i i ) averaging to compute the new values of^ f (Z)& ~for
stationary flows, such as the one considered later on, en-
semble averages computed in every cell are then averaged in
time, once the stationary regime has been reached. This time-
averaging procedure is very helpful to reduce statistical noise
to a negligible level.24–26 Since averaging is basically the
reverse operation of projection,22 these three steps corre-
spond to two main issues:

~i! The first concerns the derivation of accurate numeri-
cal schemes for the time integration of Eq.~36!. Due
to the nonlinear nature of the equations, this is still a
difficult point23,27 and, moreover, physical constraints
should be respected.28 This issue is briefly developed
below.

~ii ! The second issue is related to the exchange of infor-
mation between the grid-based Eulerian variables, lo-
cated at cell centers, and particles which are conti-
nously distributed in the domain. At the moment, a
NGP~nearest grid point! technique22 is used; this rep-
resents the simplest choice but also the best one in

FIG. 3. Sketch of the algorithm for one time step.
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terms of spatial error.24 This is an important and at-
tractive issue to investigate for particle-mesh methods
in the case of unstructured meshes and taking into
account boundary conditions.

B. Time-integration of SDEs

Since we are interested in the numerical approximation
of statistics derived from particles, a weak numerical
scheme27 ~converging in law! is under consideration. A nu-
merical scheme is said to be of order of convergencer in
time, in the weak sense, if, for any sufficiently smooth func-
tion

u^ f ~Z!&2^ f ~ZDt!&u<C~Dt !r , ~37!

whereC is a constant andZDt represents the numerical ap-
proximation ofZ. The numerical scheme used in the present
calculations is detailed in Ref. 28, and, consequently, in the
present paper, only some points of particular importance are
emphasized. Equation~36! must be understood in theItô
senseand it is fundamental that numerical schemes respect
the Itô definition of the stochastic integral, in order to avoid
any inconsistency problems.29 The weak numerical scheme
is of order 2 in time, unconditionally stable but still
explicit.28 Another important issue is the numerical fulfill-
ment of physical limits.9 Indeed, in practical engineering cal-
culations of complex flows, it may occur that, locally, one
hasDt@tp , or evenDt@T* ,tp , that is the time-step be-
comes much larger than the characteristic time scales of the
system, Eqs.~34!. In the first case, one should have thatUp

→Us and, in the second case, the model expresses a pure
diffusive behavior in space:9,28

dxp,i5^Us,i&dt1~Bs,i j TL,i* !dWj . ~38!

It is important that the numerical scheme is consistent with
these continuous limits.

C. Discrete representation and numerical averages

Since averages are fundamental in the construction of
PDF models, it is useful to clarify the correspondence be-
tween the averages~defined as the mathematical expecta-
tions! and Monte Carlo estimations, which are used in the
code. In polydispersed cases, even whenrp is constant, the
mass of each particle can be different because of different
diameters. This suggests that even for constant density par-
ticles, the natural definition or understanding of a mean
quantity is themass-weightedaverage. This kind of choice is
somewhat analogous to the Favre mean definition for com-
pressible single-phase fluid flows.

To justify this, we start by introducing a Lagrangian
mass density functionFL(t;yp ,Vp ,cp) where

FL~ t;yp ,Vp ,cp!dypdVpdcp ~39!

is the probable mass of discrete particles in an infinitesimal
volume in sample space. As a matter of fact, attention is
focused on Eulerian averages@at a point (t,x) fixed in time
and space#, for which the analogous Eulerian mass density
function is defined by

FE~ t,x;Vp ,cp!5FL~ t;yp5x,Vp ,cp!

5E FL~ t;yp ,Vp ,cp!d~x2yp!dyp ,

~40!

whereFE is normalized by (̂rp& is the expected density!

ap~ t,x!^rp&~ t,x!5E FE~ t,x;Vp ,cp!dVpdcp . ~41!

ap represents the probability to find particles at a given time
and position, in any state. The Eulerian mass density func-
tion being defined, we can introduce a general average for a
quantityH(U(t),f(t))

ap~ t,x!^rp&~ t,x!^Hp&~ t,x!

5E Hp~Vp ,cp!FE~ t,x;Vp ,cp!dVpdcp . ~42!

The Lagrangian mass density function can be written from a
discrete point of view as

FM
L ~ t;yp ,Vp ,cp!5(

i 51

M

mp
i d~yp2xp

i ~ t !! ^ d~Vp2Up
i ~ t !!

^ d~cp2fp
i ~ t !!, ~43!

wheremp
i is the mass of the particle labeledi andM is the

number of samples. From Eq.~39!, the discrete Eulerian
mass-density functions is

FN
E~ t,xp ;Vp ,cp!5

1

dV§
(
i 51

N

mp
i d~Vp2Up

i ~ t !!

^ d~cp2fp
i ~ t !!, ~44!

dV§ being a small volume around pointx which containsN
particles. Then, a numerical approximation of Eq.~41! is

ap~ t,x!^rp&.
( i 51

N mp
i

dV§
, ~45!

and the numerical approximation of a particle mean quantity
is

^Hp&.Hp,N5
( i 51

N mp
i Hp~Up

i ~ t !,fp
i ~ t !!

( i 51
N mp

i . ~46!

Convergence of the discrete approximation is ensured by the
central limit theorem which shows that there exists a con-
stantC such that, whenN→1`,

^Hp,N&5^Hp& and ^~^Hp&2Hp,N!2&<
C

N
. ~47!

It is therefore seen that the convergence of the underlying
PDF is not in a strong sense but in a weak sense, or to be
more precise in law,14 since it is in fact the mean value of
functions of the stochastic processZ that converges
asN→1`,

HN,p5^H~ZN!& ——→
N→`

^H~Z!&. ~48!
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D. Pressure correction

It has been shown in Sec. III C that there is a correspon-
dence SDE–Fokker–Planck equation. From the PDF equa-
tion, mean particle fields can then be extracted.8 In other
words, every particle stochastic model is consistent with a
certain Eulerian model6,9 as in single-phase PDF models.30

With the definition of the mean particle velocity field
given in the previous section, the corresponding particle con-
tinuity equation is~density is constant!

]

]t
~aprp!1

]

]xi
~aprp^Up,i&!50. ~49!

For each time step in the Lagrangian solver, the mean fields
ap and ^Ũp,i& are computed from particle location and ve-
locity, xp andUp , using the numerical approximations given
in Eqs. ~45! and ~46!. Here, we propose to modify particle
velocities~not locations! so as to enforce the mean continuity
constraint, by adding a pressure-correction field as a poten-
tial f. The corrected particle velocity field is then

^Up,i&5^Ũp,i&2
]f

]xi
, ~50!

wheref is calculated from the Poisson equation

]

]xi
S aprp

]f

]xi
D5

]

]t
~aprp!1

]

]xi
~aprp^Ũp,i&!. ~51!

The mean velocity correction term is then applied to each
particle velocity.

This pressure-correction term used here for the particle
velocity is of course similar to the classical pressure-
correction step applied in the Eulerian solver for the fluid.
Yet, it is often overlooked in Lagrangian calculations. If we
consider the complete algorithm, it is then seen that there are
now two pressure-correction steps due to the two mean-
continuity equations, one for the fluid and one for the par-
ticles. This is also a consequence of the loosely coupled al-
gorithm.

V. NUMERICAL INVESTIGATION

A. Experimental setup

The experimental setup is typical for pulverized coal
combustion where primary air and coal are injected in the
center and secondary air is introduced on the periphery,
Fig. 4.

This is a typical bluff-body flow where the gas~air at
ambient temperature,T5293 K) is injected in the inner re-
gion and also in the outer region where the inlet velocity is
high enough to create a recirculation zone downstream of the
injection ~two honeycombs were used in the experiment in
order to stabilize the flow so that no swirl was present!. Solid
particles ~glass particles of densityrp52450 kg/m3) are
then injected from the inner cylinder with a given mass flow
rate and from there interact with the gas turbulence. This is a
coupled turbulent two-phase flow since the particle mass
loading at the inlet is high enough~22%! for the particles to
modify the fluid mean velocities and kinetic energy. This is
also a polydispersed flow where particle diameters vary ac-
cording to a known distribution at the inlet, typically be-
tween dp520 mm and dp5110 mm around an average of
dp;60 mm.

Experimental data are available for radial profiles~the
flow is stationary and axisymmetric! of different statistical
quantities at five axial distances downstream of the injection
(x50.08, 0.16, 0.24, 0.32 and 0.40 m!. These quantities in-
clude the mean axial and radial velocities as well as the
fluctuating radial and axial velocities for both the fluid and
the particle phase. Axial profiles along the axis of symmetry
for these quantities have also been measured. All the data
was gathered using PDA measurement techniques. Further
details on the experimental setup and the measurement tech-
niques can be found in Ref. 31.

The ‘‘Hercule’’ experimental setup is a very interesting
test case for two-phase flow modelling and numerical simu-

FIG. 4. The ‘‘Hercule’’ experimental setup. The mean streamlines are shown
for the fluid ~solid lines! and the particles~dashed lines!. Two stagnation
points in the fluid flow can be observed (S1 andS2). Experimental data are
available for radial profiles of different statistical quantities at five axial
distances downstream of the injection (x50.08,0.16,0.24,0.32,0.40 m)~ex-
perimental data are also available on the symmetry axis!.

TABLE I. Computational performances.

CPU time for
1000 nodes/time step

CPU time for
1000 particles/time step

Eulerian solver 0.20 s
Lagrangian solver 0.17 s
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lations where most of the different aspects of two-phase
flows are present. The particles are dispersed by the turbulent
flow but in return modify this one. Furthermore, the exis-
tence of a recirculation zone where particles interact with
negative axial fluid velocities constitutes a much more strin-
gent test case compared to cases where the fluid and the
particle mean velocities are of the same sign~the problem is
then mostly confined to radial dispersion issues!.

B. Results and discussion

All the results were obtained by using the ESTET 3.4
software on a HP-C3000 workstation. In all numerical com-
putations, the axisymmetry property was used: a two-
dimensional curvilinear mesh with 74333142 nodes was
generated. The sensitivity to the various parameters of the
numerical investigation was accurately studied. In particular,
independence with respect to the time step was checked. A
uniform time step,Dt51023 s, was then used in all compu-
tations.

The computations were carried out with anRi j 2e tur-
bulence model, which is based on the standard IPM
model.32,33 Actually, this choice is satisfying from the point
of view of the consistency with the stochastic model. It is
known that there is a rigorous correspondence between the
Lagrangian stochastic models and the second-order closures
in the case of turbulent single-phase flows.30

In the two-phase flow calculations, particles were in-
jected when the single-phase flow stationary regime was

reached~as the limit of the unstationary regime! before the
introduction of the discrete particles in the domain. About
1000 time steps were computed for the single-phase prob-
lem. Around 400 to 500 additional time steps were needed to
reach the stationary regime for the two-phase flow situation
~around 14 000 particles were at this stage present in the
domain!. Statistics extracted from the particle data set were
then averaged in time~for about 1000 time steps! to reduce
the statistical noise.

The computational performances are shown in Table I.
Normally, Lagrangian algorithms require much more compu-
tational time than the Eulerian eddy-viscosity models.9 In
this case, for the same number of computational elements
~either mesh points or nodes!, they appear comparable. The
computational requirements for the Eulerian solver are in-
creased due to the use of a full second-order turbulence
model which implies the numerical resolution of six coupled
partial differential equations for the fluctuating velocities
~added to the three equations for the mean momentum! com-
pared to only one for eddy-viscosity models.

The experimental set of measures provides data both
along the axis and in cross sections at various points in the

FIG. 5. Mean fluid velocity along the axis in single- and two-phase flow.

FIG. 6. Profiles of axial particle velocity along the axis~mean and fluctu-
ating velocities!.

FIG. 7. Mean axial fluid velocity in two-phase simulation.
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domain. The comparison is made in all directions and at all
cross sections of measures. The cross section atx50.16 is
located within the recirculation zone while the cross section
at x50.4 is located downstream of the limit of the recircu-
lation zone.

The overall agreement between experimental data and
the computed profiles is good. In particular, the particle fluc-
tuating velocity is well reproduced both in shape and in mag-
nitude.

In Figs. 5 and 6, the mean fluid and particle velocities
along the axis are shown. It is noticeable that the comparison
between the computed results and the experimental findings
for the two-phase flow in the presence of two-way coupling
is worse than in single-phase computation. The same effect
characterizes both the mean fluid and the particle profiles.
The results are less well reproduced in two domain zones,
although the qualitative agreement remains good. The point
of recirculation is overestimated and the velocity slope after
it is underestimated. This effect indicates the necessity of
further studies on the coupling between particles and the
fluid. It is worth noting that these effects are limited to the
behavior along the axis. In Figs. 8–10 first two statistical

moments of the particles velocity (^Up&,^Wp&,A^up8
2&) are

shown, without smoothing. The difference between experi-
mental data and computed results at the axis (x50) does not
influence the computation in the rest of the domain. In Fig. 7
we show the profiles of the fluid mean axial velocity, where
an analogous behavior is present, with a satisfactory agree-
ment in the whole domain except the values on the axis.

VI. CONCLUSIONS

In this paper, a theoretical and numerical model for par-
ticle turbulent polydispersed two-phase flows has been pre-
sented. The theoretical model is a PDF model and, in prac-
tice, appears as a Lagrangian stochastic model. It consists in
the simulation of a large number of stochastic particles
which simulate the behavior of real particles dispersed in the
fluid. Each particle is defined by a set of variables and the
selection of these state variables represents an important
choice from the physical point of view. At present, the state
variables attached to each particle include particle position,
particle velocity and the fluid velocity seen. The present
model is developed as a diffusion stochastic process for the
velocity of the fluid seen. This is similar to single-phase

FIG. 8. Profiles of mean axial particle velocity. FIG. 9. Profiles of mean radial particle velocity.
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turbulence, but the extension to the two-phase flow case re-
quires additional assumptions in the application of the Kolo-
mogorov hypotheses, as detailed in Sec. III. A specific point
is that, in the case of two-way coupling, an extra term is
needed in the stochastic equation for the velocity of the fluid
seen in order to be consistent with the mean field equations
for the fluid phase.

From the numerical point of view, a hybrid Eulerian/
Lagrangian, or moment/Monte Carlo, approach is discussed.
At each time step, the fluid phase is computed with a Eule-
rian code which provides the Lagrangian module with mean
fluid quantities. The particles are then tracked and source
terms representing the momentum and kinetic energy ex-
changes are evaluated to be included in the Reynolds stress
equations. This corresponds to a classical approach, but new
aspects have been emphasized. In particular, apart from con-
siderations on numerical schemes and the evaluation of par-
ticle means, the necessity of a correction to satisfy the par-
ticle continuity equation has been stressed.

The interests and capabilities of the model have been
illustrated by the computation of a test case representative of
an engineering situation. Numerical predictions are in good

agreement with the experimental ones and can be regarded as
a validation of the model.

Some of the current developments to this work aim at
improving numerical aspects~variance reduction technique
for the computational efficiency, new methods to compute
statistical averages! and at improving the physics of the
model in the near-wall region~boundary layer!.
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